Potential of the Ethyl Acetate Fraction of Padina boergesenii as a Natural UV Filter in Sunscreen Cream Formulation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Collection of Seaweed and Preparation of Fraction
2.3. Determination of Total Phenol in P. boergesenii Fraction
2.4. Determination of DPPH Free-Radical Scavenging
2.5. Determination of UVB Irradiation Effect on the Human Keratinocyte Cell
2.6. Fourier Transform Infrared Spectroscopy (FTIR)
2.7. Gas Chromatography and Mass Spectrometry Analysis (GC-MS)
2.8. Preparation of Emulsions
2.9. Determination of Stability of Formulated Creams
2.10. Determination of Sun Protection Factor of Formulated Creams
2.11. Antioxidant Activity of the Formulated Cream Containing EF
2.12. Statistical Analysis
3. Results
3.1. Total Phenols in P. boergesenii Fraction
3.2. Antioxidant Activity
3.3. UVB Irradiation Effect on the Human Keratinocyte Cell
3.4. FTIR Characterization of Ethyl-Acetate Fraction
3.5. Gas Chromatography and Mass Spectrometry Analysis
3.6. Properties and Stability of Formulated Creams
3.7. pH Value Determination
3.8. SPF Value Determination
3.9. Evaluation of DPPH-Free Radical Scavenging Activity of Cream Containing EF after Storage
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grönniger, E.; Weber, B.; Heil, O.; Peters, N.; Stäb, F.; Wenck, H.; Korn, B.; Winnefeld, M.; Lyko, F. Aging and chronic sun exposure cause distinct epigenetic changes in human skin. PLoS Genet. 2010, 6, e1000971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Orazio, J.J.S.; Amaro-Ortiz, A.; Scott, T. UV radiation and the skin. Int. J. Mol. Sci 2013, 14, 12222–12248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katiyar, S.K. Green tea prevents non-melanoma skin cancer by enhancing DNA repair. Arch. Biochem. Biophys. 2011, 508, 152–158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maguire, A.; Morrissey, B.; Walsh, J.E.; Lyng, F.M. Medium-mediated effects increase cell killing in a human keratinocyte cell line exposed to solar-simulated radiation. Int. J. Radiat. Biol. 2011, 87, 98–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ijaz, S.; Akhtar, N.; Khan, M.S.; Hameed, A.; Irfan, M.; Arshad, M.A.; Ali, S.; Asrar, M. Plant derived anticancer agents: A green approach towards skin cancers. Biomed. Pharmacother. 2018, 103, 1643–1651. [Google Scholar] [CrossRef]
- Edlich, R.; Winters, K.L.; Lim, H.W.; Cox, M.J.; Becker, D.G.; Horowitz, J.H.; Nichter, L.S.; Britt, L.; Long III, W.B. Photoprotection by sunscreens with topical antioxidants and systemic antioxidants to reduce sun exposure. J. Long-Term Eff. Med. Implant. 2004, 14, 317–340. [Google Scholar] [CrossRef]
- Todorova, K.; Mandinova, A. Novel approaches for managing aged skin and nonmelanoma skin cancer. Adv. Drug Deliv. Rev. 2020, 153, 18–27. [Google Scholar] [CrossRef]
- Kalušević, A.M.; Lević, S.M.; Čalija, B.R.; Milić, J.R.; Pavlović, V.B.; Bugarski, B.M.; Nedović, V.A. Effects of different carrier materials on physicochemical properties of microencapsulated grape skin extract. J. Food Sci. Technol. 2017, 54, 3411–3420. [Google Scholar] [CrossRef]
