Mechanical Thrombectomy in Acute Ischemic Stroke COVID-19 and Non-COVID-19 Patients: A Single Comprehensive Stroke Center Study
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gupta, A.; Madhavan, M.V.; Sehgal, K.; Nair, N.; Mahajan, S.; Sehrawat, T.S.; Bikdeli, B.; Ahluwalia, N.; Ausiello, J.C.; Wan, E.Y.; et al. Extrapulmonary manifestations of COVID-19. Nat. Med. 2020, 26, 1017–1032. [Google Scholar] [CrossRef] [PubMed]
- Elrobaa, I.H.; New, K.J. COVID-19: Pulmonary and Extra Pulmonary Manifestations. Front. Public Health 2021, 9, 711616. [Google Scholar] [CrossRef] [PubMed]
- Sagris, D.; Papanikolaou, A.; Kvernland, A.; Korompoki, E.; Frontera, J.A.; Troxel, A.B.; Gavriatopoulou, M.; Milionis, H.; Lip, G.Y.H.; Michel, P.; et al. COVID-19 and ischemic stroke. Eur. J. Neurol. 2021, 28, 3826–3836. [Google Scholar] [CrossRef] [PubMed]
- Tudoran, C.; Velimirovici, D.E.; Berceanu-Vaduva, D.M.; Rada, M.; Voiţă-Mekeres, F.; Tudoran, M. Increased Susceptibility for Thromboembolic Events versus High Bleeding Risk Associated with COVID-19. Microorganisms 2022, 10, 1738. [Google Scholar] [CrossRef] [PubMed]
- Nannoni, S.; de Groot, R.; Bell, S.; Markus, H.S. Stroke in COVID-19: A systematic review and meta-analysis. Int. J. Stroke 2021, 16, 137–149. [Google Scholar] [CrossRef]
- Syahrul, S.; Maliga, H.A.; Ilmawan, M.; Fahriani, M.; Mamada, S.S.; Fajar, J.K.; Frediansyah, A.; Syahrul, F.N.; Imran, I.; Haris, S.; et al. Hemorrhagic and ischemic stroke in patients with coronavirus disease 2019: Incidence, risk factors, and pathogenesis—A systematic review and meta-analysis. F1000Research 2021, 10, 34. [Google Scholar] [CrossRef]
- Jovin, T.G.; Chamorro, A.; Cobo, E.; de Miquel, M.A.; Molina, C.A.; Rovira, A.; San Román, L.; Serena, J.; Abilleira, S.; Ribó, M.; et al. Thrombectomy within 8 hours after symptom onset in ischemic stroke. N. Engl. J. Med. 2015, 372, 2296–2306. [Google Scholar] [CrossRef] [Green Version]
- Tian, C.; Cao, X.; Wang, J. Recanalisation therapy in patients with acute ischaemic stroke caused by large artery occlusion: Choice of therapeutic strategy according to underlying aetiological mechanism? Stroke Vasc. Neurol. 2017, 2, 244–250. [Google Scholar] [CrossRef] [Green Version]
- Kurnianto, A.; Tugasworo, D.; Andhitara, Y.; Retnaningsih; Ardhini, R.; Budiman, J. Mechanical thrombectomy (MT) for acute ischemic stroke (AIS) in COVID-19 pandemic: A systematic review. Egypt J. Neurol. Psychiatr. Neurosurg. 2021, 57, 67. [Google Scholar] [CrossRef] [PubMed]
- Zureigat, H.; Alhusban, M.; Cobia, M. Mechanical Thrombectomy Outcomes in COVID-19 Patients With Acute Ischemic Stroke: A Narrative Review. Neurologist 2021, 26, 261–267. [Google Scholar] [CrossRef]
- Jabbour, P.; Dmytriw, A.A.; Sweid, A.; Piotin, M.; Bekelis, K.; Sourour, N.; Raz, E.; Linfante, I.; Dabus, G.; Kole, M.; et al. Characteristics of a COVID-19 Cohort With Large Vessel Occlusion: A Multicenter International Study. Neurosurgery 2022, 90, 725–733. [Google Scholar] [CrossRef] [PubMed]
