Elevated Fasting Glucose and C-Reactive Protein Levels Predict Increased All-Cause Mortality after Elective Transcatheter Aortic Valve Implantation
Abstract
:1. Introduction
2. Materials and Methods
3. Statistical Analysis
4. Results
4.1. Clinical Characteristics
4.2. Outcomes
5. Discussion
6. Study Limitations
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AS | aortic stenosis |
BG | fasting blood glucose |
CRP | high sensitivity C-reactive protein |
DM | diabetes mellitus |
EF | ejection fraction |
eGFR | estimated glomerular filtration rate |
IDDM | insulin-dependent diabetes mellitus |
NIDDM | noninsulin-dependent diabtes mellitus |
PARTNER | Placement of AoRtic TraNscathetER Valve |
SE | self-expandable |
TAVI | transcatheter aortic valve implantation |
TF | transfemoral |
References
- Vahanian, A.; Beyersdorf, F.; Praz, F.; Milojevic, M.; Baldus, S.; Bauersachs, J.; Capodanno, D.; Conradi, L.; De Bonis, M.; De Paulis, R.; et al. 2021 ESC/EACTS Guidelines for the management of valvular heart disease. Eur. Heart J. 2021, 43, 561–632. [Google Scholar] [CrossRef] [PubMed]
- Saji, M.; Tobaru, T.; Higuchi, R.; Mahara, K.; Takamisawa, I.; Iguchi, N.; Doi, S.; Okazaki, S.; Tamura, H.; Takanashi, S.; et al. Usefulness of the Transcatheter Aortic Valve Replacement Risk Score to Determine Mid-Term Outcomes. Circ. J. 2019, 83, 1755–1761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, A.; Sato, K.; Narayanswami, J.; Banerjee, K.; Andress, K.; Lokhande, C.; Mohananey, D.; Anumandla, A.K.; Khan, A.R.; Sawant, A.C.; et al. The Current Society of Thoracic Surgeons Model Reclassifies Mortality Risk in Patients Undergoing Transcatheter Aortic Valve Replacement. J. Am. Coll. Cardiol. 2018, 71 (Suppl. 11), A2007. [Google Scholar] [CrossRef]
- Nashef, S.A.; Roques, F.; Sharples, L.D.; Nilsson, J.; Smith, C.; Goldstone, A.R.; Lockowandt, U. EuroSCORE II. Eur. J. Cardio-Thorac. Surg. 2012, 41, 734–744. [Google Scholar] [CrossRef] [Green Version]
- Roques, F.; Michel, P.; Goldstone, A.R.; Nashef, S.A. The logistic EuroSCORE. Eur. Heart J. 2003, 24, 881–882. [Google Scholar] [CrossRef]
- O’Brien, S.M.; Shahian, D.M.; Filardo, G.; Ferraris, V.A.; Haan, C.K.; Rich, J.B.; Normand, S.-L.T.; DeLong, E.R.; Shewan, C.M.; Dokholyan, R.S.; et al. The Society of Thoracic Surgeons 2008 cardiac surgery risk models: Part 2 isolated valve surgery. Ann. Thorac. Surg. 2009, 88, S23–S42. [Google Scholar] [CrossRef]
- Donahoe, S.M.; Stewart, G.C.; McCabe, C.H.; Mohanavelu, S.; Murphy, S.A.; Cannon, C.P.; Antman, E.M. Diabetes and Mortality Following Acute Coronary Syndromes. JAMA 2007, 298, 765–775. Available online: https://jamanetwork.com/journals/jama/fullarticle/208441 (accessed on 2 March 2022). [CrossRef] [Green Version]
- Halkos, M.E.; Kilgo, P.; Lattouf, O.M.; Puskas, J.D.; Cooper, W.A.; Guyton, R.A.; Thourani, V.H. The Effect of Diabetes Mellitus on In-Hospital and Long-Term Outcomes After Heart Valve Operations. Ann. Thorac. Surg. 2010, 90, 124–130. Available online: www.sts.org/ (accessed on 5 March 2022). [CrossRef]