- Sadaqat, B.; Khatoon, N.; Malik, A.Y.; Jamal, A.; Farooq, U.; Ali, M.I.; He, H.; Liu, F.-J.; Guo, H.; Urynowicz, M. Enzymatic decolorization of melanin by lignin peroxidase from Phanerochaete chrysosporium. Sci. Rep. 2020, 10, 20240. [Google Scholar] [CrossRef]
- Nishigori, C.; Hattori, Y.; Toyokuni, S. Role of reactive oxygen species in skin carcinogenesis. Antioxid. Redox Signal. 2004, 6, 561–570. [Google Scholar] [CrossRef]
- Surget, G.; Stiger-Pouvreau, V.; Le Lann, K.; Kervarec, N.; Couteau, C.; Coiffard, L.J.; Gaillard, F.; Cahier, K.; Guérard, F.; Poupart, N. Structural elucidation, in vitro antioxidant and photoprotective capacities of a purified polyphenolic-enriched fraction from a saltmarsh plant. J. Photochem. Photobiol. B Biol. 2015, 143, 52–60. [Google Scholar] [CrossRef]
- Quan, T.H.; Benjakul, S.; Sae-leaw, T.; Balange, A.K.; Maqsood, S. Protein–polyphenol conjugates: Antioxidant property, functionalities and their applications. Trends Food Sci. Technol. 2019, 91, 507–517. [Google Scholar] [CrossRef]
- Teixeira, A.; Eiras-Dias, J.; Castellarin, S.D.; Gerós, H. Berry phenolics of grapevine under challenging environments. Int. J. Mol. Sci. 2013, 14, 18711–18739. [Google Scholar] [CrossRef] [Green Version]
- Singla, R.K.; Dubey, A.K.; Garg, A.; Sharma, R.K.; Fiorino, M.; Ameen, S.M.; Haddad, M.A.; Al-Hiary, M. Natural polyphenols: Chemical classification, definition of classes, subcategories, and structures. J. Aoac Int. 2019, 102, 1397–1400. [Google Scholar] [CrossRef]
- Nichols, J.A.; Katiyar, S.K. Skin photoprotection by natural polyphenols: Anti-inflammatory, antioxidant and DNA repair mechanisms. Arch. Dermatol. Res. 2010, 302, 71–83. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Abedin, M.M.; Singh, A.K.; Das, S. Role of phenolic compounds in plant-defensive mechanisms. In Plant Phenolics in Sustainable Agriculture, 1st ed.; Lone, R., Shuab, R., Kamili, A.N., Eds.; Springer: Berlin/Heidelberg, Germany, 2020; pp. 517–532. [Google Scholar]
- Jayawardena, T.U.; Fernando, I.S.; Lee, W.W.; Sanjeewa, K.A.; Kim, H.-S.; Lee, D.-S.; Jeon, Y.-J. Isolation and purification of fucoidan fraction in Turbinaria ornata from the Maldives; Inflammation inhibitory potential under LPS stimulated conditions in in-vitro and in-vivo models. Int. J. Biol. Macromol. 2019, 131, 614–623. [Google Scholar] [CrossRef]
- Hassan, I.H.; Pham, H.N.T.; Nguyen, T.H. Optimization of ultrasound-assisted extraction conditions for phenolics, antioxidant, and tyrosinase inhibitory activities of Vietnamese brown seaweed (Padina australis). J. Food Process. Preserv. 2021, 45, e15386. [Google Scholar] [CrossRef]
- Bernardini, G.; Minetti, M.; Polizzotto, G.; Biazzo, M.; Santucci, A. Pro-apoptotic activity of French Polynesian Padina pavonica extract on human osteosarcoma cells. Mar. Drugs 2018, 16, 504. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.-S.; Han, E.J.; Fernando, I.P.S.; Sanjeewa, K.K.A.; Jayawardena, T.U.; Kim, H.-J.; Jee, Y.; Kang, S.-H.; Jang, J.-H.; Jang, J.-P. Anti-allergy effect of mojabanchromanol isolated from Sargassum horneri in bone marrow-derived cultured mast cells. Algal Res. 2020, 48, 101898. [Google Scholar] [CrossRef]