- Dmytriw, A.A.; Ghozy, S.; Sweid, A.; Piotin, M.; Bekelis, K.; Sourour, N.; Raz, E.; Vela-Duarte, D.; Linfante, I.; Dabus, G.; et al. North American Neurovascular COVID-19 (NAN-C) Consortium & Society of Vascular and Interventional Neurology (SVIN) Investigators. International controlled study of revascularization and outcomes following COVID-positive mechanical thrombectomy. Eur. J. Neurol. 2022, 29, 3273–3287. [Google Scholar] [CrossRef] [PubMed]
- Douiri, A.; Muruet, W.; Bhalla, A.; James, M.; Paley, L.; Stanley, K.; Rudd, A.G.; Wolfe, C.D.A.; Bray, B.D.; SSNAP Collaboration. Stroke Care in the United Kingdom During the COVID-19 Pandemic. Stroke 2021, 52, 2125–2133. [Google Scholar] [CrossRef] [PubMed]
- Nogueira, R.G.; Abdalkader, M.; Qureshi, M.M.; Frankel, M.R.; Mansour, O.Y.; Yamagami, H.; Qiu, Z.; Farhoudi, M.; Siegler, J.E.; Yaghi, S.; et al. Global impact of COVID-19 on stroke care. Int. J. Stroke 2021, 16, 573–584. [Google Scholar] [CrossRef] [PubMed]
- Kerleroux, B.; Fabacher, T.; Bricout, N.; Moïse, M.; Testud, B.; Vingadassalom, S.; Ifergan, H.; Janot, K.; Consoli, A.; Ben Hassen, W.; et al. Mechanical Thrombectomy for Acute Ischemic Stroke Amid the COVID-19 Outbreak: Decreased Activity, and Increased Care Delays. Stroke 2020, 51, 2012–2017. [Google Scholar] [CrossRef]
- Gebhard, C.; Regitz-Zagrosek, V.; Neuhauser, H.K.; Morgan, R.; Klein, S.L. Impact of sex and gender on COVID-19 outcomes in Europe. Biol. Sex Differ. 2020, 11, 29. [Google Scholar] [CrossRef]
- Ghazeeri, G.; Abdullah, L.; Abbas, O. Immunological differences in women compared with men: Overview and contributing factors. Am. J. Reprod. Immunol. 2011, 66, 163–169. [Google Scholar] [CrossRef]
- Bwire, G.M. Coronavirus: Why Men are More Vulnerable to Covid-19 Than Women? SN Compr. Clin. Med. 2020, 2, 874–876. [Google Scholar] [CrossRef]
- De la Vega, R.; Ruíz-Barquín, R.; Boros, S.; Szabo, A. Could attitudes toward COVID-19 in Spain render men more vulnerable than women? Glob. Public Health 2020, 15, 1278–1291. [Google Scholar] [CrossRef]
- Petik, B.; Akcicek, M.; Sahin, M.; Dag, N. Cerebrovascular radiological features of COVID-19 positive patients. Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 5946–5955. [Google Scholar] [CrossRef]
- Novikova, L.B.; Latypova, R.F. Prediktory neblagopriyatnogo iskhoda ishemicheskogo insul’ta, assotsiirovannogo s COVID-19 [Predictors of unfavorable outcomes of ischemic stroke associated with COVID-19]. Zh. Nevrol. Psikhiatr. Im. S. S. Korsakova 2022, 122, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Requena, M.; Olivé-Gadea, M.; Muchada, M.; García-Tornel, Á.; Deck, M.; Juega, J.; Boned, S.; Rodríguez-Villatoro, N.; Piñana, C.; Pagola, J.; et al. COVID-19 and Stroke: Incidence and Etiological Description in a High-Volume Center. J. Stroke Cerebrovasc. Dis. 2020, 29, 105225. [Google Scholar] [CrossRef] [PubMed]
- De Havenon, A.; Yaghi, S.; Mistry, E.A.; Delic, A.; Hohmann, S.; Shippey, E.; Stulberg, E.; Tirschwell, D.; Frontera, J.A.; Petersen, N.H.; et al. Endovascular thrombectomy in acute ischemic stroke patients with COVID-19: Prevalence, demographics, and outcomes. J. Neurointerv. Surg. 2020, 12, 1045–1048. [Google Scholar] [CrossRef] [PubMed]
