Rice Intake Is Associated with Longer Reaction Time and Interacts with Blood Lipids and Hypertension among Qatari Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Study Sample
2.2. Outcome Variable: Cognitive Function (Mean Reaction Time)
2.3. Exposure Variable: Rice Intake
2.4. Covariates
2.5. Statistical Analysis
3. Results
3.1. Sample Characteristics
3.2. Association between Rice Consumption and MRT
3.3. Interactions between Rice Intake and Chronic Conditions
4. Discussion
4.1. Potential Mechanisms
4.2. Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boisgontier, M.P.; Wittenberg, G.F.; Fujiyama, H.; Levin, O.; Swinnen, S.P. Complexity of Central Processing in Simple and Choice Multilimb Reaction-Time Tasks. PLoS ONE 2014, 9, e90457. [Google Scholar] [CrossRef] [PubMed]
- Deary, I.J.; Der, G. Reaction Time, Age, and Cognitive Ability: Longitudinal Findings from Age 16 to 63 Years in Representative Population Samples. Aging Neuropsychol. Cogn. 2005, 12, 187–215. [Google Scholar] [CrossRef]
- Talboom, J.S.; De Both, M.D.; Naymik, M.A.; Schmidt, A.M.; Lewis, C.R.; Jepsen, W.M.; Håberg, A.K.; Rundek, T.; Levin, B.E.; Hoscheidt, S.; et al. Two separate, large cohorts reveal potential modifiers of age-associated variation in visual reaction time performance. npj Aging Mech. Dis. 2021, 7, 14. [Google Scholar] [CrossRef] [PubMed]
- Spencer, S.J.; Korosi, A.; Layé, S.; Shukitt-Hale, B.; Barrientos, R.M. Food for thought: How nutrition impacts cognition and emotion. npj Sci. Food 2017, 1, 7. [Google Scholar] [CrossRef] [Green Version]
- Shi, Z.; El-Obeid, T.; Li, M.; Xu, X.; Liu, J. Iron-related dietary pattern increases the risk of poor cognition. Nutr. J. 2019, 18, 48. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; E Byles, J.; Shi, Z.; Hall, J.J. Dietary patterns, dietary lead exposure and hypertension in the older Chinese population. Asia Pac. J. Clin. Nutr. 2018, 27, 451–459. [Google Scholar]
- Baldwin, K.; Childs, N.; Dyck, J.; Hansen, J. Southeast Asia’s Rice Surplus. Outlook No.(RCS-121-01); USDA ERS: Washington, DC, USA, 2012. [Google Scholar]
- Toriyama, K. (Ed.) Rice is Life: Scientific Perspectives for the 21st Century; International Rice Research Institute: Los Baños, Philippines, 2005. [Google Scholar]
- Ren, G.; Qi, J.; Zou, Y. Association between intake of white rice and incident type 2 diabetes—An updated meta-analysis. Diabetes Res. Clin. Pract. 2021, 172, 108651. [Google Scholar] [CrossRef]
- A Hu, E.; Pan, A.; Malik, V.; Sun, Q. White rice consumption and risk of type 2 diabetes: Meta-analysis and systematic review. BMJ 2012, 344, e1454. [Google Scholar]
- Shi, Z.; Ganji, V. Dietary patterns and cardiovascular disease risk among Chinese adults: A prospective cohort study. Eur. J. Clin. Nutr. 2020, 74, 1725–1735. [Google Scholar] [CrossRef]
- Shi, Z.; Taylor, A.W.; Hu, G.; Gill, T.; Wittert, G.A. Rice intake, weight change and risk of the metabolic syndrome development among Chinese adults: The Jiangsu Nutrition Study (JIN). Asia Pac. J. Clin. Nutr. 2012, 21, 35–43. [Google Scholar]
