Genetic Variability and Admixture Zones in the Italian Populations of Turkey Oak (Quercus cerris L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and DNA Extraction
2.2. SSR Markers
2.3. Genetic Analysis
2.4. Demographic Analysis
3. Results
3.1. Genetic Variability
3.2. Genotypic Disequilibrium
3.3. Genetic Differentiation among Populations
3.4. Analysis of the Population Structure
3.5. Population Demography
4. Discussion
4.1. Genetic Differentiation
4.2. Genetic Structure
4.3. Demographic Expansion in Italy
4.4. Implication for Conservation and Further Work
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Scotti-Saintaigne, C.; Mariette, S.; Porth, I.; Goicoechea, P.G.; Barreneche, T.; Bodénès, C.; Burg, K.; Kremer, A. Genome scanning for interspecific differentiation between two closely related oak species [Quercus robur L. and Q. petraea (Matt.) Liebl.]. Genetics 2004, 168, 1615–1626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muir, G.; Schlötterer, C. Evidence for shared ancestral polymorphism rather than recurrent gene flow at microsatellite loci differentiating two hybridizing oaks (Quercus spp.). Mol. Ecol. 2005, 14, 549–561. [Google Scholar] [CrossRef] [PubMed]
- Jurkšienė, G.; Baranov, O.Y.; Kagan, D.I.; Kovalevič-Razumova, O.A.; Baliuckas, V. Genetic diversity and differentiation of pedunculate (Quercus robur) and sessile (Q. petraea) oaks. J. For. Res. 2020, 31, 2445–2452. [Google Scholar] [CrossRef] [Green Version]
- Belahbib, N.; Pemonge, M.H.; Ouassou, A.; Sbay, H.; Kremer, A.; Petit, R.J. Frequent cytoplasmic exchanges between oak species that are not closely related: Quercus suber and Q. ilex in Morocco. Mol. Ecol. 2001, 10, 2003–2012. [Google Scholar] [CrossRef] [PubMed]
- Jiménez, P.; de Heredia, U.L.; Collada, C.; Lorenzo, Z.; Gil, L. High variability of chloroplast DNA in three Mediterranean evergreen oaks indicates complex evolutionary history. Heredity 2004, 93, 510–515. [Google Scholar] [CrossRef] [Green Version]
- Lumaret, R.; Tryphon-Dionnet, M.; Michaud, H.; Sanuy, A.; Ipotesi, E.; Born, C.; Mir, C. Phylogeographical variation of chloroplast DNA in cork oak (Quercus suber). Ann. Bot. 2005, 96, 853–861. [Google Scholar] [CrossRef]
- Mir, C.; Jarne, P.; Sarda, V.; Bonin, A.; Lumaret, R. Contrasting nuclear and cytoplasmic exchanges between phylogenetically distant oak species (Quercus suber L. and Q. ilex L.) in Southern France: Inferring crosses and dynamics. Plant Biol. 2009, 11, 213–226. [Google Scholar] [CrossRef]
- Soto, A.; Rodríguez-Martínez, D.; Lopez De Heredia, U. SimHyb: A simulation software for the study of the evolution of hybridizing populations. Application to Quercus ilex and Q. suber suggests hybridization could be underestimated. iForest 2018, 11, 99. [Google Scholar] [CrossRef] [Green Version]
- Salvini, D.; Bruschi, P.; Fineschi, S.; Grossoni, P.; Kjaer, E.D.; Vendramin, G.G. Natural hybridisation between Quercus petraea (Matt.) Liebl. and Quercus pubescens Willd. within an Italian stand as revealed by microsatellite fingerprinting. Plant Biol. 2005, 11, 758–765. [Google Scholar] [CrossRef]
- Reutimann, O.; Gugerli, F.; Rellstab, C. A species-discriminatory single-nucleotide polymorphism set reveals maintenance of species integrity in hybridizing European white oaks (Quercus spp.) despite high levels of admixture. Ann. Bot. 2020, 125, 663–676. [Google Scholar] [CrossRef]