- Pop, R.; Quenardelle, V.; Hasiu, A.; Mihoc, D.; Sellal, F.; Dugay, M.H.; Lebedinsky, P.A.; Schluck, E.; Porta, A.L.A.; Courtois, S.; et al. Impact of the COVID-19 outbreak on acute stroke pathways—Insights from the Alsace region in France. Eur. J. Neurol. 2020, 27, 1783–1787. [Google Scholar] [CrossRef]
- Aykac, O.; Ozdemir, A.O.; Giray, S.; Akpinar, C.K.; Ozkul, A.; Ozdemir, G.; Sarionder Gencer, E.; Gurkas, E.; Acar, B.A.; Yildirim, S.; et al. Comparison of COVID-19 patients who underwent thrombectomy with those in the pre-pandemic period in terms of etiology and prognosis. Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 4884–4892. [Google Scholar] [CrossRef]
- Hernández-Fernández, F.; Sandoval Valencia, H.; Barbella-Aponte, R.A.; Collado-Jiménez, R.; Ayo-Martín, Ó.; Barrena, C.; Molina-Nuevo, J.D.; García-García, J.; Lozano-Setién, E.; Alcahut-Rodriguez, C.; et al. Cerebrovascular disease in patients with COVID-19: Neuroimaging, histological and clinical description. Brain 2020, 143, 3089–3103. [Google Scholar] [CrossRef]
- Arboix, A.; Jiménez, C.; Massons, J.; Parra, O.; Besses, C. Hematological disorders: A commonly unrecognized cause of acute stroke. Expert. Rev. Hematol. 2016, 9, 891–901. [Google Scholar] [CrossRef]
- Yuan, X.; Huang, W.; Ye, B.; Chen, C.; Huang, R.; Wu, F.; Wei, Q.; Zhang, W.; Hu, J. Changes of hematological and immunological parameters in COVID-19 patients. Int. J. Hematol. 2020, 112, 553–559. [Google Scholar] [CrossRef]
- Zhu, Z.; Cai, T.; Fan, L.; Lou, K.; Hua, X.; Huang, Z.; Gao, G. Clinical value of immune-inflammatory parameters to assess the severity of coronavirus disease 2019. Int. J. Infect. Dis. 2020, 95, 332–339. [Google Scholar] [CrossRef]
- Zeng, Z.; Yu, H.; Chen, H.; Qi, W.; Chen, L.; Chen, G.; Yan, W.; Chen, T.; Ning, Q.; Han, M.; et al. Longitudinal changes of inflammatory parameters and their correlation with disease severity and outcomes in patients with COVID-19 from Wuhan, China. Crit. Care 2020, 24, 525. [Google Scholar] [CrossRef]
- Xu, X.; Yu, M.Q.; Shen, Q.; Wang, L.Z.; Yan, R.D.; Zhang, M.Y.; Liu, J.Y.; Qu, Y.Q. Analysis of inflammatory parameters and disease severity for 88 hospitalized COVID-19 patients in Wuhan, China. Int. J. Med. Sci. 2020, 17, 2052–2062. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, M.; Wang, M.; Zhou, Y.; Chang, J.; Xian, Y.; Wang, D.; Mao, L.; Jin, H.; Hu, B. Acute cerebrovascular disease following COVID-19: A single center, retrospective, observational study. Stroke Vasc. Neurol. 2020, 5, 279–284. [Google Scholar] [CrossRef] [PubMed]
- Belice, T.; Demir, I.; Yüksel, A. Role of neutrophil-lymphocyte-ratio in the mortality of males diagnosed with COVID-19. Iran J. Microbiol. 2020, 12, 194–197. [Google Scholar] [CrossRef]
