The Impact of Nonalcoholic Fatty Liver Disease on Severe Community-Acquired Pneumonia Outcomes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Patients
2.2. Data Collection, Definitions and Outcomes
2.3. Statistical Analysis
3. Results
3.1. Baseline Patients’ Characteristics
3.2. Clinical Course and Outcomes of CAP
3.3. Factors Associated with Mortality
3.4. NAFLD Is Associated with Increased Mortality in Patients with Influenza, Severe ARDS and Patients Requiring Respiratory ECMO
3.5. Impact of NAFLD and Coexisting Components of Metabolic Syndrome on Mortality
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Marshall, D.C.; Goodson, R.J.; Xu, Y.; Komorowski, M.; Shalhoub, J.; Maruthappu, M.; Salciccioli, J.D. Trends in mortality from pneumonia in the Europe union: A temporal analysis of the European detailed mortality database between 2001 and 2014. Respir. Res. 2018, 19, 81. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, J.A.; Wiemken, T.L.; Peyrani, P.; Arnold, F.W.; Kelley, R.; Mattingly, W.A.; Nakamatsu, R.; Pena, S.; Guinn, B.E.; Furmanek, S.P.; et al. Adults Hospitalized with Pneumonia in the United States: Incidence, Epidemiology, and Mortality. Clin. Infect. Dis. 2017, 65, 1806–1812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, P.W.; D’Agostino, R.B.; Parise, H.; Sullivan, L.; Meigs, J.B. Metabolic syndrome as a precursor of cardiovascular disease and type 2 diabetes mellitus. Circulation 2005, 112, 3066–3072. [Google Scholar] [CrossRef] [PubMed]
- Liu, J. Impact of diabetes mellitus on pneumonia mortality in a senior population: Results from the NHANES III follow-up study. J. Geriatr. Cardiol. 2013, 10, 267–271. [Google Scholar] [CrossRef] [PubMed]
- Fisher-Hoch, S.P.; Mathews, C.E.; McCormick, J.B. Obesity, diabetes and pneumonia: The menacing interface of non-communicable and infectious diseases. Trop. Med. Int. Health 2013, 18, 1510–1519. [Google Scholar] [CrossRef]
- Kornum, J.B.; Norgaard, M.; Dethlefsen, C.; Due, K.M.; Thomsen, R.W.; Tjonneland, A.; Sorensen, H.T.; Overvad, K. Obesity and risk of subsequent hospitalisation with pneumonia. Eur. Respir. J. 2010, 36, 1330–1336. [Google Scholar] [CrossRef]
- Liu, Y.; Pan, Y.; Yin, Y.; Chen, W.; Li, X. Association of dyslipidemia with the severity and mortality of coronavirus disease 2019 (COVID-19): A meta-analysis. Virol. J. 2021, 18, 157. [Google Scholar] [CrossRef]
- Borisov, A.N.; Blum, C.A.; Christ-Crain, M.; Ebrahimi, F. No obesity paradox in patients with community-acquired pneumonia—Secondary analysis of a randomized controlled trial. Nutr. Diabetes 2022, 12, 12. [Google Scholar] [CrossRef]
- Braun, E.S.; Crawford, F.W.; Desai, M.M.; Meek, J.; Kirley, P.D.; Miller, L.; Anderson, E.J.; Oni, O.; Ryan, P.; Lynfield, R.; et al. Obesity not associated with severity among hospitalized adults with seasonal influenza virus infection. Infection 2015, 43, 569–575. [Google Scholar] [CrossRef]