- Reitz, C.; Tang, M.-X.; Manly, J.; Mayeux, R.; Luchsinger, J. Hypertension and the Risk of Mild Cognitive Impairment. Arch. Neurol. 2007, 64, 1734–1740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, J.; Xiang, Y.-B.; Cai, H.; Li, H.; Gao, Y.-T.; Zheng, W.; Shu, X.-O. A Prospective Investigation of Dietary Intake and Functional Impairments Among the Elderly. Am. J. Epidemiol. 2018, 187, 2372–2386. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Yue, L.; Li, G.; Xiao, S. Higher weekly white rice consumption is associated with an increased risk of incident MCI: A two-year follow-up study of elderly people in Shanghai Community. Res. Sq. 2021. [Google Scholar]
- Kuroda, Y.; Matsuzaki, K.; Wakatsuki, H.; Shido, O.; Harauma, A.; Moriguchi, T.; Sugimoto, H.; Yamaguchi, S.; Yoshino, K.; Hashimoto, M. Influence of Ultra-High Hydrostatic Pressurizing Brown Rice on Cognitive Functions and Mental Health of Elderly Japanese Individuals: A 2-Year Randomized and Controlled Trial. J. Nutr. Sci. Vitaminol. 2019, 65, S80–S87. [Google Scholar] [CrossRef]
- Schilling, S.; Tzourio, C.; Soumaré, A.; Kaffashian, S.; Dartigues, J.-F.; Ancelin, M.-L.; Samieri, C.; Dufouil, C.; Debette, S. Differential associations of plasma lipids with incident dementia and dementia subtypes in the 3C Study: A longitudinal, population-based prospective cohort study. PLoS Med. 2017, 14, e1002265. [Google Scholar] [CrossRef]
- Li, J.; Cao, Y.; Xiao, C. Subgroup analysis of the influence of body mass index on the association between serum lipids and cognitive function in Chinese population. Lipids Health Dis. 2020, 19, 130. [Google Scholar] [CrossRef]
- Al-Thani, M.; Al-Thani, A.-A.; Al-Mahdi, N.; Al-Kareem, H.; Barakat, D.; Al-Chetachi, W.; Tawfik, A.; Akram, H. An Overview of Food Patterns and Diet Quality in Qatar: Findings from the National Household Income Expenditure Survey. Cureus 2017, 9, e1249. [Google Scholar] [CrossRef] [Green Version]
- Planning and Statistics Authority. Final Results of Household Expenditure and Income Survey (HEIS); Planning and Statistics Authority: Doha, Qatar, 2013; p. 206. [Google Scholar]
- Costello, R.; Wallace, T.; Rosanoff, A. Magnesium. Adv. Nutr. 2016, 7, 199–201. [Google Scholar] [CrossRef] [Green Version]
- Al-Ghazali, K.; Eltayeb, S.; Musleh, A.; Al-Abdi, T.; Ganji, V.; Shi, Z. Serum Magnesium and Cognitive Function Among Qatari Adults. Front. Aging Neurosci. 2020, 12, 101. [Google Scholar] [CrossRef] [Green Version]
- Al Thani, A.; Fthenou, E.; Paparrodopoulos, S.; Al Marri, A.; Shi, Z.; Qafoud, F.; Afifi, N. Qatar Biobank Cohort Study: Study Design and First Results. Am. J. Epidemiol. 2019, 188, 1420–1433. [Google Scholar] [CrossRef]