- Tovar-Sanchez, E.; Oyama, K. Natural hybridization and hybrid zones between Quercus crassifolia and Quercus crassipes (Fagaceae) in Mexico: Morphological and molecular evidence. Am. J. Bot. 2004, 91, 1352–1363. [Google Scholar] [CrossRef] [Green Version]
- Ortego, J.; Bonal, R. Natural hybridisation between kermes (Quercus coccifera L.) and holm oaks (Q. ilex L.) revealed by microsatellite markers. Plant Biol. 2010, 12, 234–238. [Google Scholar] [CrossRef]
- Lexer, C.; Kremer, A.; Petit, R.J. Shared alleles in sympatric oaks: Recurrent gene flow is a more parsimonious explanation than ancestral polymorphism. Mol. Ecol. 2006, 15, 2007–2012. [Google Scholar] [CrossRef]
- Curtu, A.L.; Gailing, O.; Leinemann, L.; Finkeldey, R. Genetic variation and differentiation within a natural community of five oak species (Quercus spp.). Plant Biol. 2007, 9, 116–126. [Google Scholar] [CrossRef]
- Bagnoli, F.; Tsuda, Y.; Fineschi, S.; Bruschi, P.; Magri, D.; Zhelev, P.; Paule, L.; Simeone, M.C.; Gonzàles-Martìnez, S.C.; Vendramin, G.G. Combining molecular and fossil data to infer demographic history of Quercus cerris: Insights on European eastern glacial refugia. J. Biogeogr. 2016, 43, 679–690. [Google Scholar] [CrossRef]
- Caudullo, G.; Welk, E.; San-Miguel-Ayanz, J. Chorological maps for the main European woody species. Data Brief 2017, 12, 662–666. [Google Scholar] [CrossRef]
- Abbate, G.; Alessandrini, A.; Blasi, C.; Conti, F. An Annotated Checklist of the Italian Vascular Flora; Palombi Editori: Roma, Italy, 2005. [Google Scholar]
- Vermoere, M.; Bottema, S.; Vanhecke, L.; Waelkens, M.; Paulissen, E.; Smets, E. Palynological evidence for late-Holocene human occupation recorded in two wetlands in SW Turkey. Holocene 2002, 12, 569–584. [Google Scholar] [CrossRef]
- Corti, G.; Agnelli, A.; Cocco, S.; Cardelli, V.; Masse, J.; Couchesne, F. Soil affects throughfall and stemflow under Turkey oak (Quercus cerris L.). Geoderma 2019, 333, 43–56. [Google Scholar] [CrossRef]
- Kuster, T.M.; Arend, M.; Bleuler, A.P.; Gunthardt-Goerg, M.S.; Schulin, R. Water regime and growth of young oak stands subjected to air-warming and drought on two different forest soils in a model ecosystem experiment. Plant Biol. 2013, 15, 138–147. [Google Scholar] [CrossRef]
- Svenning, J.C.; Skov, F. Ice age legacies in the geographical distribution of tree species richness in Europe. Global Ecol. Biogeogr. 2007, 16, 234–245. [Google Scholar] [CrossRef]
- Dow, B.D.; Ashley, M.V.; Howe, H.F. Characterization of high variable (GA/TC)n microsatellites in the bur oak, Quercus macrocarpa. Theor. Appl. Genet. 2005, 91, 137–141. [Google Scholar] [CrossRef] [PubMed]
- Steinkellner, H.; Fluch, S.; Turetschek, E.; Lexer, C.; Streiff, R.; Kremer, A.; Burg, K.; Glossl, J. Identification and characterization of (GA/TC)n microsatellite loci from Quercus petraea. Plant Mol. Biol. 1997, 33, 1093–1096. [Google Scholar] [CrossRef] [PubMed]
- Kempfer, S.; Lexer, C.; Glossl, J.; Steinkellner, H. Characterization of (GA)n microsatellite loci from Quercus robur. Hereditas 1998, 129, 186–193. [Google Scholar] [CrossRef]