- de Miguel-Diez, J.; Jimenez-Garcia, R.; Hernandez-Barrera, V.; de Miguel-Yanes, J.M.; Carabantes-Alarcon, D.; Zamorano-Leon, J.J.; Lopez-de-Andres, A. Obesity survival paradox in patients hospitalized with community-acquired pneumonia. Assessing sex-differences in a population-based cohort study. Eur. J. Intern. Med. 2022, 98, 98–104. [Google Scholar] [CrossRef]
- Ghilotti, F.; Bellocco, R.; Ye, W.; Adami, H.O.; Trolle Lagerros, Y. Obesity and risk of infections: Results from men and women in the Swedish National March Cohort. Int. J. Epidemiol. 2019, 48, 1783–1794. [Google Scholar] [CrossRef] [PubMed]
- Kofteridis, D.P.; Giourgouli, G.; Plataki, M.N.; Andrianaki, A.M.; Maraki, S.; Papadakis, J.A.; Zacharioudaki, M.E.; Samonis, G. Community-Acquired Pneumonia in Elderly Adults with Type 2 Diabetes Mellitus. J. Am. Geriatr. Soc. 2016, 64, 649–651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nie, W.; Zhang, Y.; Jee, S.H.; Jung, K.J.; Li, B.; Xiu, Q. Obesity survival paradox in pneumonia: A meta-analysis. BMC Med. 2014, 12, 61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torres, A.; Peetermans, W.E.; Viegi, G.; Blasi, F. Risk factors for community-acquired pneumonia in adults in Europe: A literature review. Thorax 2013, 68, 1057–1065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chalasani, N.; Younossi, Z.; Lavine, J.E.; Charlton, M.; Cusi, K.; Rinella, M.; Harrison, S.A.; Brunt, E.M.; Sanyal, A.J. The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases. Hepatology 2018, 67, 328–357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Association for the Study of the Liver (EASL); European Association for the Study of Diabetes (EASD); European Association for the Study of Obesity (EASO). EASL-EASD-EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. J. Hepatol. 2016, 64, 1388–1402. [Google Scholar] [CrossRef]
- Haas, J.T.; Francque, S.; Staels, B. Pathophysiology and Mechanisms of Nonalcoholic Fatty Liver Disease. Annu. Rev. Physiol. 2016, 78, 181–205. [Google Scholar] [CrossRef]
- Herrero, R.; Sanchez, G.; Asensio, I.; Lopez, E.; Ferruelo, A.; Vaquero, J.; Moreno, L.; de Lorenzo, A.; Banares, R.; Lorente, J.A. Liver-lung interactions in acute respiratory distress syndrome. Intensive Care Med. Exp. 2020, 8, 48. [Google Scholar] [CrossRef]
- Hilliard, K.L.; Allen, E.; Traber, K.E.; Yamamoto, K.; Stauffer, N.M.; Wasserman, G.A.; Jones, M.R.; Mizgerd, J.P.; Quinton, L.J. The Lung-Liver Axis: A Requirement for Maximal Innate Immunity and Hepatoprotection during Pneumonia. Am. J. Respir. Cell Mol. Biol. 2015, 53, 378–390. [Google Scholar] [CrossRef] [Green Version]
- Nseir, W.; Amara, A.; Farah, R.; Ahmad, H.S.; Mograbi, J.; Mahamid, M. Non-alcoholic Fatty Liver Disease is Associated with Recurrent Urinary Tract Infection in Premenopausal Women Independent of Metabolic Syndrome. Isr. Med. Assoc. J. 2019, 21, 386–389. [Google Scholar]