- Sukrisman, L.; Sinto, R.; Priantono, D. Hematologic Profiles and Correlation Between Absolute Lymphocyte Count and Neutrophil/Lymphocyte Ratio with Markers of Inflammation of COVID-19 in an Indonesian National Referral Hospital. Int. J. Gen. Med. 2021, 14, 6919–6924. [Google Scholar] [CrossRef] [PubMed]
- Goel, H.; Harmouch, F.; Garg, K.; Saraiya, P.; Daly, T.; Kumar, A.; Hippen, J.T. The liver in COVID-19: Prevalence, patterns, predictors, and impact on outcomes of liver test abnormalities. Eur. J. Gastroenterol. Hepatol. 2021, 33 (Suppl. S1), e274–e281. [Google Scholar] [CrossRef]
- El-Qushayri, A.E.; Reda, A.; Dahy, A.; Azzam, A.Y.; Ghozy, S. The impact of COVID 19 on the outcomes of thrombectomy in stroke patients: A systematic review and meta-analysis. Rev. Med. Virol. 2022, e2379. [Google Scholar] [CrossRef]
- Neves Briard, J.; Dufort, G.; Jacquin, G.; Alesefir, W.; Bereznyakova, O.; Boisseau, W.; Daneault, N.; Deschaintre, Y.; Diestro, J.D.B.; Ducroux, C.; et al. Three-month functional outcomes following endovascular thrombectomy during the first wave of the COVID-19 pandemic: A Canadian single-center cohort study. J. Neurointerv. Surg. 2022, 14, 274–279. [Google Scholar] [CrossRef]
- Goyal, M.; Demchuk, A.M.; Menon, B.K.; Eesa, M.; Rempel, J.L.; Thornton, J.; Roy, D.; Jovin, T.G.; Willinsky, R.A.; Sapkota, B.L.; et al. Randomized assessment of rapid endovascular treatment of ischemic stroke. N. Engl. J. Med. 2015, 372, 1019–1030. [Google Scholar] [CrossRef] [Green Version]
- Katsoularis, I.; Fonseca-Rodríguez, O.; Farrington, P.; Jerndal, H.; Lundevaller, E.H.; Sund, M.; Lindmark, K.; Fors Connolly, A.M. Risks of deep vein thrombosis, pulmonary embolism, and bleeding after COVID-19: Nationwide self-controlled cases series and matched cohort study. BMJ 2022, 377, e069590. [Google Scholar] [CrossRef]
- Li, P.; Zhao, W.; Kaatz, S.; Latack, K.; Schultz, L.; Poisson, L. Factors Associated With Risk of Postdischarge Thrombosis in Patients With COVID-19. JAMA Netw. Open 2021, 4, e2135397. [Google Scholar] [CrossRef]
COVID-19 Group (N = 13) | Non-COVID-19 (Control) Group (N = 55) | p Value | |
---|---|---|---|
Age (years), median (Q1–Q3) | 76 (59.5–82.5) | 81 (73–85) | 0.059 |
Male | 10 (76.9%) | 22 (40%) | 0.028 |
Hypertension N (%) | 10 (76.92%) | 32 (58.18%) | 0.342 |
Diabetes mellitus N (%) | 3 (23.08%) | 8 (14.55%) | 0.429 |
Atrial fibrillation N (%) | 5 (38.46%) | 11 (20%) | 0.168 |
APTT (s) | 21.45 | 22.4 | |
median (Q1–Q3) | (20.0–26.2) | (21.2–24.5) | 0.935 |
Leukocyte (×106/L) | |||
median (Q1–Q3) | 10 (7.2–11.75) | 7.2 (6.3–8.5) | 0.011 |
Neutrophil (×106/L) | |||
median (Q1–Q3) | 76.2 (68.65–86.9) | 67 (57.8–75.9) | 0.038 |
Lymphocyte (×106/L) | |||
median (Q1–Q3) | 13.9 (8.25–22.5) | 22.5 (15.2–29.8) | 0.038 |
Neutrophil/lymphocyte (N) ratio median (Q1–Q3) | 5.48 (3.16–10.27) | 2.87 (1.94–4.86) | 0.002 |
AST (IU/L) | |||
median (Q1–Q3) | 32.5 (19–44.5) | 23 (19–32) | 0.024 |
ALT (IU/L) | |||
median (Q1–Q3) | 27 (19.5–49.5) | 20 (17–27) | 0.016 |
GGT(IU/L) | |||
median (Q1–Q3) | 35 (16.5–93) | 27 (16–40) | 0.514 |
LDH (IU/L) | |||
median (Q1–Q3) | 256.5 (168.8–371) | 200.5 (168.5–220.8) | 0.01 |