- Barreneche, T.; Casasoli, M.; Russel, K.; Akkak, A.; Meddour, H.; Plomion, C.; Villani, F.; Kremer, A. Comparative mapping between Quercus and Castanea using simple-sequence repeats (SSRs). Theor. Appl. Genet. 2004, 108, 558–566. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.W.; Thompson, E.A. Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics 1992, 48, 361–372. [Google Scholar] [CrossRef]
- Weir, B.S.; Cockerham, C.C. Estimating F-statistics for the analysis of population structure. Evolution 1984, 38, 1358–1370. [Google Scholar]
- Slatkin, M. A measure of population subdivision based on microsatellite allele frequencies. Genetics 1995, 139, 457–462. [Google Scholar] [CrossRef]
- Mantel, N. The detection of disease clustering and a generalized regression approach. Cancer Res. 1967, 27, 209–220. [Google Scholar]
- Rousset, F. Genepop’007: A complete reimplementation of the Genepop software for Windows and Linux. Mol. Ecol. Res. 2008, 8, 103–106. [Google Scholar] [CrossRef]
- Belkhir, K.; Borsa, P.; Chikhi, L.; Raufaste, N.; Bonhomme, F. GENETIX 4.02, logiciel sous WindowsTM pour la genetique des populations. In Laboratoire Genome, Populations, Interactions; CNRS, Universite’ de Montpellier II: Montpellier, France, 1996. [Google Scholar]
- Goodman, S.J. RST CALC: A collection of computer programs for calculating unbiased estimates of genetic differentiation and determining their significance for microsatellite data. Mol. Ecol. 1997, 6, 881–885. [Google Scholar] [CrossRef]
- Chen, C.; Durand, E.; Forbes, F.; François, O. Bayesian clustering algorithms ascertaining spatial population structure: A new computer program and a comparison study. Mol. Ecol. Not. 2007, 7, 747–756. [Google Scholar] [CrossRef]
- Durand, E.; Jay, F.; Gaggiotti, O.E.; François, O. Spatial inference of admixture proportions and secondary contact zones. Mol. Bio. Evol. 2009, 26, 1963–1973. [Google Scholar] [CrossRef]
- Guillot, G.; Leblois, R.; Coulon, A.; Frantz, A.C. Statistical methods in spatial genetics. Mol. Ecol. 2009, 18, 4734–4756. [Google Scholar] [CrossRef]
- François, O.; Durand, E. The State of the art-Spatially explicit Bayesian clustering models in population genetics. Mol. Ecol. Res. 2010, 10, 773–784. [Google Scholar] [CrossRef]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2011; ISBN 3-900051-07-0. [Google Scholar]
- Jakobsson, M.; Rosenberg, N.A. CLUMPP: A cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 2007, 23, 1801–1806. [Google Scholar] [CrossRef] [Green Version]
- Ripley, B.D. Spatial Statistics; John Wiley & Sons: Hoboken, NJ, USA, 1981. [Google Scholar]
- Row, G.R.; Blouin-Demers, G.; Lougheed, S.C. Habitat distribution influences dispersal and fine-scale genetic population structure of eastern foxsnakes (Mintonius gloydi) across a fragmented landscape. Mol. Ecol. 2010, 19, 5157–5171. [Google Scholar] [CrossRef]
- Cornuet, J.M.; Pudlo, P.; Veyssier, J.; Dehne-Garcia, A.; Gautier, M.; Leblois, R.; Marin, J.M.; Estoup, A. DIYABC v2.0: A software to make approximate Bayesian computation inferences about population history using single nucleotide polymorphism, DNA sequence and microsatellite data. Bioinformatics 2014, 30, 1187–1189. [Google Scholar] [CrossRef] [Green Version]
- Barthe, S.; Binelli, G.; Hérault, B.; Scotti-Saintagne, C.; Sabatier, D.; Scotti, I. Tropical rainforests that persisted: Inferences from the Quaternary demographic history of eight tree species in the Guiana shield. Mol. Ecol. 2017, 26, 1161–1174. [Google Scholar] [CrossRef] [Green Version]