- Papic, N.; Jelovcic, F.; Karlovic, M.; Maric, L.S.; Vince, A. Nonalcoholic fatty liver disease as a risk factor for Clostridioides difficile infection. Eur. J. Clin. Microbiol. Infect. Dis. 2020, 39, 569–574. [Google Scholar] [CrossRef]
- Samadan, L.; Jelicic, M.; Vince, A.; Papic, N. Nonalcoholic Fatty Liver Disease-A Novel Risk Factor for Recurrent Clostridioides difficile Infection. Antibiotics 2021, 10, 780. [Google Scholar] [CrossRef]
- Nseir, W.B.; Mograbi, J.M.; Amara, A.E.; Abu Elheja, O.H.; Mahamid, M.N. Non-alcoholic fatty liver disease and 30-day all-cause mortality in adult patients with community-acquired pneumonia. QJM 2019, 112, 95–99. [Google Scholar] [CrossRef] [PubMed]
- Nseir, W.; Artul, S.; Nasrallah, N.; Mahamid, M. The association between primary bacteremia of presumed gastrointestinal origin and nonalcoholic fatty liver disease. Dig. Liver Dis. 2016, 48, 343–344. [Google Scholar] [CrossRef] [PubMed]
- Gjurasin, B.; Butic, I.; Vince, A.; Papić, N. Non-Alcoholic Fatty Liver Disease is Associated with an Increased Mortality in Adult Patients with Group B Streptococcus Invasive Disease. Croat. J. Infect. 2020, 40, 124–128. [Google Scholar] [CrossRef]
- Vrsaljko, N.; Samadan, L.; Viskovic, K.; Mehmedovic, A.; Budimir, J.; Vince, A.; Papic, N. Association of Nonalcoholic Fatty Liver Disease with COVID-19 Severity and Pulmonary Thrombosis: CovidFAT, a Prospective, Observational Cohort Study. Open Forum Infect. Dis. 2022, 9, ofac073. [Google Scholar] [CrossRef]
- Wang, G.; Wu, S.; Wu, C.; Zhang, Q.; Wu, F.; Yu, B.; Zhang, S.; Wu, C.; Wu, G.; Zhong, Y. Association between non-alcoholic fatty liver disease with the susceptibility and outcome of COVID-19: A retrospective study. J. Cell. Mol. Med. 2021, 25, 11212–11220. [Google Scholar] [CrossRef]
- Younossi, Z.M.; Stepanova, M.; Lam, B.; Cable, R.; Felix, S.; Jeffers, T.; Younossi, E.; Pham, H.; Srishord, M.; Austin, P.; et al. Independent Predictors of Mortality Among Patients with NAFLD Hospitalized with COVID-19 Infection. Hepatol. Commun. 2022, 6, 3062–3072. [Google Scholar] [CrossRef]
- Chen, V.L.; Hawa, F.; Berinstein, J.A.; Reddy, C.A.; Kassab, I.; Platt, K.D.; Hsu, C.Y.; Steiner, C.A.; Louissaint, J.; Gunaratnam, N.T.; et al. Hepatic Steatosis Is Associated with Increased Disease Severity and Liver Injury in Coronavirus Disease-19. Dig. Dis. Sci. 2021, 66, 3192–3198. [Google Scholar] [CrossRef]
- Golabi, P.; Paik, J.M.; Eberly, K.; de Avila, L.; Alqahtani, S.A.; Younossi, Z.M. Causes of death in patients with Non-alcoholic Fatty Liver Disease (NAFLD), alcoholic liver disease and chronic viral Hepatitis B and C. Ann. Hepatol. 2022, 27, 100556. [Google Scholar] [CrossRef]
