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Abstract: The function of noncoding sequence variations at ZNF143 binding sites in breast cancer
cells is currently not well understood. Distal elements and promoters, also known as cis-regulatory
elements, control the expression of genes. They may be identified by functional genomic techniques
and sequence conservation, and they frequently show cell- and tissue-type specificity. The creation,
destruction, or modulation of TF binding and function may be influenced by genetic modifications
at TF binding sites that affect the binding affinity. Therefore, noncoding mutations that affect the
ZNF143 binding site may be able to alter the expression of some genes in breast cancer. In order to
understand the relationship among ZNF143, gene expression patterns, and noncoding mutations,
we adopted an integrative strategy in this study and paid close attention to putative immunological
signaling pathways. The immune system-related pathways ErbB, HIF1a, NF-kB, FoxO, JAK-STAT,
Wnt, Notch, cell cycle, PI3K–AKT, RAP1, calcium signaling, cell junctions and adhesion, actin
cytoskeleton regulation, and cancer pathways are among those that may be significant, according to
the overall analysis.

Keywords: ZNF143 protein; promoters; gene expression patterns; TF binding site; (non-)coding
mutational profiling

1. Introduction

One of the most common cancers in women identified worldwide is breast cancer (BC).
Over the last 40 years, BC incidence has grown, and there has been significant development
in clinical practice and diagnostic methods for detection and identification. Its annual
mortality rate globally is close to 450,000 fatalities, and more than 1.4 million new patients
are diagnosed with BC each year [1]. Additionally, BC is the second-leading cause of
cancer-related deaths in women in industrialised countries, and the death toll from BC is
considerably greater in low- and middle-income countries, such as Arabic nations, where
the majority of women are diagnosed with advanced illness [2–4].

Cancer is thought to be a multistage process where a normal cell is transformed into a
malignant cell; the malignant cells may be readily distinguished, according to research on
the (epi-)genomic, transcriptome, proteome, and metabolome levels. According to earlier
research, practically all kinds of cancer may be defined in terms of their ability to spread
through angiogenesis, metastasis, inflammation, metabolic alterations, proliferation, and
apoptosis. This multistage development has been extensively discussed, examined, and
improved with the use of recently developed high-throughput methods, with a particular
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emphasis on (epi-)genetics as well as the transcriptome and the proteome. In peripheral
blood cells from individuals with severe lupus, there is a signature of genes induced by
interferon [2,4–9].

Single nucleotide variations (SNV), copy number variations (CNV), loss of heterozy-
gosity (LOH), genomic rearrangements, and rare variants are studied at the genome level;
TF binding, DNA methylation, chromatin accessibility, and miRNA are studied at the
epigenome level; and gene expression, lncRNA, small RNA, and alternative splicing are
studiable at the transcriptome level. Moreover, understanding epigenetics and noncoding
mutations in cancer is also being tried by a number of researchers [10–12].

In healthy cells, chromatin accessibility and epigenetic changes work together to
control gene expression. This integration of different types of genomic information also
helps to explain the abnormal gene expression frequently seen in cancerous cells. Large-
scale chromatin looping is involved in the repression or stimulation of gene expression. It is
generally accepted that the establishment of chromatin looping, which in turn facilitates the
contacts between promoters and enhancers, initiates chromatin interactions. If the genome
were linear, however, it would be impossible for these interactions to arise. The precise
mechanism by which chromatin connections begin has not yet been established. Recent
theories, however, contend that chromatin connections are mediated by the CCCTC binding
factor (CTCF)/cohesin proteins, which are crucial for direct contact between promoters
and enhancers, which in turn begin and control gene expression [1–5].

Additionally, it is understood that ZNF143 is essential for healthy tissue growth and is
present in the majority of cancer cells [13,14]. The function of noncoding sequence variations
at ZNF143 binding sites in BC cells is currently not well understood. Distal elements and
promoters, together known as cis-regulatory elements, control the expression of genes. They
may be identified by functional genomic techniques and sequence conservation, and they
frequently show cell- and tissue-type specificity. The creation, destruction, or modulation
of TF binding and function can be caused by genetic modifications at TF binding sites that
modify binding affinity. Therefore, noncoding mutations that target the ZNF143 binding
site may be able to alter the expression of some genes in breast cancer.