- Estoup, A.; Jarne, P.; Cornuet, J.M. Homoplasy and mutation model at microsatellite loci and their consequences for population genetics analysis. Mol. Ecol. 2002, 11, 1591–1604. [Google Scholar] [CrossRef]
- Hamrick, J.L. Response of forest trees to global environmental changes. For. Ecol. Manag. 2004, 197, 323–355. [Google Scholar] [CrossRef]
- Streiff, R.; Labbe, T.; Bacilieri, R.; Steinkellner, H.; Glossl, J.; Kremer, A. Within-population genetic structure in Quercus robur L. and Quercus petraea (Matt.) Liebl. assessed with isozymes and microsatellites. Mol. Ecol. 1998, 7, 317–328. [Google Scholar] [CrossRef]
- Simeone, M.C.; Cardoni, S.; Piredda, R.; Imperatori, F.; Avishai, M.; Grimm, G.W.; Denk, T. Comparative systematics and phylogeography of Quercus Section Cerris in western Eurasia: Inferences from plastid and nuclear DNA variation. PeerJ 2018, 6, e5793. [Google Scholar] [CrossRef] [PubMed]
- Piry, S.; Luikart, G.; Cornuet, J.M. BOTTLENECK: A computer program for detecting recent reductions in the effective population size using allele frequency data. J. Hered. 1999, 90, 502–503. [Google Scholar] [CrossRef]
- Bruschi, P.; Vendramin, G.G.; Bussotti, F.; Grossoni, P. Morphological and molecular diversity among Italian populations of Quercus petraea (Fagaceae). Ann. Bot. 2003, 91, 707–716. [Google Scholar] [CrossRef] [PubMed]
- Fineschi, S.; Vendramin, G.G. La diversità cloroplastica delle querce italiane: Evidenze di una maggiore ricchezza genetica nelle popolazioni meridionali e insulari. Forest 2004, 1, 82–87. [Google Scholar] [CrossRef] [Green Version]
- Bertorelle, G.; Excoffier, L. Inferring admixture proportions from molecular data. Mol. Bio. Evol. 1998, 15, 1298–1311. [Google Scholar] [CrossRef] [Green Version]
- Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 2000, 155, 945–959. [Google Scholar] [CrossRef]
- Bennett, K.D.; Provan, J. What do we mean by “refugia”? Quat. Sci. Rev. 2008, 27, 2449–2455. [Google Scholar] [CrossRef]
Population | Location | No. of Samples | Latitude N | Longitude E | He | Ho | Average No. Alleles/Locus | Forest Management |
---|---|---|---|---|---|---|---|---|
AC | Albarè di Costermano | 30 | 45°33′59″ | 10°45′07″ | 0.697 | 0.662 | 10.6 | High forest |
BA | Bari | 32 | 41°07′33″ | 16°52′06″ | 0.734 | 0.685 | 12.3 | Wooded scrub |
BC | Colli Berici | 36 | 45°27′01″ | 11°32′19″ | 0.723 | 0.559 | 13.9 | Coppice |
BE | Bedonia | 34 | 44°30′06″ | 9°38′02″ | 0.687 | 0.615 | 12.1 | Coppice |
BF | Bosco della Fontana | 30 | 45°13′13″ | 10°45′25″ | 0.734 | 0.582 | 10.9 | High forest |
BR | Bagno di Romagna | 30 | 43°50′00″ | 11°57′35″ | 0.716 | 0.621 | 13.6 | Coppice |
BS | Barisciano | 40 | 42°19′31″ | 13°35′36″ | 0.712 | 0.587 | 12.5 | Coppice |
CF | Campofontana | 30 | 45°38′21″ | 11°09′17″ | 0.720 | 0.675 | 13.5 | Coppice |
CM | Casale Monferrato | 43 | 45°08′13″ | 08°27′03″ | 0.716 | 0.604 | 12.8 | Young high forest |
CO | Monte Conero | 40 | 43°33′04″ | 13°36′16″ | 0.707 | 0.639 | 14.5 | Coppice |
CV | Cala Violina, Follonica | 34 | 42°52′43″ | 10°49′43″ | 0.743 | 0.624 | 14.4 | Coppice |
DC | Dolegna del Collio | 30 | 46°01′53″ | 13°28′45″ | 0.730 | 0.628 | 13.6 | Young high forest |
ES | Esenta | 44 | 45°25′01″ | 10°28′51″ | 0.716 | 0.559 | 15.0 | High forest |