- Al Kuwari, H.; Al Thani, A.; Al Marri, A.; Al Kaabi, A.; Abderrahim, H.; Afifi, N.; Qafoud, F.; Chan, Q.; Tzoulaki, I.; Downey, P.; et al. The Qatar Biobank: Background and methods. BMC Public Health 2015, 15, 1208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lyall, D.M.; Cullen, B.; Allerhand, M.; Smith, D.J.; Mackay, D.; Evans, J.; Anderson, J.; Fawns-Ritchie, C.; McIntosh, A.M.; Deary, I.J.; et al. Cognitive Test Scores in UK Biobank: Data Reduction in 480,416 Participants and Longitudinal Stability in 20,346 Participants. PLoS ONE 2016, 11, e0154222. [Google Scholar]
- Jakobsen, L.H.; Sorensen, J.M.; Rask, I.K.; Jensen, B.S.; Kondrup, J. Validation of reaction time as a measure of cognitive function and quality of life in healthy subjects and patients. Nutrition 2011, 27, 561–570. [Google Scholar] [CrossRef] [PubMed]
- Bawadi, H.; Akasheh, R.; Kerkadi, A.; Haydar, S.; Tayyem, R.; Shi, Z. Validity and Reproducibility of a Food Frequency Questionnaire to Assess Macro and Micro-Nutrient Intake among a Convenience Cohort of Healthy Adult Qataris. Nutrients 2021, 13, 2002. [Google Scholar] [CrossRef] [PubMed]
- Ainsworth, B.E.; Haskell, W.L.; Whitt, M.C.; Irwin, M.L.; Swartz, A.M.; Strath, S.J.; O’Brien, W.L.; Bassett, D.R., Jr.; Schmitz, K.H.; Emplaincourt, P.O.; et al. Compendium of Physical Activities: An update of activity codes and MET intensities. Med. Sci. Sport. Exerc. 2000, 32, S498–S516. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association. Diagnosis and Classification of Diabetes Mellitus. Diabetes Care 2014, 37 (Suppl. 1), S81–S90. [Google Scholar] [CrossRef] [Green Version]
- Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the Concentration of Low-Density Lipoprotein Cholesterol in Plasma, Without Use of the Preparative Ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar] [CrossRef]
- Kaur, B.; Ranawana, V.; Henry, J. The Glycemic Index of Rice and Rice Products: A Review, and Table of GI Values. Crit. Rev. Food Sci. Nutr. 2013, 56, 215–236. [Google Scholar] [CrossRef] [Green Version]
- Zilliox, L.A.; Chadrasekaran, K.; Kwan, J.Y.; Russell, J.W. Diabetes and Cognitive Impairment. Curr. Diabetes Rep. 2016, 16, 87. [Google Scholar] [CrossRef] [Green Version]
- Philippou, E.; Constantinou, M. The Influence of Glycemic Index on Cognitive Functioning: A Systematic Review of the Evidence. Adv. Nutr. Int. Rev. J. 2014, 5, 119–130. [Google Scholar]
- Oba, S.; Nagata, C.; Nakamura, K.; Fujii, K.; Kawachi, T.; Takatsuka, N.; Shimizu, H. Dietary glycemic index, glycemic load, and intake of carbohydrate and rice in relation to risk of mortality from stroke and its subtypes in Japanese men and women. Metabolism 2010, 59, 1574–1582. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.-H.; Tan, L.; Yu, J.-T. Post-stroke cognitive impairment: Epidemiology, mechanisms and management. Ann. Transl. Med. 2014, 2, 80. [Google Scholar] [PubMed]
- Jia, L.; Du, Y.; Chu, L.; Zhang, Z.; Li, F.; Lyu, D.; Li, Y.; Zhu, M.; Jiao, H.; Song, Y.; et al. Prevalence, risk factors, and management of dementia and mild cognitive impairment in adults aged 60 years or older in China: A cross-sectional study. Lancet Public Health 2020, 5, e661–e671. [Google Scholar] [CrossRef]