- Loaeza-del-Castillo, A.; Paz-Pineda, F.; Oviedo-Cardenas, E.; Sanchez-Avila, F.; Vargas-Vorackova, F. AST to platelet ratio index (APRI) for the noninvasive evaluation of liver fibrosis. Ann. Hepatol. 2008, 7, 350–357. [Google Scholar] [CrossRef] [PubMed]
- Sumida, Y.; Yoneda, M.; Hyogo, H.; Itoh, Y.; Ono, M.; Fujii, H.; Eguchi, Y.; Suzuki, Y.; Aoki, N.; Kanemasa, K.; et al. Validation of the FIB4 index in a Japanese nonalcoholic fatty liver disease population. BMC Gastroenterol. 2012, 12, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vincent, J.L.; Moreno, R.; Takala, J.; Willatts, S.; De Mendonca, A.; Bruining, H.; Reinhart, C.K.; Suter, P.M.; Thijs, L.G. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med. 1996, 22, 707–710. [Google Scholar] [CrossRef]
- Siegelman, E.S.; Rosen, M.A. Imaging of hepatic steatosis. Semin. Liver Dis. 2001, 21, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Force, A.D.T.; Ranieri, V.M.; Rubenfeld, G.D.; Thompson, B.T.; Ferguson, N.D.; Caldwell, E.; Fan, E.; Camporota, L.; Slutsky, A.S. Acute respiratory distress syndrome: The Berlin Definition. JAMA 2012, 307, 2526–2533. [Google Scholar] [CrossRef]
- Tonna, J.E.; Abrams, D.; Brodie, D.; Greenwood, J.C.; Rubio Mateo-Sidron, J.A.; Usman, A.; Fan, E. Management of Adult Patients Supported with Venovenous Extracorporeal Membrane Oxygenation (VV ECMO): Guideline from the Extracorporeal Life Support Organization (ELSO). ASAIO J. 2021, 67, 601–610. [Google Scholar] [CrossRef]
- Nseir, W.; Artul, S.; Abu Rajab, S.; Mograbi, J.; Nasralla, N.; Mahamid, M. Association between non-alcoholic fatty liver disease and hospitalized patients with community-acquired pneumonia. Isr. Med. Assoc. J. 2017, 19, 198. [Google Scholar]
- Brunetti, V.C.; Ayele, H.T.; Yu, O.H.Y.; Ernst, P.; Filion, K.B. Type 2 diabetes mellitus and risk of community-acquired pneumonia: A systematic review and meta-analysis of observational studies. CMAJ Open 2021, 9, E62–E70. [Google Scholar] [CrossRef]
- Falguera, M.; Pifarre, R.; Martin, A.; Sheikh, A.; Moreno, A. Etiology and outcome of community-acquired pneumonia in patients with diabetes mellitus. Chest 2005, 128, 3233–3239. [Google Scholar] [CrossRef]
- Torres, A.; Blasi, F.; Dartois, N.; Akova, M. Which individuals are at increased risk of pneumococcal disease and why? Impact of COPD, asthma, smoking, diabetes, and/or chronic heart disease on community-acquired pneumonia and invasive pneumococcal disease. Thorax 2015, 70, 984–989. [Google Scholar] [CrossRef] [Green Version]
- Barmanray, R.D.; Cheuk, N.; Fourlanos, S.; Greenberg, P.B.; Colman, P.G.; Worth, L.J. In-hospital hyperglycemia but not diabetes mellitus alone is associated with increased in-hospital mortality in community-acquired pneumonia (CAP): A systematic review and meta-analysis of observational studies prior to COVID-19. BMJ Open Diabetes Res. Care 2022, 10, e002880. [Google Scholar] [CrossRef] [PubMed]