FI | Ficuzza | 30 | 37°52′58″ | 13°22′37″ | 0.698 | 0.575 | 10.3 | High forest |
LA | Laveno, Monte Sangiano | 30 | 45°54′37″ | 8°37′08″ | 0.717 | 0.539 | 11.6 | High forest |
LI | Ligonchio | 30 | 44°18′57″ | 10°20′34″ | 0.758 | 0.582 | 12.8 | Coppice |
MA | Manziana | 40 | 42°07′59″ | 12°07′38″ | 0.756 | 0.563 | 13.9 | High forest |
MD | Monghidoro | 40 | 44°13′39″ | 11°19′43″ | 0.672 | 0.597 | 12.0 | Coppice |
MG | Mongiana | 40 | 38°30′50″ | 16°19′13″ | 0.679 | 0.599 | 10.1 | High forest |
MT | Matera | 37 | 40°40′07″ | 16°36′21″ | 0.805 | 0.503 | 12.3 | Wooded scrub |
SA | Sabaudia | 36 | 41°17′59″ | 13°01′28″ | 0.794 | 0.508 | 11.9 | High forest |
VC | Vercelli | 40 | 45°19′16″ | 8°25′34″ | 0.650 | 0.620 | 8.3 | High forest |
VT | Val Trompia, Lodrino | 33 | 45°43′11″ | 10°16′36″ | 0.803 | 0.604 | 15.1 | Coppice |
Average/population | 0.725 | 0.597 |
SSR Name | Repeat | Primer Sequence (5′–3′) | Ta (°C) | Fluorophore Used | Number of Detected Alleles | Sizes of Alleles (bp) |
---|---|---|---|---|---|---|
QpZAG9 | (AG)12 | F: GCAATTACAGGCTAGGCTGG R: GTCTGGACCTAGCCCTCATG | 55 °C | HEX | 40 | 175–281 |
QpZAG110 | (AG)15 | F: GGAGGCTTCCTTCAACCTACT R: GATCTCTTGTGTGCTGTATTT | 53 °C | FAM | 33 | 200–272 |
QrZAG4 | (GA)46 | F: CGTCTATAAGTTCTTGGGTGA R: GTAACTATGATGTGATTCTTACTTCA | 50 °C | FAM | 37 | 99–173 |
QrZAG7 | (TC)17 | F: CAACTTGGTGTTCGGATCAA R: GTGCATTTCTTTTATAGCATTCAC | 51 °C | HEX | 35 | 101–169 |
QrZAG20 | (TC)18 | F: CCATTAAAAGAAGCAGTATTTTGT R: GCAACACTCAGCCTATATCTAGAA | 50 °C | TAMRA | 38 | 126–210 |
QrZAG96 | (TC)20 | F: CCCAGTCACATCCACTACTGTCC R: GGTTGGGAAAAGGAGATCAGA | 55 °C | TAMRA | 20 | 136–176 |
MSQ4 | (GA)17 | F: TCTCCTCTCCCCATAAACAGG R: GTTCCTCTATCCAATCAGTAGTGAG | 49 °C | FAM | 38 | 115–253 |
MSQ13 | (GA)14 | F: TGGCTGCACCTATGGCTCTTAG R: ACACTCAGACCCACCATTTTTCC | 53 °C | HEX | 24 | 189–249 |
θ0 | θ1 | r0 | T | |
---|---|---|---|---|
Pop1 | 38.20 [1.99–91.50] | 0.09 [0.01–0.76] | 424.44 | 4800 [57–9950] |
Pop2 | 36.20 [1.57–90.20] | 0.08 [0.01–0.76] | 452.50 | 3320 [32–9900] |
Pop3 | 23.20 [0.82–84.20] | 0.59 [0.01–7.87] | 39.32 | 972 [14–9490] |
SIC/Pop4 | 8.99 [0.30–67.80] | 5.87 [1.36–26.10] | 1.53 | 628 [17–9090] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bertolasi, B.; Zago, L.; Gui, L.; Cossu, P.; Vanetti, I.; Rizzi, S.; Cavallini, M.; Lombardo, G.; Binelli, G. Genetic Variability and Admixture Zones in the Italian Populations of Turkey Oak (Quercus cerris L.). Life 2023, 13, 18. https://doi.org/10.3390/life13010018
Bertolasi B, Zago L, Gui L, Cossu P, Vanetti I, Rizzi S, Cavallini M, Lombardo G, Binelli G. Genetic Variability and Admixture Zones in the Italian Populations of Turkey Oak (Quercus cerris L.). Life. 2023; 13(1):18. https://doi.org/10.3390/life13010018
Chicago/Turabian StyleBertolasi, Bruno, Luisa Zago, Lorenzo Gui, Piero Cossu, Isabella Vanetti, Silvio Rizzi, Marta Cavallini, Gianluca Lombardo, and Giorgio Binelli. 2023. "Genetic Variability and Admixture Zones in the Italian Populations of Turkey Oak (Quercus cerris L.)" Life 13, no. 1: 18. https://doi.org/10.3390/life13010018
APA StyleBertolasi, B., Zago, L., Gui, L., Cossu, P., Vanetti, I., Rizzi, S., Cavallini, M., Lombardo, G., & Binelli, G. (2023). Genetic Variability and Admixture Zones in the Italian Populations of Turkey Oak (Quercus cerris L.). Life, 13(1), 18. https://doi.org/10.3390/life13010018