- Chorin, E.; Finkelstein, A.; Banai, S.; Aviram, G.; Barkagan, M.; Barak, L.; Keren, G.; Steinvil, A. Impact of Diabetes Mellitus and Hemoglobin A1C on Outcome after Transcatheter Aortic Valve Implantation. Am. J. Cardiol. 2015, 116, 1898–1903. [Google Scholar] [CrossRef]
- Goel, R.; Power, D.; Tchetche, D.; Chandiramani, R.; Guedeney, P.; Claessen, B.E.; Sartori, S.; Cao, D.; Meneveau, N.; Tron, C.; et al. Impact of diabetes mellitus on short term vascular complications after TAVR: Results from the BRAVO-3 randomized trial. Int. J. Cardiol. 2019, 297, 22–29. [Google Scholar] [CrossRef]
- Conrotto, F.; D’Ascenzo, F.; Giordana, F.; Salizzoni, S.; Tamburino, C.; Tarantini, G.; Presbitero, P.; Barbanti, M.; Gasparetto, V.; Mennuni, M.; et al. Impact of diabetes mellitus on early and midterm outcomes after transcatheter aortic valve implantation (from a multicenter registry). Am. J. Cardiol. 2014, 113, 529–534. Available online: https://pubmed.ncbi.nlm.nih.gov/24315111/ (accessed on 5 March 2022). [CrossRef] [PubMed]
- Ando, T.; Takagi, H.; Briasoulis, A.; Umemoto, T. Does diabetes mellitus impact prognosis after transcatheter aortic valve implantation? Insights from a meta-analysis. J. Cardiol. 2017, 70, 484–490. [Google Scholar] [CrossRef] [PubMed]
- Lindman, B.R.; Pibarot, P.; Arnold, S.V.; Suri, R.M.; McAndrew, T.C.; Maniar, H.S.; Zajarias, A.; Kodali, S.; Kirtane, A.J.; Thourani, V.H.; et al. Transcatheter versus surgical aortic valve replacement in patients with diabetes and severe aortic stenosis at high risk for surgery: An analysis of the PARTNER trial (Placement of Aortic Transcatheter Valve). J. Am. Coll. Cardiol. 2014, 63, 1090–1099. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mendez-Bailon, M.; Lorenzo-Villalba, N.; Muñoz-Rivas, N.; De Miguel-Yanes, J.M.; de Miguel-Díez, J.; Comín-Colet, J.; Hernandez-Barrera, V.; Garcia, R.J.; Lopez-De-Andres, A. Transcatheter aortic valve implantation and surgical aortic valve replacement among hospitalized patients with and without type 2 diabetes mellitus in Spain (2014–2015). Cardiovasc. Diabetol. 2017, 16, 144. [Google Scholar] [CrossRef] [Green Version]
- Matsumoto, S.; Ohno, Y.; Miyamoto, J.; Ikari, Y.; Tada, N.; Naganuma, T.; Yamawaki, M.; Yamanaka, F.; Shirai, S.; Mizutani, K.; et al. Impact of diabetes mellitus on outcome after transcatheter aortic valve replacement: Identifying high-risk diabetic population from the OCEAN-TAVI registry. Catheter. Cardiovasc. Interv. 2021, 98, E1058–E1065. Available online: https://onlinelibrary.wiley.com/doi/full/10.1002/ccd.29960 (accessed on 6 March 2022). [CrossRef]
- Ritsinger, V.; Jensen, J.; Ohm, D.; Omerovic, E.; Koul, S.; Fröbert, O.; Erlinge, D.; James, S.; Lagerqvist, B.; Norhammar, A. Elevated admission glucose is common and associated with high short-term complication burden after acute myocardial infarction: Insights from the VALIDATE-SWEDEHEART study. Diabetes Vasc. Dis. Res. 2019, 16, 582–584. [Google Scholar] [CrossRef]