Around 97% of the genome is noncoding, and the sequence variants are identified in
cis-regulatory regions, the majority of which are thought to be functional genomic regions.
Cis-regulatory regions include promoters and distal elements (enhancers, silencers, and
insulators) that regulate and initiate gene expression and play roles in structuring and
building up the higher level of chromatin organisations. Application of the next generation
sequencing approach has helped in several research areas and has also helped to reveal the
foundation of genetic and epigenetic underlying diseases and to refine clinical diagnosis
and treatment. BC is considered a heterogeneous disease and thus has different clinical
behaviours and drug responses. A research study [1,2] analysed whole genome sequences
of 560 BC samples (366 samples were ER+ (65%), and 194 samples were ER- (35%)) and
found that most of the driver mutations in BC were found in 93 protein coding cancer genes.

Mutations at noncoding regions such as point mutations and complex genomic re-
arrangements can disrupt or create new TF binding sites or affect noncoding RNA loci.
Mapping of genome-wide ER binding in BC has been determined using ChIP-seq technol-
ogy, and the heterogeneity of the ER binding was used as a classifier of BC ER subtypes,
either positive or negative. Here, the major goal of the study in breast cancer was to
investigate ZNF143 associated genes and pathways, gene expression profiling in breast
cancer, and enhancers in the breast cancer cell line [1–9].

In this study, we have used an integrated approach to explore the relevance of ZNF143
in human breast cancer and have analysed the gene expression patterns and enhancers in
human breast cancer; furthermore, we have also analysed their respective functions.

2. Materials and Methods

In the first phase, we used the protein–protein interaction (PPI) network database
FunCoup [15] to map out all the genes connected to ZNF143. In addition, we also mapped
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the estimated KEGG pathways [16] and presented them as a combined network of genes
and pathways. After that, GO keywords, pathways, and protein categorization were all
accomplished using the PantherDB [17–25]. The list of ZNF143-associated genes was
processed as an input gene list for PantherDB and then we executed the options for
predicting the enriched GO terms, Panther pathways, and enriched protein classes.

GSE27463, GSE41324 [26], GSE43836 (https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE43836 (accessed on 15 October 2022)), GSE62228 (https://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?acc=GSE62228 (accessed on 15 October 2022)), and GSE71898 (https:
//www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE71898 (accessed on 15 October 2022))
were utilized for gene expression analysis, and for differential gene expression analysis,
we compared tumour samples with normal samples of the relevant samples to produce
four DEGs lists. The enhancer datasets for MCF7 and MCF10A were obtained by using the
HACER database [27].

The main procedures for the entire study are, in short, the processing of raw files, intensity
calculations, and normalization. The three methods for normalization [28–30,30–35] that are
most frequently used are GCRMA [36], RMA, and EB. Here, we have normalized the raw
intensity using EB. After normalization, we move forward with our objective, which is
to understand the patterns of gene expression and their presumed roles. MATLAB tools,
such as mattest, have been utilized for statistical analysis and differential gene expression
prediction. We used the Panther database for pathway analysis and created our own
code for network analysis. FunCoup2.0 has been used throughout the entire investigation
to generate DEG networks, and Cytoscape has been utilized to display the networks.
MATLAB has been used for the majority of our code and calculations. Protein complexes,
protein–protein physical interactions, and metabolic and signaling pathways are only a
few examples of the four different groups of functional coupling or linkages predicted by
FunCoup. Finally, it was applied to understand the gene expression patterns [37,38], and
we calculated its inferred functions [17,38]. For pathway analysis, we used the KEGG [16]
database and designed our own code for pathway and network analysis. The individual
lists of genes (DEGs or enhancers) were prepared in text files and processed for comparative
analysis as well as for KEGG pathway enrichment analysis. For Venn diagram plotting,
molbiotools (https://molbiotools.com/listcompare.php (accessed on 15 October 2022))
was used, which gives the plot for the Venn diagrams and the pairwise plots and also gives
the list of genes or pathways.

For generating the DEG network, FunCoup2.0 was used for all the networks through-
out the work, and Cytoscape [39] has been used for network visualization. After generating
the list of DEGs, the connectivities between these genes are fetched from the FunCoup2.0
network database. Once the connectivities are fetched, we then import the file with genes
and connectivities into Cytoscape, where the nodes’ and edges’ color and styles are selected
as per our interest. As metioned above, MATLAB was used for coding purpose, FunCoup to
predict PPI networks, and Cytoscape for visualization and for more details these references
could also be seen [20,24,25,40–44].