- Elias, P.K.; Elias, M.F.; D’Agostino, R.B.; Sullivan, L.M.; Wolf, P.A. Serum Cholesterol and Cognitive Performance in the Framingham Heart Study. Psychosom. Med. 2005, 67, 24–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muldoon, M.F.; Flory, J.D.; Ryan, C.M. Serum cholesterol, the brain, and cognitive functioning. In Neuropsychology of Cardiovascular Disease; Taylor & Francis Group: New York, NY, USA, 2001; pp. 53–76. [Google Scholar]
- Li, J.; Wuliji, O.; Li, W.; Jiang, Z.-G.; Ghanbari, H.A. Oxidative Stress and Neurodegenerative Disorders. Int. J. Mol. Sci. 2013, 14, 24438–24475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Imam, M.U.; Musa, S.N.A.; Azmi, N.H.; Ismail, M. Effects of White Rice, Brown Rice and Germinated Brown Rice on Antioxidant Status of Type 2 Diabetic Rats. Int. J. Mol. Sci. 2012, 13, 12952–12969. [Google Scholar] [CrossRef]
- Fakhri, Y.; Bjørklund, G.; Bandpei, A.M.; Chirumbolo, S.; Keramati, H.; Pouya, R.H.; Asadi, A.; Amanidaz, N.; Sarafraz, M.; Sheikhmohammad, A.; et al. Concentrations of arsenic and lead in rice (Oryza sativa L.) in Iran: A systematic review and carcinogenic risk assessment. Food Chem. Toxicol. 2018, 113, 267–277. [Google Scholar] [CrossRef]
- Karim, Y.; Siddique, A.E.; Hossen, F.; Rahman, M.; Mondal, V.; Banna, H.U.; Hasibuzzaman, M.; Hosen, Z.; Islam, S.; Sarker, K.; et al. Dose-dependent relationships between chronic arsenic exposure and cognitive impairment and serum brain-derived neurotrophic factor. Environ. Int. 2019, 131, 105029. [Google Scholar] [CrossRef]
- Kalmijn, S.; van Boxtel, M.P.; Ocke, M.; Verschuren, W.M.; Kromhout, D.; Launer, L.J. Dietary intake of fatty acids and fish in relation to cognitive performance at middle age. Neurology 2004, 62, 275–280. [Google Scholar] [CrossRef]
Q1 (n = 306) | Q2 (n = 244) | Q3 (n = 219) | Q4 (n = 231) | p-Value * | |
---|---|---|---|---|---|
Rice intake (times/week) | 1.8 (1.0) | 5.2 (0.8) | 8.1 (0.9) | 15.1 (5.4) | <0.001 |
Age (years) | 36.1 (9.6) | 35.4 (11.0) | 36.9 (10.8) | 34.8 (10.0) | 0.167 |
Gender | 0.581 | ||||
Male | 147 (48.0%) | 117 (48.0%) | 115 (52.5%) | 121 (52.4%) | |
Female | 159 (52.0%) | 127 (52.0%) | 104 (47.5%) | 110 (47.6%) | |
Education | 0.001 | ||||
Low (below university) | 94 (30.7%) | 73 (30.0%) | 68 (31.1%) | 103 (44.8%) | |
High (university or above) | 212 (69.3%) | 170 (70.0%) | 151 (68.9%) | 127 (55.2%) | |
Smoking | 0.785 | ||||
Non | 213 (69.6%) | 162 (66.4%) | 145 (66.2%) | 153 (66.2%) | |
Smoker | 52 (17.0%) | 45 (18.4%) | 40 (18.3%) | 50 (21.6%) | |
Ex-smoker | 41 (13.4%) | 37 (15.2%) | 34 (15.5%) | 28 (12.1%) | |
Leisure time physical activity (MET hours/week) | 5.8 (17.9) | 5.2 (15.0) | 6.3 (17.0) | 7.9 (35.5) | 0.598 |
BMI (kg/m2) | 28.8 (5.6) | 27.8 (5.5) | 28.0 (6.0) | 28.1 (5.8) | 0.212 |
BMI categories | 0.784 | ||||
Normal | 79 (25.8%) | 76 (31.1%) | 67 (30.6%) | 71 (30.7%) | |
Overweight | 118 (38.6%) | 93 (38.1%) | 83 (37.9%) | 88 (38.1%) | |
Obese | 109 (35.6%) | 75 (30.7%) | 69 (31.5%) | 72 (31.2%) | |