- Gorshtein, A.; Shimon, I.; Shochat, T.; Amitai, O.; Akirov, A. Long-term outcomes in older patients with hyperglycemia on admission for ischemic stroke. Eur. J. Intern. Med. 2018, 47, 49–54. Available online: https://pubmed.ncbi.nlm.nih.gov/28974329/ (accessed on 6 March 2022). [CrossRef]
- Björk, M.; Melin, E.O.; Frisk, T.; Thunander, M. Admission glucose level was associated with increased short-term mortality and length-of-stay irrespective of diagnosis, treating medical specialty or concomitant laboratory values. Eur. J. Intern. Med. 2020, 75, 71–78. Available online: https://pubmed.ncbi.nlm.nih.gov/31982283/ (accessed on 4 April 2022). [CrossRef] [Green Version]
- Hoffmann, J.; Mas-Peiro, S.; Berkowitsch, A.; Boeckling, F.; Rasper, T.; Pieszko, K.; De Rosa, R.; Hiczkiewicz, J.; Burchardt, P.; Fichtlscherer, S.; et al. Inflammatory signatures are ssociated with increased mortality after transfermoral transcatheter aortic vale implantation. ESC Heart Fail. 2020, 7, 2597–2610. [Google Scholar] [CrossRef]
- Katkat, F.; Kalyoncuoglu, M.; Ozcan, S.; Tugrul, S.; Abanus, H.; Ince, O.; Balli, M.; Sahin, I.; Okuyan, E. C-reactive Protein to Albumin Ratio as a Novel Inflammatory-Based Marker for 30-day Mortality in Patiets Undergoing Transcatheter Aortic Valve Replacement. Braz. J. Cardiovasc. Surg. 2022, 37, 292–300. [Google Scholar] [CrossRef]
- Immè, S.; Todaro, D.; Manna, A.L. Transcatheter Aortic Valve Implantation: Medtronic CoreValve Evolut R. In Percutaneous Treatment of Left Side Cardiac Valves; Springer: Cham, Switzerland, 2018; pp. 385–404. [Google Scholar]
- American Diabetes Association. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes—2021. Diabetes Care 2021, 44 (Suppl. 1), S15–S33. [Google Scholar] [CrossRef] [PubMed]
- Kappetein, A.P.; Head, S.J.; Généreux, P.; Piazza, N.; Van Mieghem, N.M.; Blackstone, E.H.; Brott, T.G.; Cohen, D.J.; Cutlip, D.E.; van Es, G.A.; et al. Updated standardized endpoint definitions for transcatheter aortic valve implantation: The Valve Academic Research Consortium-2 consensus document. J. Am. Coll. Cardiol. 2012, 60, 1438–1454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abramowitz, Y.; Jilaihawi, H.; Chakravarty, T.; Mangat, G.; Maeno, Y.; Kazuno, Y.; Takahashi, N.; Kawamori, H.; Cheng, W.; Makkar, R.R. Impact of diabetes mellitus on outcomes after transcatheter aortic valve implantation. Am. J. Cardiol. 2016, 117, 1636–1642. [Google Scholar] [CrossRef] [PubMed]
- Abawi, M.; Rozemeijer, R.; Agostoni, P.; van Jaarsveld, R.C.; van Dongen, C.S.; Voskuil, M.; Kraaijeveld, A.O.; Doevendans, P.A.F.M.; Stella, P.R. Effect of body mass index on clinical outcome and all-cause mortality in patients undergoing transcatheter aortic valve implantation. Neth. Heart J. 2017, 25, 498–509. [Google Scholar] [CrossRef] [PubMed]