- Soleimani, S.; Pirian, K.; Zarei Jeliani, Z.; Arman, M.; Yousefzadi, M. Bioactivity assessment of selected seaweeds from the Persian Gulf, Iran. J. Aquat. Ecol. 2018, 7, 25–38. [Google Scholar]
- Jung, H.A.; Roy, A.; Jung, J.H.; Choi, J.S. Evaluation of the inhibitory effects of eckol and dieckol isolated from edible brown alga Eisenia bicyclis on human monoamine oxidases A and B. Arch. Pharmacal Res. 2017, 40, 480–491. [Google Scholar] [CrossRef] [PubMed]
- Ferdous, U.T.; Yusof, Z.N.B. Algal terpenoids: A potential source of antioxidants for cancer therapy. In Terpenes and Terpenoids, 1st ed.; Blumenberg, M., Perveen, S., Al-Taweel, A., Eds.; IntechOpen: New York, NY, USA, 2021; Volume 142, pp. 63–127. [Google Scholar]
- Osuna-Ruíz, I.; Salazar-Leyva, J.; López-Saiz, C.; Burgos-Hernández, A.; Hernández-Garibay, E.; Lizardi-Mendoza, J.; Hurtado-Oliva, M. Enhancing antioxidant and antimutagenic activity of the green seaweed Rhizoclonium riparium by bioassay-guided solvent partitioning. J. Appl. Phycol. 2019, 31, 3871–3881. [Google Scholar] [CrossRef]
- Fonseca, I.; Guarda, I.; Mourato, M.; Martins, L.; Gomes, R.; Matos, J.; Gomes-Bispo, A.; Bandarra, N.; Cardoso, C.; Afonso, C. Undervalued Atlantic brown seaweed species (Cystoseira abies-marina and Zonaria tournefortii): Influence of treatment on their nutritional and bioactive potential and bioaccessibility. Eur. Food Res. Technol. 2021, 247, 221–232. [Google Scholar] [CrossRef]
- Kim, H.-J.; Dasagrandhi, C.; Kim, S.-H.; Kim, B.-G.; Eom, S.-H.; Kim, Y.-M. In vitro antibacterial activity of phlorotannins from edible brown algae, Eisenia bicyclis against streptomycin-resistant Listeria monocytogenes. Indian J. Microbiol. 2018, 58, 105–108. [Google Scholar] [CrossRef] [PubMed]
- Alboofetileh, M.; Rezaei, M.; Tabarsa, M.; Rittà, M.; Donalisio, M.; Mariatti, F.; You, S.; Lembo, D.; Cravotto, G. Effect of different non-conventional extraction methods on the antibacterial and antiviral activity of fucoidans extracted from Nizamuddinia zanardinii. Int. J. Biol. Macromol. 2019, 124, 131–137. [Google Scholar] [CrossRef]
- Lin, Y.; Qi, X.; Liu, H.; Xue, K.; Xu, S.; Tian, Z. The anti-cancer effects of fucoidan: A review of both in vivo and in vitro investigations. Cancer Cell Int. 2020, 20, 154. [Google Scholar] [CrossRef]
- Rushdi, M.I.; Abdel-Rahman, I.A.; Saber, H.; Attia, E.Z.; Abdelraheem, W.M.; Madkour, H.A.; Hassan, H.M.; Elmaidomy, A.H.; Abdelmohsen, U.R. Pharmacological and natural products diversity of the brown algae genus Sargassum. RSC Adv. 2020, 10, 24951–24972. [Google Scholar] [CrossRef]
- Bogolitsyn, K.; Dobrodeeva, L.; Druzhinina, A.; Ovchinnikov, D.; Parshina, A.; Shulgina, E. Biological activity of a polyphenolic complex of Arctic brown algae. J. Appl. Phycol. 2019, 31, 3341–3348. [Google Scholar] [CrossRef]
- Resende, D.I.; Ferreira, M.; Magalhães, C.; Lobo, J.S.; Sousa, E.; Almeida, I.F. Trends in the use of marine ingredients in anti-aging cosmetics. Algal Res. 2021, 55, 102273. [Google Scholar] [CrossRef]