Supplement use | 189 (61.8%) | 158 (64.8%) | 141 (64.4%) | 126 (54.5%) | 0.087 |
Vitamin D and calcium use | 119 (38.9%) | 105 (43.0%) | 85 (38.8%) | 74 (32.0%) | 0.101 |
Vegetable intake (times/week) | 14.2 (12.0) | 15.3 (11.5) | 17.5 (11.8) | 23.1 (18.1) | <0.001 |
Fruit intake (times/week) | 5.7 (5.5) | 6.9 (6.4) | 7.1 (6.0) | 7.9 (6.8) | <0.001 |
Magnesium (mmol/L) | 0.84 (0.05) | 0.84 (0.06) | 0.83 (0.06) | 0.83 (0.06) | 0.046 |
LDL (mmol/L) | 3.0 (0.8) | 3.0 (0.8) | 2.9 (0.8) | 2.9 (0.9) | 0.461 |
HDL (mmol/L) | 1.4 (0.4) | 1.4 (0.4) | 1.3 (0.4) | 1.3 (0.4) | 0.322 |
Total cholesterol (mmol/L) | 5.0 (0.9) | 4.9 (0.9) | 4.9 (0.9) | 4.9 (0.9) | 0.697 |
HbA1C (%) | 5.5 (0.9) | 5.5 (0.8) | 5.5 (0.8) | 5.7 (1.1) | 0.137 |
Hypertension | 30 (9.8%) | 20 (8.2%) | 29 (13.2%) | 17 (7.4%) | 0.154 |
Diabetes | 31 (10.5%) | 25 (10.5%) | 24 (11.3%) | 36 (16.5%) | 0.149 |
Insulin use | 4 (1.3%) | 3 (1.2%) | 4 (1.8%) | 8 (3.5%) | 0.241 |
Diabetes medication other than insulin | 8 (2.6%) | 14 (5.7%) | 17 (7.8%) | 16 (6.9%) | 0.046 |
Hypertension medication use | 12 (3.9%) | 11 (4.5%) | 18 (8.2%) | 14 (6.1%) | 0.159 |
Mean reaction time (millisecond) | 693.72 (175.83) | 711.85 (194.49) | 734.41 (250.92) | 729.35 (197.96) | 0.089 |
Q1 (n = 306) | Q2 (n = 244) | Q3 (n = 219) | Q4 (n = 231) | p for Trend | |
---|---|---|---|---|---|
Model 1 | Ref | 23.6 (−7.0, 54.1) | 38.6 (7.2, 70.1) | 50.1 (19.0, 81.1) | 0.001 |
Model 2 | Ref | 22.4 (−7.8, 52.6) | 36.3 (5.1, 67.5) | 34.5 (2.6, 66.4) | 0.017 |
Model 3 | Ref | 17.1 (−13.5, 47.8) | 26.6 (−5.3, 58.4) | 26.3 (−6.5, 59.0) | 0.079 |
Model 4 | Ref | 21.9 (−8.3, 52.1) | 33.7 (2.4, 65.0) | 33.0 (1.1, 64.9) | 0.024 |
β (95% CI) | p Value | |
---|---|---|
Total effect | 3.13 (1.13–5.12) | 0.002 |
Direct effect | 3.00 (1.01–5.00) | 0.003 |
Indirect effect (via serum magnesium) | 0.13 (−0.05–3.09) | 0.160 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elrahmani, A.; Youssef, F.; Elsayed, H.; Mohamed, N.; El-Obeid, T.; Shi, Z. Rice Intake Is Associated with Longer Reaction Time and Interacts with Blood Lipids and Hypertension among Qatari Adults. Life 2023, 13, 251. https://doi.org/10.3390/life13010251
Elrahmani A, Youssef F, Elsayed H, Mohamed N, El-Obeid T, Shi Z. Rice Intake Is Associated with Longer Reaction Time and Interacts with Blood Lipids and Hypertension among Qatari Adults. Life. 2023; 13(1):251. https://doi.org/10.3390/life13010251
Chicago/Turabian StyleElrahmani, Arwa, Farah Youssef, Haidi Elsayed, Nada Mohamed, Tahra El-Obeid, and Zumin Shi. 2023. "Rice Intake Is Associated with Longer Reaction Time and Interacts with Blood Lipids and Hypertension among Qatari Adults" Life 13, no. 1: 251. https://doi.org/10.3390/life13010251
APA StyleElrahmani, A., Youssef, F., Elsayed, H., Mohamed, N., El-Obeid, T., & Shi, Z. (2023). Rice Intake Is Associated with Longer Reaction Time and Interacts with Blood Lipids and Hypertension among Qatari Adults. Life, 13(1), 251. https://doi.org/10.3390/life13010251