- Goel, R.; Sartori, S.; Cao, D.; Claessen, B.E.; Baber, U.; Chandiramani, R.; Nicolas, J.; Roumeliotis, A.; Power, D.; Chandrasekhar, J.; et al. Impact of diabetes mellitus on female subjects undergoing transcatheter aortic valve implantation: Insights from the WIN-TAVI international registry. Int. J. Cardiol. 2021, 322, 65–69. [Google Scholar] [CrossRef] [PubMed]
- Banovic, M.; Athithan, L.; McCann, G.P. Aortic stenosis and diabetes mellitus: An ominous combination. Diabetes Vasc. Dis. Res. 2019, 16, 310–323. Available online: https://pubmed.ncbi.nlm.nih.gov/30623669/ (accessed on 7 April 2022). [CrossRef]
- Mani, P.; Puri, R.; Schwartz, G.G.; Nissen, S.E.; Shao, M.; Kastelein, J.J.; Menon, V.; Lincoff, A.M.; Nicholls, S.J. Association of Initial and Serial C-Reactive Protein Levels with Adverse Cardiovascular Events and Death After Acute Coronary Syndrome: A Secondary Analysis of the VISTA-16 Trial. JAMA Cardiol. 2019, 4, 314–320. Available online: https://pubmed.ncbi.nlm.nih.gov/30840024/ (accessed on 8 April 2022). [CrossRef]
All Patients N = 560 | No DM N = 357 | All DM N = 203 | NIDDM N = 150 | IDDM N = 53 | p-Value * | |
---|---|---|---|---|---|---|
Age (years) mean ± SD | 79.97 ± 6.2 | 80.63 ± 6.19 | 79.97 ± 6.2 | 79.3 ± 6.19 | 77.45 ± 6.09 | <0.001 |
Male gender (%) | 41.07% | 37.54% | 47.29% | 48.67% | 43.4% | 0.063 |
BMI (kg/m2) mean ± SD | 27.85 ± 5.52 | 27.03 ± 5.13 | 29.31 ± 5.9 | 29.22 ± 6.12 | 29.6 ± 5.26 | 0.003 |
EuroSCORE II mean ± SD | 5.73 ± 5.68 | 5.43 ± 5.31 | 6.27 ± 6.24 | 5.89 ± 5.85 | 7.35 ± 7.24 | 0.172 |
STS mortality score | 5.01 ± 3.84 | 4.75 ± 3.87 | 5.46 ± 3.77 | 5.39 ± 3.85 | 5.65 ± 3.56 | 0.008 |
NYHA class mean ± SD | 2.93 ± 0.76 | 2.93 ±0.77 | 2.93 ±0.73 | 2.91 ±0.74 | 2.98 ±0.74 | 0.83 |
Pre-TAVI-EF (%) mean ± SD | 53.96 ± 16.12 | 54.27 ± 16.49 | 53.4 ± 15.47 | 52.66 ± 16.1 | 55.54 ± 13.41 | 0.481 |
Pre-TAVI aortic valve max gradient (mmHg) mean ± SD | 79.25 ± 25.65 | 81.56 ± 26.1 | 75.23 ± 24.38 | 75.82 ± 25.1 | 73.57 ± 22.37 | 0.017 |
Pre-TAVI aortic valve mean gradient (mmHg) mean ± SD | 49.74 ± 16.61 | 51.34 ± 17.13 | 46.96 ± 15.3 | 47.19 ± 15.51 | 46.32 ± 14.8 | 0.015 |
Pre-TAVI aortic valve area (cm2) mean ± SD | 0.55 ± 0.16 | 0.55 ± 0.17 | 0.55 ± 0.15 | 0.54 ± 0.16 | 0.58 ± 0.14 | 0.22 |
Fasting blood glucose level on admission (mmol/L) mean ± SD | 6.99 ± 2.53 | 6.13 ± 1.16 | 8.51 ± 3.42 | 8.34 ± 3.23 | 9.01 ± 3.88 | <0.001 |
Heart rate on admission (/min) mean ± SD | 74.81 ± 14.52 | 74.51 ± 14.17 | 75.32 ± 15.12 | 74.75 ± 12.67 | 76.94 ± 20.59 | 0.914 |
Creatinine on admission (ųmol/L) mean ± SD | 113.89 ± 39.85 | 109.56 ± 36.43 | 121.49 ± 44.3 | 124.15 ± 45.89 | 113.95 ± 38.85 | 0.001 |
eGFR on admission (ml/min) mean ± SD | 49.25 ± 11.27 | 50.34 ± 10.51 | 47.31 ± 12.29 | 46.86 ± 12.58 | 48.62 ± 11.44 | 0.036 |
White blood cell count (G/L) mean ± SD | 8.1 ± 6.27 | 8.0 ± 6.72 | 8.28 ± 5.39 | 8.27 ± 6.07 | 8.31 ± 2.74 | 0.035 |