- Le Lann, K.; Surget, G.; Couteau, C.; Coiffard, L.; Cérantola, S.; Gaillard, F.; Larnicol, M.; Zubia, M.; Guérard, F.; Poupart, N. Sunscreen, antioxidant, and bactericide capacities of phlorotannins from the brown macroalga Halidrys siliquosa. J. Appl. Phycol. 2016, 28, 3547–3559. [Google Scholar] [CrossRef] [Green Version]
- Fu, L.; Xu, B.-T.; Xu, X.-R.; Gan, R.-Y.; Zhang, Y.; Xia, E.-Q.; Li, H.-B. Antioxidant capacities and total phenolic contents of 62 fruits. Food Chem. 2011, 129, 345–350. [Google Scholar] [CrossRef]
- Tierney, M.S.; Smyth, T.J.; Rai, D.K.; Soler-Vila, A.; Croft, A.K.; Brunton, N. Enrichment of polyphenol contents and antioxidant activities of Irish brown macroalgae using food-friendly techniques based on polarity and molecular size. Food Chem. 2013, 139, 753–761. [Google Scholar] [CrossRef]
- Thiyagarasaiyar, K.; Mahendra, C.K.; Goh, B.-H.; Gew, L.T.; Yow, Y.-Y. UVB radiation protective effect of brown Alga Padina australis: A potential cosmeceutical application of Malaysian Seaweed. Cosmetics 2021, 8, 58. [Google Scholar] [CrossRef]
- Chen, M.X.; Alexander, K.S.; Baki, G. Formulation and evaluation of antibacterial creams and gels containing metal ions for topical application. J. Pharm. 2016, 2016, 5754349. [Google Scholar] [CrossRef] [Green Version]
- Liu, N.; Fu, X.; Duan, D.; Xu, J.; Gao, X.; Zhao, L. Evaluation of bioactivity of phenolic compounds from the brown seaweed of Sargassum fusiforme and development of their stable emulsion. J. Appl. Phycol. 2018, 30, 1955–1970. [Google Scholar] [CrossRef]
- Buranasukhon, W.; Athikomkulchai, S.; Tadtong, S.; Chittasupho, C. Wound healing activity of Pluchea indica leaf extract in oral mucosal cell line and oral spray formulation containing nanoparticles of the extract. Pharm. Biol. 2017, 55, 1767–1774. [Google Scholar] [CrossRef] [Green Version]
- Pumival, P.; Tadtong, S.; Athikomkulchai, S.; Chittasupho, C. Antifungal activity and the chemical and physical stability of microemulsions containing Citrus hystrix DC leaf oil. Nat. Prod. Commun. 2020, 15, 1934578X20957755. [Google Scholar] [CrossRef]
- Diffey, B.; Robson, J. A new substrate to measure sunscreen protection factors throughout the ultraviolet spectrum. J. Soc. Cosmet. Chem. 1989, 40, 127–133. [Google Scholar]
- Athikomkulchai, S.; Tunit, P.; Tadtong, S.; Jantrawut, P.; Sommano, S.R.; Chittasupho, C. Moringa oleifera seed oil formulation physical stability and chemical constituents for enhancing skin hydration and antioxidant activity. Cosmetics 2020, 8, 2. [Google Scholar] [CrossRef]
- Dias, R.; Oliveira, H.; Fernandes, I.; Simal-Gandara, J.; Perez-Gregorio, R. Recent advances in extracting phenolic compounds from food and their use in disease prevention and as cosmetics. Crit. Rev. Food Sci. Nutr. 2021, 61, 1130–1151. [Google Scholar] [CrossRef]
- Cseke, L.J.; Kirakosyan, A.; Kaufman, P.B.; Warber, S.; Duke, J.A.; Brielmann, H.L. Natural Products from Plants, 2nd ed.; Taylor & Francis Group: Abingdon, UK, 2016. [Google Scholar]
- Korzeniowska, K.; Łęska, B.; Wieczorek, P.P. Isolation and determination of phenolic compounds from freshwater Cladophora glomerata. Algal Res. 2020, 48, 101912. [Google Scholar] [CrossRef]