CRP (mg/L) | |||
median (Q1–Q3) | 21.6 (3.25–70.85) | 3.25 (1.77–8.57) | 0.0004 |
COVID-19 Group (N = 13) | Non-COVID-19 (Control) Group (N = 55) | p Value | |
---|---|---|---|
Thrombotic events (N) | 1 | 1 | 0.089 |
Antiplatelet therapy (N, %) | 8 (61.54%) | 14 (25.45%) | 0.020 |
NIHSS at admission (N) median (Q1–Q3) | 14 (11–17) | 16 (12–18) | 0.238 |
AIS anterior circulation | 9 (69.23%) | 51 (92.73%) | 0.038 |
AIS posterior circulation | 4 (30.77%) | 4 (7.27%) | |
NIHSS at discharge (N) median (Q1–Q3) | 8 (5–14) | 8 (4–14) | 0.792 |
TICI category 2B, 2C, 3 (N, %) | 10 (76.92%) | 38 (69.09%) | 0.741 |
mRS category (0,1,2) | 4/12 (33.33%) | 20/50 (40%) | 0.751 |
mRS mortality (6) | 4/12 (33.33%) | 14/50 (28%) | 0.732 |
Control CT small AIS (0,1) | 5 (38.4%) | 30 (54.5%) | 0.45 |
Control CT large AIS (3) | 4 (30.7%) | 13 (23.6%) |
Variable | OR (95% CI) | p |
---|---|---|
Intercept | 0.61 (0.004–82.60) | 0.845 |
Age (years) | 0.99 (0.94–1.04) | 0.803 |
Hypertension | 1.13 (0.35–3.63) | 0.829 |
Diabetes melitus | 0.90 (0.19–3.83) | 0.891 |
Antiplatelet therapy | 0.77 (0.18–3.02) | 0.711 |
Atrial fibrillation | 0.71 (0.15–3.18) | 0.660 |
Smoking | 1.04 (0.04–15.00) | 0.971 |
Door to needle time (min) | 1.00 (0.99–1.02) | 0.256 |
COVID-19 | 0.54 (0.11–2.30) | 0.423 |
Variable | OR (95% CI) | p |
---|---|---|
Intercept | 276.2 (0.99–203,547) | 0.066 |
Age (years) | 0.94 (0.88–1.01) | 0.118 |
Hypertension | 1.45 (0.41–5.32) | 0.559 |
Diabetes mellitus | 1.96 (0.34–17.86) | 0.480 |
Antiplatelet therapy | 4.67 (0.84–42.29) | 0.110 |
Atrial fibrillation | 0.23 (0.02–1.37) | 0.126 |
Smoking | 0.09 (0.003–1.28) | 0.090 |
Door to needle time (min) | 0.9904 (0.97–1.00) | 0.2506 |
COVID-19 | 1.288 (0.23–10.19) | 0.7834 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kojundžić, S.L.; Sablić, S.; Budimir Mršić, D.; Marinović Guić, M.; Kraljević, I.; Benzon, B.; Dragičević, D. Mechanical Thrombectomy in Acute Ischemic Stroke COVID-19 and Non-COVID-19 Patients: A Single Comprehensive Stroke Center Study. Life 2023, 13, 186. https://doi.org/10.3390/life13010186
Kojundžić SL, Sablić S, Budimir Mršić D, Marinović Guić M, Kraljević I, Benzon B, Dragičević D. Mechanical Thrombectomy in Acute Ischemic Stroke COVID-19 and Non-COVID-19 Patients: A Single Comprehensive Stroke Center Study. Life. 2023; 13(1):186. https://doi.org/10.3390/life13010186
Chicago/Turabian StyleKojundžić, Sanja Lovrić, Sara Sablić, Danijela Budimir Mršić, Maja Marinović Guić, Ivan Kraljević, Benjamin Benzon, and Dragan Dragičević. 2023. "Mechanical Thrombectomy in Acute Ischemic Stroke COVID-19 and Non-COVID-19 Patients: A Single Comprehensive Stroke Center Study" Life 13, no. 1: 186. https://doi.org/10.3390/life13010186
APA StyleKojundžić, S. L., Sablić, S., Budimir Mršić, D., Marinović Guić, M., Kraljević, I., Benzon, B., & Dragičević, D. (2023). Mechanical Thrombectomy in Acute Ischemic Stroke COVID-19 and Non-COVID-19 Patients: A Single Comprehensive Stroke Center Study. Life, 13(1), 186. https://doi.org/10.3390/life13010186