CRP on admission (mg/L) mean ± SD | 8.43 ± 13.59 | 9.42 ± 15.18 | 6.71 ± 10.02 | 5.62 ± 7.53 | 10.0 ± 14.9 | 0.101 |
Triglyceride level on admission (mmol/L) mean ± SD | 1.57 ± 0.92 | 1.5 ± 0.96 | 1.7 ± 0.84 | 1.72 ± 0.79 | 1.64 ± 0.99 | 0.001 |
Total cholesterol on admission (mmol/L) mean ± SD | 4.54 ± 3.26 | 4.56 ± 1.33 | 4.51 ± 5.12 | 4.64 ± 5.85 | 4.12 ± 1.16 | <0.001 |
Hypertension | 90.34% | 88.52% | 93.56% | 91.28% | 100% | 0.028 |
Atrial Fibrillation | 42.22% | 40.62% | 45.05% | 44.3% | 47.17% | 0,557 |
Coronary artery disease | 70.48% | 68.35% | 74.26% | 71.81% | 81.13% | 0.115 |
Prior PCI | 32.02% | 29.41% | 36.63% | 36.24% | 37.74% | 0.209 |
Prior CABG | 11.45% | 8.4% | 16.83% | 14.77% | 22.64% | 0.003 |
Prior myocardial infarction | 16.46% | 13.73% | 21.29% | 18.12% | 30.19% | 0.009 |
Porcelain Aorta | 3.76% | 3.64% | 3.96% | 4.03% | 3.77% | 0.943 |
Previous aortic valve implantation | 2.15% | 1.68% | 2.97% | 2.68% | 3.77% | 0.335 |
Peripheral arterial disease | 10.73% | 8.96% | 13.86% | 13.42% | 15.09% | 0.188 |
Carotid disease | 30.05% | 28.29% | 33.17% | 31.54% | 37.74% | 0.337 |
Previous stroke (CVA) | 7.51% | 6.72% | 8.91% | 7.38% | 13.21% | 0.247 |
COPD | 17.95% | 19.44% | 15.35% | 16.11% | 13.21%% | 0.431 |
History of PM/ICD implantation | 11.96% | 11.76% | 12.32% | 12.67% | 11.32% | 0.949 |
All patients N = 560 | No DM N = 357 | All DM N = 203 | NIDDM N = 150 | IDDM N = 53 | p-Value * | |
---|---|---|---|---|---|---|
30-day mortality | 5.18% | 3.08% | 8.87% | 8% | 11.32% | 0.008 |
1-year mortality | 16.61% | 14.85% | 19.7% | 19.33% | 20.75% | 0.323 |
2-year mortality | 34.29% | 32.21% | 37.93% | 39.33% | 33.96% | 0.304 |
Pre-TAVI dilatation | 13.86% | 15.59% | 10.95% | 12.84% | 5.66% | 0.133 |
Post-TAVI dilatation | 22.97% | 25.71% | 18.23% | 20.67% | 11.32% | 0.05 |
need for second valve implantation | 2.88% | 3.41% | 1.97% | 2% | 1.89% | 0.79 |
Post-procedural bleeding | 19.21% | 19.77% | 18.23% | 19.33 | 15.09% | 0.722 |
Vascular complication | 17.3% | 16.38% | 18.91% | 19.59% | 16.98% | 0.685 |
Need for Vascular surgery | 3.58% | 3.94% | 2.96% | 2.67% | 3.77% | 0.774 |
Need for transfusion | 29.26% | 29.1% | 29.56% | 32.67% | 20.75% | 0.26 |
Tamponade during/after TAVI | 2.34% | 2.26% | 2.48% | 2.01% | 3.77% | 0.693 |
Need for emergency cardiac surgery | 1.97% | 1.94% | 1.97% | 1.33% | 3.77% | 0.5 |
Need for PM implantation | 17.32% | 18.49% | 15.27% | 18% | 7.55% | 0.141 |
New Renal insufficiency after TAVI | 3.05% | 2.54% | 3.94% | 4.67% | 1.89% | 0.443 |
Major Stroke after TAVI | 1.97% | 1.69% | 2.49% | 2.67% | 1.89% | 0.717 |
A: 30-Day Mortality | B: 24-Month Mortality | ||||||
---|---|---|---|---|---|---|---|
Hazard Ratio | p-Value | Confidence Interval | Hazard Ratio | p-Value | CI | ||
DM: yes | 5.378 | 0.024 | 1.24–23.25 | DM: yes | 0.905 | 0.662 | 0.58–1.42 |
Age + 1 | 0.990 | 0.848 | 0.9–1.09 | Age + 1 | 1.031 | 0.072 | 0.99–1.07 |