- Ezekiel, J.S.; Adamu, H.M.; Chindo, I.; Garba, I. Phytochemical profile and antioxidant activities of solvent-solvent fractions of Haematostaphis barteri Hook F.(Anacardiaceae) stem bark extracts. Int. J. Pharmacogn. Phytochem. Res. 2016, 8, 51–56. [Google Scholar]
- Sari, S.A.; Ernita, M.; Mara, M.N.; AR, M.R. Identification of Active Compounds on Muntingia calabura L. Leaves using Different Polarity Solvents. Indones. J. Chem. Sci. Technol. 2020, 3, 1–7. [Google Scholar]
- Wijaya, Y.A.; Widyadinata, D.; Irawaty, W.; Ayucitra, A. Fractionation of phenolic compounds from kaffir lime (Citrus hystrix) peel extract and evaluation of antioxidant activity. Reaktor 2017, 17, 111–117. [Google Scholar] [CrossRef]
- Yeni, G.; Syamsu, K.; Suparno, O.; Mardliyati, E.; Muchtar, H. Repeated extraction process of raw gambiers (Uncaria gambier Robx.) for the catechin production as an antioxidant. Int. J. Appl. Eng. Res 2014, 9, 24565–24578. [Google Scholar]
- Naw, S.W.; Zaw, N.D.K.; Aminah, N.S.; Alamsjah, M.A.; Kristanti, A.N.; Nege, A.S.; Aung, H.T. Bioactivities, heavy metal contents and toxicity effect of macroalgae from two sites in Madura, Indonesia. J. Saudi Soc. Agric. Sci. 2020, 19, 528–537. [Google Scholar]
- Chakraborty, K.; Praveen, N.K.; Vijayan, K.K.; Rao, G.S. Evaluation of phenolic contents and antioxidant activities of brown seaweeds belonging to Turbinaria spp. (Phaeophyta, Sargassaceae) collected from Gulf of Mannar. Asian Pac. J. Trop. Biomed. 2013, 3, 8–16. [Google Scholar] [CrossRef] [Green Version]
- Bedoux, G.; Hardouin, K.; Burlot, A.S.; Bourgougnon, N. Bioactive components from seaweeds: Cosmetic applications and future development. In Advances in Botanical Research, 1st ed.; Bourgougnon, N., Ed.; Elsevier: Amsterdam, The Netherlands, 2014; Volume 71, pp. 345–378. [Google Scholar]
- El Shoubaky, G.A.; Salem, E.A. Terpenes and sterols composition of marine brown algae Padina pavonica (Dictyotales) and Hormophysa triquetra (Fucales). Int. J. Pharmacogn. Phytochem. Res. 2014, 6, 894–900. [Google Scholar]
- El-Sheekh, M.M.; Mousa, A.S.H.; Farghl, A.A. Antibacterial efficacy and phytochemical characterization of some marine brown algal extracts from the red sea, Egypt. Rom. Biotechnol. Lett. 2020, 25, 1160–1169. [Google Scholar] [CrossRef]
- De Araujo, J.M.; Tappin, M.R.R.; da Rocha Fortes, R.; Lopes-Filho, E.A.P.; Salgueiro, F.; De Paula, J.C. Chemodiversity of the brown algae Canistrocarpus cervicornis (Dictyotaceae, Phaeophyceae) in tropical and subtropical populations along the southwestern Atlantic coast of Brazil. J. Appl. Phycol. 2018, 30, 611–618. [Google Scholar] [CrossRef]
- Li, J.; Wang, G.; Chen, M.; Li, J.; Yang, Y.; Zhu, Q.; Jiang, X.; Wang, Z.; Liu, H. Deoxy-liquefaction of three different species of macroalgae to high-quality liquid oil. Bioresour. Technol. 2014, 169, 110–118. [Google Scholar] [CrossRef]
- Deepika, C. FTIR, SEM, EDS and GCMS metabolite profiling of macroalgae–Sargassum wightii. Int. Res. J. Eng. Technol 2018, 6, 6791–6797. [Google Scholar]