3. Results
3.1. Potential ZNF143 Interactors and the Biological Functions

Initially, we performed the mapping of ZNF143 interactors by using the PPI network
database and fetched the KEGG pathways (from the KEGG pathway database) for all
the interactors, including ZNF143. ZNF143, the interactors, and inferred pathways were
merged together as an integrated network, which directly reflected the respective pathways
(Figure 1). Furthermore, we have also mapped out the intra-connectivities between all
the interactors for a better understanding of the impact of one interactor over the others.
Here, we observe that MCM7/4, PIAS4, TUBA1A, C20orf11, HIPK1, and CDKN1B were
among the highly connected proteins (interactors). In terms of functions, cell cycle, FoxO,
PI3K-Akt, JAK-STAT, NF-kB, ubiquitin, Wnt, notch, and cancer signaling were potentially
associated, and the majority of the pathways are well known to be associated with breast
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cancer. PIAS4, CDKN1B, and MCM7/4 directly connect to most of the inferred critical
functions (Figure 1). The color-filled nodes represent the proteins/genes, and the empty
nodes represent the pathways. CDKN1B, PIAS4, CTBP2, and ABCC1 are connected, with
the maximum number of biological pathways with respect to the other proteins. Based
on this result, we could conclude that CDKN1B, PIAS4, CTBP2, and ABCC1 could be the
potential source for ZNF143 (because these genes link more biological functions) to alter
the major cancer signaling pathways.
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3.2. Functional Analysis Using Panther Database

For depth analysis of ZNF143 and the associated proteins, we performed a function
analysis by using the Panther database where the GO terms, pathways, and the protein
classes were analyzed. In the case of the molecular function GO term, binding, catalytic
activity, and transcription regulators were predominantly present (based on percentage
present in the pie chart). Among biological processes, biological regulation, cellular process,
metabolic process, and signaling were dominant. In the case of the cellular component,
the cellular anatomical entity was dominant, followed by the protein-containing complex.
With respect to Panther pathways, the gonadotrophin releasing hormone receptor pathway
was more dominant, while IFN-γ, IL signaling, JAK/STAT signaling, and Wnt signaling
appear in equal percentages. These pathways are globally considered to be potentially
related to cancer, including breast cancer.

In the case of protein classification, the gene-specific transcriptional regulator class
appears highly dominant. The protein modifying enzyme, DNA metabolism protein,
protein-binding activity modulator, scaffold/adaptor protein, transporter, and cytoskeletal
protein were present in closely related percentages. There were other protein classes also
present (Figure 2). The above-mentioned protein classes are those that have the proteins
and are known to be associated with a large number of human diseases, including all types
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of cancer. Thus, we could say that these enriched protein classes are associated with the
selected cancer type, i.e., breast cancer.
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3.3. Gene Expression Patterns in Human Breast Cancer and the Analysis of Enhancers in the
Breast Cancer Cell Line

Further, we mapped out the gene expression profiling for the human breast cancer cell
line MCF7 and compared them altogether. We observe that GSE27463 shares 1015 genes
with GSE41324, 1265 genes with GSE43836, 731 genes with GSE62228, and 14 genes with
GSE71898, as shown in Figure 3a,b. After analyzing the gene expression profiling, we have
used the enhancer datasets for the breast cancer cell line MCF7 and the healthy breast cell
line MCF10A from HACER, and we compared the closest genes and the enriched pathways
for the closest genes. From the enhancer analysis, it appears that there are 286 genes in
common between MCF7 and MCF10A. There were 3721 genes specific to MCF7, while
102 genes were specific to MCF10A, which means that there is a large number of enhancers
which are specific to breast cancer cell lines; this is also the case in terms of functional
analysis (Figure 3c).
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To explore it further, the top 50 genes were analyzed and plotted (Figure 4), where we
show the number of enhancers in the cases of top-ranked genes. The MCF10A top 50 genes
were also plotted, where we observed that the number of enhancers was comparatively
very low in the control cell line compared to the breast cancer cell line.