- Fezeu, L.; Julia, C.; Henegar, A.; Bitu, J.; Hu, F.B.; Grobbee, D.E.; Kengne, A.P.; Hercberg, S.; Czernichow, S. Obesity is associated with higher risk of intensive care unit admission and death in influenza A (H1N1) patients: A systematic review and meta-analysis. Obes. Rev. 2011, 12, 653–659. [Google Scholar] [CrossRef] [PubMed]
- Hamer, M.; Gale, C.R.; Kivimaki, M.; Batty, G.D. Overweight, obesity, and risk of hospitalization for COVID-19: A community-based cohort study of adults in the United Kingdom. Proc. Natl. Acad. Sci. USA 2020, 117, 21011–21013. [Google Scholar] [CrossRef] [PubMed]
- Helvaci, N.; Eyupoglu, N.D.; Karabulut, E.; Yildiz, B.O. Prevalence of Obesity and Its Impact on Outcome in Patients with COVID-19: A Systematic Review and Meta-Analysis. Front. Endocrinol. 2021, 12, 598249. [Google Scholar] [CrossRef] [PubMed]
- Braun, N.; Hoess, C.; Kutz, A.; Christ-Crain, M.; Thomann, R.; Henzen, C.; Zimmerli, W.; Mueller, B.; Schuetz, P. Obesity paradox in patients with community-acquired pneumonia: Is inflammation the missing link? Nutrition 2017, 33, 304–310. [Google Scholar] [CrossRef]
- Stokes, A.; Preston, S.H. Smoking and reverse causation create an obesity paradox in cardiovascular disease. Obesity 2015, 23, 2485–2490. [Google Scholar] [CrossRef] [Green Version]
- Sperrin, M.; Candlish, J.; Badrick, E.; Renehan, A.; Buchan, I. Collider Bias Is Only a Partial Explanation for the Obesity Paradox. Epidemiology 2016, 27, 525–530. [Google Scholar] [CrossRef] [Green Version]
- Kremer, M.; Thomas, E.; Milton, R.J.; Perry, A.W.; van Rooijen, N.; Wheeler, M.D.; Zacks, S.; Fried, M.; Rippe, R.A.; Hines, I.N. Kupffer cell and interleukin-12-dependent loss of natural killer T cells in hepatosteatosis. Hepatology 2010, 51, 130–141. [Google Scholar] [CrossRef] [Green Version]
- Schaffler, A.; Scholmerich, J. Innate immunity and adipose tissue biology. Trends Immunol. 2010, 31, 228–235. [Google Scholar] [CrossRef]
- Alba-Loureiro, T.C.; Munhoz, C.D.; Martins, J.O.; Cerchiaro, G.A.; Scavone, C.; Curi, R.; Sannomiya, P. Neutrophil function and metabolism in individuals with diabetes mellitus. Braz. J. Med. Biol. Res. 2007, 40, 1037–1044. [Google Scholar] [CrossRef] [Green Version]
- Miele, L.; Valenza, V.; La Torre, G.; Montalto, M.; Cammarota, G.; Ricci, R.; Masciana, R.; Forgione, A.; Gabrieli, M.L.; Perotti, G.; et al. Increased intestinal permeability and tight junction alterations in nonalcoholic fatty liver disease. Hepatology 2009, 49, 1877–1887. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Cook, D.J.; Thabane, L.; Friedrich, J.O.; Crozier, T.M.; Muscedere, J.; Granton, J.; Mehta, S.; Reynolds, S.C.; Lopes, R.D.; et al. Risk factors for mortality in patients admitted to intensive care units with pneumonia. Respir. Res. 2016, 17, 80. [Google Scholar] [CrossRef] [PubMed]
NAFLD (n = 80) | Non-NAFLD (n = 58) | p-Value a | |