- De Jager, T.L.; Cockrell, A.E.; Du Plessis, S.S. Ultraviolet Light Induced Generation of Reactive Oxygen Species. In Ultraviolet Light in Human Health, Diseases and Environment; Springer: Cham, Switzerland, 2017; Volume 996, pp. 15–23. [Google Scholar]
- Suleman, M.; Khan, A.; Baqi, A.; Kakar, M.S.; Ayub, M. 2. Antioxidants, its role in preventing free radicals and infectious diseases in human body. Pure Appl. Biol. 2019, 8, 380–388. [Google Scholar] [CrossRef]
- Karthik, R.; Manigandan, V.; Sheeba, R.; Saravanan, R.; Rajesh, P.R. Structural characterization and comparative biomedical properties of phloroglucinol from Indian brown seaweeds. J. Appl. Phycol. 2016, 28, 3561–3573. [Google Scholar] [CrossRef]
- Ebrahimzadeh, M.A.; Khalili, M.; Dehpour, A.A. Antioxidant activity of ethyl acetate and methanolic extracts of two marine algae, Nannochloropsis oculata and Gracilaria gracilis—An in vitro assay. Braz. J. Pharm. Sci. 2018, 54. [Google Scholar] [CrossRef] [Green Version]
- Ye, H.; Zhou, C.; Sun, Y.; Zhang, X.; Liu, J.; Hu, Q.; Zeng, X. Antioxidant activities in vitro of ethanol extract from brown seaweed Sargassum pallidum. Eur. Food Res. Technol. 2009, 230, 101–109. [Google Scholar] [CrossRef]
- Zaid, M.A.; Afaq, F.; Syed, D.N.; Dreher, M.; Mukhtar, H. Inhibition of UVB-mediated oxidative stress and markers of photoaging in immortalized HaCaT keratinocytes by pomegranate polyphenol extract POMx. Photochem. Photobiol. 2007, 83, 882–888. [Google Scholar] [CrossRef]
- Heo, S.-J.; Ko, S.-C.; Cha, S.-H.; Kang, D.-H.; Park, H.-S.; Choi, Y.-U.; Kim, D.; Jung, W.-K.; Jeon, Y.-J. Effect of phlorotannins isolated from Ecklonia cava on melanogenesis and their protective effect against photo-oxidative stress induced by UV-B radiation. Toxicol. In Vitro 2009, 23, 1123–1130. [Google Scholar] [CrossRef]
- Heo, S.-J.; Ko, S.-C.; Kang, S.-M.; Cha, S.-H.; Lee, S.-H.; Kang, D.-H.; Jung, W.-K.; Affan, A.; Oh, C.; Jeon, Y.-J. Inhibitory effect of diphlorethohydroxycarmalol on melanogenesis and its protective effect against UV-B radiation-induced cell damage. Food Chem. Toxicol. 2010, 48, 1355–1361. [Google Scholar] [CrossRef]
- Wang, L.; Je, J.-G.; Yang, H.-W.; Jeon, Y.-J.; Lee, S. Dieckol, an Algae-Derived Phenolic Compound, Suppresses UVB-Induced Skin Damage in Human Dermal Fibroblasts and Its Underlying Mechanisms. Antioxidants 2021, 10, 352. [Google Scholar] [CrossRef]
- Wang, L.; Kim, H.S.; Oh, J.Y.; Je, J.G.; Jeon, Y.-J.; Ryu, B. Protective effect of diphlorethohydroxycarmalol isolated from Ishige okamurae against UVB-induced damage in vitro in human dermal fibroblasts and in vivo in zebrafish. Food Chem. Toxicol. 2020, 136, 110963. [Google Scholar] [CrossRef] [PubMed]
- Joshi, S.; Kumari, R.; Upasani, V.N. Applications of algae in cosmetics: An overview. Int. J. Innov. Res. Sci. Eng. Technol 2018, 7, 1269. [Google Scholar]
- Hong, L.; Sun, G.; Cai, J.; Ngai, T. One-step formation of W/O/W multiple emulsions stabilized by single amphiphilic block copolymers. Langmuir 2012, 28, 2332–2336. [Google Scholar] [CrossRef] [PubMed]