After plotting the top ranked genes (50 and 100) of MCF7 and MCF10A, the network
for the respective genes weasalso plotted, wherein we observed that the MCF7 network is
densely connected with respect to MCF10A for the top 100 genes, while the connectivity
is close to each other for the top 50 genes (Figure 5). Moreover, we have also plotted the
network of genes and the pathways together for the top 50 genes’ network (Figure 6), in
which we observe the most critical and more numerous pathways are associated with the
MCF7 network compared to the MCF10A network. We have explored the networks of
both MCF7 and MCF10A, and, in the case of the MCF7 network, PIK3R1 is the gene that
controls the maximum number of biological functions. There is a large number of pathways
which are potentially associated with breast cancer, such as apoptosis, ErbB, JAK-STAT,
HIF-1, regulation of actin cytoskeleton, TNF, pathways in cancer, TCR, BCR, TLR signaling
pathways, etc. In the case of the MCF10A network, JUN and FOS proteins infer a large
number of critical signaling pathways but many fewer than PIK3R1 of MCF7, and there
were less dense protein pathway connections than in MCF7. Thus, MCF7 and MCF10A
networks are very different.
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4. Discussion

As previously stated, we started by focusing on the genes that were specifically
connected to ZNF143 and their intra-associations within the framework of a network-
based public network database, for which the FunCoup network database was used. The
predicted pathways for each of these genes have been mapped using the KEGG pathway
database. These essential facts lead us to the conclusion that the majority of the genes
associated with ZNF143 are linked to the most significant cancer-related pathways. We
are motivated to thoroughly study each of the aforementioned pathways’ roles in breast
cancer because the majority of them are well-established and acknowledged to either
directly or indirectly regulate numerous types of human cancer. Here, CDKN1B, PIAS4,
CTBP2, and ABCC1 could be the potential source for ZNF143 to alter the major cancer
signaling pathways.

Furthermore, we have displayed the co-expressed genes for ZNF143 as well as the
pathways directly connected to ZNF143 in cases of breast cancer. The cell cycle, cancer,
ErbB, HIF1a, NF-kB, Foxo, JAK–STAT, Wnt, and Notch pathways are among the main
pathways connected to ZNF143 or its interactors, and these pathways are well-known
to be potentially associated with breast cancer [32,34,45–53]. Thus, it may suggest that
ZNF143 could be one of the most significant genes that may control the breast cancer-related
signaling pathways. There are a number of works where the research has concentrated on
ZNF143; however, our work is distinctive in that it gives fundamentals related to ZNF143
in a straightforward manner [44–48]. Most biological functions in the MCF7 network are
controlled by the PIK3R1 gene, and many other pathways, including apoptosis, ErbB,
JAK–STAT, HIF-1, the control of the actin cytoskeleton, TNF, cancer-related pathways, TCR,
BCR, and TLR signaling pathways, may also be related to breast cancer. JUN and FOS
proteins infer a high number of crucial signaling pathways in the MCF10A network, but
considerably less than PIK3R1 does in MCF7. There were fewer dense protein pathway
connections than in MCF7. The MCF7 and MCF10A networks are therefore very different
from one another.

It is widely known that at the anchor regions of chromatin loops, CTCF–cohesin
complex and transcription factor ZNF143 often co-bind. Researchers have also conducted
a genome-wide experiment to examine ZNF143’s functional roles in chromatin loops, in
which they used computational and experimental methods to look at how ZNF143 influ-
ences chromatin loop regulation. The underlying ZNF143-binding sites, ZNF143–CTCF
co-binding sites, and ZNF143–CTCF–RAD21 co-binding sites have been identified through
the combined study of the ZNF143 and CTCF motifs. Their findings demonstrate that
the ZNF143–CTCF–RAD21 co-binding sites are enriched with CTCF motifs but depleted
of ZNF143 motifs, indicating that ZNF143 may act as a cofactor rather than the pioneer
factor of the ZNF143–CTCF–cohesin complex when it comes to direct genome binding of
CTCF but not ZNF143 [54–56]. They carried out an siRNA experiment to reduce ZNF143’s
expression level in the HEK293T cell line, and then they performed in situ Hi–C on the
negative control and ZNF143-silenced HEK293T cells to investigate the regulatory impact
of ZNF143 on chromatin loops. Comparative analysis reveals that in the ZNF143-silenced
HEK293T cells, the majority of chromatin loops are destroyed or at the very least atten-
uated. The intricate roles played by ZNF143’s decrease in controlling chromatin loops
are indicated by the limited percentage of chromatin loops that are either strengthened
or acquired. They used aggregate peak analysis to look at the chromatin loop differences
between negative control and ZNF143-silenced cells in order to further validate the loop
analyses. The analysis demonstrates that after ZNF143 silencing, loop strength changes
occur in both the lost and gained chromatin loops. Overall, their research demonstrates
that ZNF143 can control chromatin loops by functioning as a cofactor of the CTCF–cohesin
complex, and that ZNF143 expression is primarily eliminated or destabilized when ZNF143
is knocked down [54–58].