BMI + 1 | 0.966 | 0.568 | 0.86–1.09 | BMI + 1 | 0.987 | 0.503 | 0.95–1.03 |
Pre-TAVI EF (%) + 1% | 1.011 | 0.614 | 0.97–1.05 | Pre-TAVI EF (%) + 1% | 0.986 | 0.042 | 0.97–0.99 |
Pre-TAVI aortic mean gradient (mmHg) + 1 | 1.003 | 0.874 | 0.96–1.05 | Pre-TAVI aortic valve mean gradient (mmHg) + 1 | 0.997 | 0.637 | 0.98–1.01 |
Pre-TAVI kreatinin (Umol/L) + 1 | 0.993 | 0.399 | 0.98–1.01 | Pre-TAVI kreatinin (Umol/L) + 1 | 1.002 | 0.218 | 0.99–1.01 |
BG (mmol/L) + 1 | 1.088 | 0.332 | 0.92–1.29 | BG (mmol/L) + 1 | 1.040 | 0.347 | 0.96–1.13 |
CRP (mg/L) + 1 | 1.014 | 0.473 | 0.98–1.05 | CRP (mg/L) + 1 | 1.019 | 0.003 | 1.01–1.03 |
IDDM: yes | 0.629 | 0.670 | 0.75–5.31 | IDDM: yes | 0.937 | 0.859 | 0.46–1.91 |
Age + 1 | 0.983 | 0.741 | 0.89–1.09 | Age + 1 | 1.031 | 0.071 | 0.99–1.07 |
BMI + 1 | 0.990 | 0.866 | 0.88–1.11 | BMI + 1 | 0.986 | 0.449 | 0.95–1.02 |
Pre-TAVI EF (%) + 1% | 1.008 | 0.713 | 0.97–1.05 | Pre-TAVI EF (%) + 1% | 0.986 | 0.043 | 0.97–0.99 |
Pre-TAVI aortic mean gradient (mmHg) + 1 | 0.998 | 0.933 | 0.96–1.04 | Pre-TAVI aortic valve mean gradient (mmHg) + 1 | 0.997 | 0.657 | 0.98–1.01 |
Pre-TAVI kreatinin (Umol/L) + 1 | 0.995 | 0.543 | 0.98–1.01 | Pre-TAVI kreatinin (Umol/L) + 1 | 1.002 | 0.239 | 0.998–1.01 |
BG (mmol/L) + 1 | 1.208 | 0.015 | 1.04–1.41 | BG (mmol/L) + 1 | 1.034 | 0.394 | 0.96–1.03 |
CRP (mg/L) + 1 | 1.007 | 0.730 | 0.97–1.04 | CRP (mg/L) + 1 | 1.019 | 0.002 | 1.01–1.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dekany, G.; Keresztes, K.; Bartos, V.P.; Csenteri, O.; Gharehdaghi, S.; Horvath, G.; Ahres, A.; Heesch, C.M.; Pinter, T.; Fontos, G.; et al. Elevated Fasting Glucose and C-Reactive Protein Levels Predict Increased All-Cause Mortality after Elective Transcatheter Aortic Valve Implantation. Life 2023, 13, 54. https://doi.org/10.3390/life13010054
Dekany G, Keresztes K, Bartos VP, Csenteri O, Gharehdaghi S, Horvath G, Ahres A, Heesch CM, Pinter T, Fontos G, et al. Elevated Fasting Glucose and C-Reactive Protein Levels Predict Increased All-Cause Mortality after Elective Transcatheter Aortic Valve Implantation. Life. 2023; 13(1):54. https://doi.org/10.3390/life13010054
Chicago/Turabian StyleDekany, Gabor, Katalin Keresztes, Vince P. Bartos, Orsolya Csenteri, Sara Gharehdaghi, Gergely Horvath, Abdelkrim Ahres, Christian M. Heesch, Tunde Pinter, Geza Fontos, and et al. 2023. "Elevated Fasting Glucose and C-Reactive Protein Levels Predict Increased All-Cause Mortality after Elective Transcatheter Aortic Valve Implantation" Life 13, no. 1: 54. https://doi.org/10.3390/life13010054
APA StyleDekany, G., Keresztes, K., Bartos, V. P., Csenteri, O., Gharehdaghi, S., Horvath, G., Ahres, A., Heesch, C. M., Pinter, T., Fontos, G., Satish, S., & Andreka, P. (2023). Elevated Fasting Glucose and C-Reactive Protein Levels Predict Increased All-Cause Mortality after Elective Transcatheter Aortic Valve Implantation. Life, 13(1), 54. https://doi.org/10.3390/life13010054