---|---|---|---|
Age, years, median (IQR) | 61 (51–70) | 60 (43–67) | 0.3216 |
Male sex, n (%) | 60 (75.00%) | 35 (60.34%) | 0.0933 |
Charlson age–comorbidity index | 3 (1–4) | 2 (1–3) | 0.0929 |
Obesity | 56 (70.00%) | 5 (8.62%) | <0.0001 |
Body mass index, kg/m2 | 31 (28–34) | 26 (25–28) | <0.0001 |
Smoker | 22 (27.50%) | 16 (27.59%) | >0.9999 |
Comorbidities, n (%) | |||
Diabetes mellitus | 30 (37.50%) | 7 (12.07%) | 0.0009 |
Arterial hypertension | 49 (61.25%) | 25 (43.10%) | 0.0394 |
Dyslipidemia | 22 (27.50%) | 9 (15.52%) | 0.1039 |
Cardiovascular diseases | 25 (31.25%) | 11 (18.97%)) | 0.1195 |
Peripheral vascular disease | 5 (6.25%) | 3 (5.17%) | >0.9999 |
Chronic kidney disease | 3 (3.75%) | 1 (1.72%) | 0.6388 |
Chronic obstructive pulmonary disease | 6 (7.50%) | 7 (12.07%) | 0.3903 |
Neurological diseases | 8 (10.00%) | 8 (13.79%) | 0.5927 |
Chronic medications, n (%) | |||
ACE inhibitors | 31 (38.75%) | 16 (27.59%) | 0.2045 |
Other antihypertensive drugs | 31 (38.75%) | 19 (32.76%) | 0.5907 |
Statins | 22 (27.5%) | 8 (13.79%) | 0.0620 |
Metformin | 15 (18.75%) | 4 (6.90%) | 0.0498 |
Another perioral anti-diabetic | 12 (15.00%) | 3 (5.17%) | 0.0958 |
Insulin | 10 (12.50%) | 0 (0.00%) | 0.0052 |
Antiplatelet agent | 14 (17.50%) | 7 (12.07%) | 0.4745 |
Duration of illness at admission | |||
At hospital admission | 5 (3–7) | 4 (2.8–7) | 0.2162 |
At ICU admission | 6 (4–8) | 5 (3–8) | 0.4719 |
NAFLD (n = 80) | Non-NAFLD (n = 58) | p-Value a | |
---|---|---|---|
C-reactive protein, mg/L | 226 (142–370) | 194 (133–267) | 0.0971 |
Procalcitonin, µg/L | 2.8 (0.55–18) | 2.7 (0.42–17) | 0.9797 |
Lactate, mmol/L | 1.8 (1.3–3) | 1.9 (1.4–2.9) | 0.702 |
White blood cells, ×109/L | 10 (6.1–17) | 11 (5–16) | 0.681 |
Neutrophils–lymphocytes ratio | 14 (7.7–28) | 13 (6.6–23) | 0.6051 |
Hemoglobin, g/L | 118 (100–138) | 125 (108–137) | 0.4093 |
Platelets, ×109/L | 184 (113–256) | 164 (102–229) | 0.4267 |
Fibrinogen, g/L | 5.8 (4.9–6.7) | 5.5 (4.4–6.4) | 0.6609 |
International normalized ratio (INR) | 1.1 (1–1.3) | 1.2 (1–1.3) | 0.7171 |
D-dimer, mg/L | 4.2 (2–4.3) | 2.5 (0.94–4.3) | 0.0816 |
Blood urea nitrogen, mmol/L | 11 (6.1–17) | 8.3 (5.8–13) | 0.054 |
Creatinine, μmol/L | 120 (84–204) | 106 (87–153) | 0.5098 |
Total bilirubin, μmol/L | 14 (10–20) | 12 (8.8–18) | 0.1836 |
Aspartate aminotransferase, IU/L | 73 (38–158) | 45 (28–97) | 0.0067 |
Alanine aminotransferase, IU/L | 43 (22–81) | 26 (16–53) | 0.0241 |
Gamma-glutamyl transferase, IU/L | 69 (42–152) | 44 (24–93) | 0.0061 |
Alkaline phosphatase, IU/L | 84 (69–113) | 76 (60–99) | 0.0871 |
Lactate dehydrogenase, IU/L | 497 (311–892) | 305 (208–615) | 0.0019 |
Serum albumins, g/L | 28 (24–32) | 29 (25–33) | 0.5774 |
APRI score | 1.1 (0.46–3.1) | 0.71 (0.27–1.9) | 0.0698 |
FIB-4 score | 4.7 (2.1–9.3) | 3.1 (1.3–7) | 0.0482 |