- Park, E.-K.; Song, K.-W. Rheological evaluation of petroleum jelly as a base material in ointment and cream formulations: Steady shear flow behavior. Arch. Pharmacal Res. 2010, 33, 141–150. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Cornelis, F.; Xie, J.; Wu, Q.; Boldor, D.; Qi, J. High bio-content polyurethane (PU) foam made from bio-polyol and cellulose nanocrystals (CNCs) via microwave liquefaction. Mater. Des. 2018, 138, 11–20. [Google Scholar] [CrossRef]
- Goodarzi, F.; Zendehboudi, S. A comprehensive review on emulsions and emulsion stability in chemical and energy industries. Can. J. Chem. Eng. 2019, 97, 281–309. [Google Scholar] [CrossRef] [Green Version]
- Sanghvi, G.; Patel, H.; Vaishnav, D.; Oza, T.; Dave, G.; Kunjadia, P.; Sheth, N. A novel alkaline keratinase from Bacillus subtilis DP1 with potential utility in cosmetic formulation. Int. J. Biol. Macromol. 2016, 87, 256–262. [Google Scholar] [CrossRef]
- García-Villén, F.; Sánchez-Espejo, R.; Carazo, E.; Borrego-Sánchez, A.; Aguzzi, C.; Cerezo, P.; Viseras, C. Characterisation of Andalusian peats for skin health care formulations. Appl. Clay Sci. 2018, 160, 201–205. [Google Scholar] [CrossRef]
- Mota, M.D.; da Boa Morte, A.N.; e Silva, L.C.R.C.; Chinalia, F.A. Sunscreen protection factor enhancement through supplementation with Rambutan (Nephelium lappaceum L.) ethanolic extract. J. Photochem. Photobiol. B Biol. 2020, 205, 111837. [Google Scholar] [CrossRef]
- Deccache, D.S.; Santos, E.P.d.; Cabral, L.M.; Rodrigues, C.R.; Sousa, V.P.d. Development of methodologies for dimethylaminoethanol glycolate assay in association with sunscreens in dermocosmetic formulation. Braz. J. Pharm. Sci. 2010, 46, 705–713. [Google Scholar] [CrossRef]
- Mota, M.D.; Costa, R.Y.S.; e Silva, L.C.R.C.; Chinalia, F.A. Guava-fruit extract can improve the UV-protection efficiency of synthetic filters in sun cream formulations. J. Photochem. Photobiol. B Biol. 2019, 201, 111639. [Google Scholar] [CrossRef]
- Pawar, A.P.; Gholap, A.P.; Kuchekar, A.B.; Bothiraja, C.; Mali, A.J. Formulation and evaluation of optimized oxybenzone microsponge gel for topical delivery. J. Drug Deliv. 2015, 2015, 261068. [Google Scholar] [CrossRef]
Phase | Ingredients | Formulations (%) | ||
---|---|---|---|---|
F1 | F2 | F3 | ||
A | Glycerol and 1,2-Propanediol | 27 | 27 | 27 |
A | Potassium hydroxide | 6.63 | 6.63 | 6.63 |
A | Deionized water | Added to make mixture up to 100 g | Added to make mixture up to 100 g | Added to make mixture up to 100 g |
B | Stearic acid | 30 | 30 | 30 |
B | 1-Hexadecanol | 1 | 1 | 1 |
C | Potassium cocoyl glycinate | 9 | 9 | 9 |
C | Distilled glycerin monostearate | 1 | 1 | 1 |
D | Zinc oxide | 0 | 2.5 | 2.5 |
E | Ethyl acetate fraction of P. boergesenii | 0 | 0 | 5 |
Compound Name | Rt (min) | Area (%) |
---|---|---|
Tetradecane 3,5-Octadiene, 4,5-diethyl | 3.167 3.322 | 2.638 0.739 |
Hexadecane | 4.708 | 3.575 |
Benzene, 1,4-bis(1,1-dimethylethyl) | 5.2 | 2.639 |
3H-1,3,4-Benzodiazepin-2-one, 1,2-dihydro-3,5-dimethyl | 5.376 | 0.803 |
Benzene, p-di-tert-pentyl | 6.05 | 5.448 |
1-Azapyrene | 6.259 | 2.100 |
Trispiro [2.1.2.1.2.1]dodecane-4,8,12-trione | 6.617 | 16.053 |
2-Methyl-6,7-methylenedioxy-4[1H] quinolone | 6.836 | 12.233 |