A cellular mechanism called autophagy removes and utilizes extraneous or broken
parts to maintain cellular homeostasis. Importantly, a prior study discovered that breast
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cancer cells with low levels of ZNF143 expression outlived control cells (MCF7 sh-Control)
under starvation when the autophagy-inhibiting drug chloroquine was present. Addition-
ally, MCF7 sh-ZNF143 cells had more autophagic vesicles than MCF7 sh-Control cells did,
and cells with less ZNF143 had changes in the autophagic process-related proteins Beclin1,
p62, and ATGs. The stability of p53 was impacted by ZNF143 knockdown, which revealed
MG132’s dependence on the proteasome inhibitor. NAD(P)H quinone dehydrogenase 1
(NQO1) may be important for the stability of p53, according to data from proteome profiling
in breast cancer cells with reduced ZNF143. Together, they demonstrate that a fraction of
breast cancer cells with reduced ZNF143 expression may show improved survival through
an autophagic process by controlling the p53-Beclin1 axis, validating the requirement of
limiting autophagy for the most effective therapy [13,59–62].

Additionally, earlier research has indicated that ZNF143 influences the motility of
colon cancer cells. In breast cancer, ZNF143 was further described. ZNF143 expression in
healthy tissues and tissues from different stages of metastatic breast cancer was examined
using immunohistochemistry. Notably, ZNF143 was differentially expressed in the ductal
and glandular epithelia of healthy breast tissues, and this expression was reduced as the
tissue progressed toward malignancy. Short-hairpin (sh) RNA-lentiviral particles against
ZNF143 were used to infect benign breast cancer cells in order to knock down ZNF143
and learn more about the molecular mechanism underlying how it influences breast can-
cer progression (MCF7 sh-ZNF143). When compared to MCF7 sh-Control cells, MCF7
sh-ZNF143 cells displayed distinct cell–cell interactions and actin filament (F-actin) archi-
tectures. Breast cancer cells with ZNF143 knockdown exhibited greater cellular motility
in migration and invasion experiments. The restoration of ZNF143 expression decreased
this. These findings suggest that ZNF143 expression aids in the development of breast
cancer [13,63].

We have concentrated on ZNF143 and its effect on human breast cancer, as mentioned
above in the discussion section. In addition, we have further analyzed MCF7 and MCF10A
in terms of enhancers, and their networks have also been plotted and examined. An
improved understanding of ZNF143 in the context of human breast cancer as well as
enhancers in breast cancer and normal breast cell lines results from the integrated approach.

5. Conclusions

We draw the conclusion from this study that the transcription factor ZNF143 may be
essential since it seems that ZNF143 regulates a broader variety of biological processes
and pathways linked to breast cancer. Highly significant genes include MCM7, MCM4,
PIAS4, TUBA1A, C20orf11, HIPK1, and CDKN1B. Function-wise, the majority of the
pathways are known to be linked to breast cancer, including the cell cycle, FoxO, PI3K-Akt,
JAK-STAT, NF-kB, ubiquitin, Wnt, notch, and cancer signaling. Most of the inferred key
functions are directly connected via PIAS4, CDKN1B, and MCM7/4. Proteins and genes
are represented by color-filled nodes, while pathways are represented by empty nodes.
Compared to the other proteins, CDKN1B, PIAS4, CTBP2, and ABCC1 are linked to the
most biological pathways. Based on this finding, we might hypothesize that ZNF143’s
potential to change the main cancer signaling pathways may originate from CDKN1B,
PIAS4, CTBP2, and ABCC1.
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