NAFLD (n = 80) | Non-NAFLD (n = 58) | p-Value a | |
---|---|---|---|
Influenza | 34 (42.50%) | 22 (37.93%) | 0.6036 |
Streptococcus pneumoniae | 10 (12.50%) | 8 (13.79%) | >0.9999 |
Legionella pneumoniae | 4 (5.0%) | 3 (5.17%) | >0.9999 |
Other bacteria b | 3 (3.75%) | 4 (6.89%) | 0.4535 |
Etiologically negative | 29 (36.25%) | 21 (36.21%) | >0.9999 |
NAFLD (n = 80) | Non-NAFLD (n = 58) | p-Value a | |
---|---|---|---|
Disease severity and modes of treatment | |||
ARDS | 55 (68.75%) | 25 (43.10%) | 0.0031 |
Mild or moderate ARDS b | 6 (7.50%) | 3 (5.17%) | 0.0078 |
Severe ARDS b | 49 (61.25%) | 22 (37.93%) | |
Invasive mechanical ventilation (IMV) | 69 (86.25%) | 37 (63.79%) | 0.0038 |
Duration of IMV, days | 13 (5–21) | 8 (2–16) | 0.0268 |
ECMO | 40 (50.00%) | 14 (24.14%) | 0.0210 |
Duration of ECMO, days | 9 (5–16) | 7 (5–19) | 0.2905 |
CRRT | 50 (62.50%) | 17 (29.31%) | 0.0001 |
Duration of CRRT, days | 10 (5–20) | 12 (9–2) | 0.8464 |
Complications during hospitalizations | 67 (83.75%) | 45 (77.59%) | 0.3849 |
Clostridiodes difficile enterocolitis | 3 (3.75%) | 3 (5.17%) | 0.6957 |
Hospital-acquired infections | 42 (52.50%) | 29 (50.00%) | 0.8633 |
Ventilator-associated pneumonia | 14 (17.50%) | 10 (17.24%) | >0.9999 |
Hospital-acquired sepsis | 27 (33.75%) | 10 (17.24%) | 0.0339 |
Acute kidney injury | 58 (72.50%) | 23 (39.66%) | 0.0002 |
Acute heart failure | 23 (28.75%) | 12 (20.69%) | 0.3255 |
Pneumothorax | 6 (7.50%) | 2 (3.45%) | 0.4675 |
Empyema | 2 (2.50%) | 1 (1.72%) | >0.9999 |
Cardial arrest with return of spontaneous circulation | 11 (13.75%) | 4 (6.90%) | 0.2713 |
Outcomes | |||
Death during hospitalization | 40 (50.00%) | 12 (20.69%) | 0.0006 |
Time to death from hospital admission | 18 (9–25) | 46 (18–99) | 0.0095 |
7-day mortality | 9 (11.25%) | 1 (1.72%) | 0.0446 |
14-day mortality | 16 (20.0%) | 2 (3.44%) | 0.0043 |
28-day mortality | 32 (40.0%) | 5 (8.6%) | <0.0001 |
90-day mortality | 39 (48.7%) | 9 (15.5%) | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gjurašin, B.; Jeličić, M.; Kutleša, M.; Papić, N. The Impact of Nonalcoholic Fatty Liver Disease on Severe Community-Acquired Pneumonia Outcomes. Life 2023, 13, 36. https://doi.org/10.3390/life13010036
Gjurašin B, Jeličić M, Kutleša M, Papić N. The Impact of Nonalcoholic Fatty Liver Disease on Severe Community-Acquired Pneumonia Outcomes. Life. 2023; 13(1):36. https://doi.org/10.3390/life13010036
Chicago/Turabian StyleGjurašin, Branimir, Mia Jeličić, Marko Kutleša, and Neven Papić. 2023. "The Impact of Nonalcoholic Fatty Liver Disease on Severe Community-Acquired Pneumonia Outcomes" Life 13, no. 1: 36. https://doi.org/10.3390/life13010036
APA StyleGjurašin, B., Jeličić, M., Kutleša, M., & Papić, N. (2023). The Impact of Nonalcoholic Fatty Liver Disease on Severe Community-Acquired Pneumonia Outcomes. Life, 13(1), 36. https://doi.org/10.3390/life13010036