Indeno(1,2,3-ij)isoquinoline | 6.949 | 1.651 |
10-Methyl-9-cyanoanthracene | 7.082 | 4.031 |
Phenol, 2-methyl-5-(1-methylethyl) | 7.136 | 1.793 |
10-(cyanomethylene)anthrone | 7.639 | 3.579 |
2,3,5,6-tetramethyl-6-(3′-methylbuta-1′,2′-dienyl) cyclohexa-2,4-dien-1-one | 8.419 | 1.889 |
Naphthalene, 1,2,3,4-tetrahydro-1-methyl- | 8.874 | 6.396 |
6-methoxy-2,3,4,4a,5,10-hexahydrobenzo[g]quinolinium chloride | 9.206 | 3.849 |
Bicyclo [4.2.0]oct-7-ene | 12.763 | 0.056 |
Parameters | Fresh | 1 Day | 7 Day | 14 Day | 21 Day | 28 Day | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F1 | F2 | F3 | F1 | F2 | F3 | F1 | F2 | F3 | F1 | F2 | F3 | F1 | F2 | F3 | F1 | F2 | F3 | ||
Shape | 4 °C 25 °C 40 °C | − − − | − − − | − − − | − − − | − − − | − − − | − − − | − − − | − − − | − − − | − − − | − − − | − − − | − − − | − − − | − − − | − − − | − − − |
Odor | 4 °C 25 °C 40 °C | − − − | − − − | − − − | − − − | − − − | − − − | − − − | − − − | − − − | − − − | − − − | − − − | − − − | − − − | − − − | − − − | − − − | − − − |
Color | 4 °C 25 °C 40 °C | W W W | W W W | PY PY PY | W W W | W W W | PY PY PY | W W W | W W W | PY PY PY | W W W | W W W | PY PY PY | W W W | W W W | PY PY PY | W W W | W W W | PY PY YW |
Liquefaction | 4 °C 25 °C 40 °C | − − − | − − − | − − − | − − − | − − − | − − − | − − − | − − − | − − − | − − − | − − − | − − − | − − − | − − − | − − − | − − − | − − − | − − − |
Phase separation | 4 °C 25 °C 40 °C | − − − | − − − | − − − | − − − | − − − | − − − | − − − | − − − | − − − | − − − | − − − | − − − | − − − | − − + | − − + | − − − | − − + | − − + |
Centrifugation | 4 °C 25 °C 40 °C | − − − | − − − | − − − | − − − | − − − | − − − | − − − | − − − | − − − | − − − | − − − | − − − | − − − | − − + | − − + | − − − | − − + | − − + |
0 Days of Storage | Formulation F3 after 28 Days of Storage | ||||
---|---|---|---|---|---|
Samples | F1 | F3 | 4 °C | 25 °C | 40 °C |
Scavenging activity (%) | 5.3 ± 0.9 | 48.3 ± 1.3 | 46.9 ± 1.1 | 48.1 ± 1.5 | 41.2 ± 1.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soleimani, S.; Yousefzadi, M.; Babaei Mahani Nezhad, S.; Pozharitskaya, O.N.; Shikov, A.N. Potential of the Ethyl Acetate Fraction of Padina boergesenii as a Natural UV Filter in Sunscreen Cream Formulation. Life 2023, 13, 239. https://doi.org/10.3390/life13010239
Soleimani S, Yousefzadi M, Babaei Mahani Nezhad S, Pozharitskaya ON, Shikov AN. Potential of the Ethyl Acetate Fraction of Padina boergesenii as a Natural UV Filter in Sunscreen Cream Formulation. Life. 2023; 13(1):239. https://doi.org/10.3390/life13010239
Chicago/Turabian StyleSoleimani, Soolmaz, Morteza Yousefzadi, Sepideh Babaei Mahani Nezhad, Olga N. Pozharitskaya, and Alexander N. Shikov. 2023. "Potential of the Ethyl Acetate Fraction of Padina boergesenii as a Natural UV Filter in Sunscreen Cream Formulation" Life 13, no. 1: 239. https://doi.org/10.3390/life13010239
APA StyleSoleimani, S., Yousefzadi, M., Babaei Mahani Nezhad, S., Pozharitskaya, O. N., & Shikov, A. N. (2023). Potential of the Ethyl Acetate Fraction of Padina boergesenii as a Natural UV Filter in Sunscreen Cream Formulation. Life, 13(1), 239. https://doi.org/10.3390/life13010239