Unravelling the Morphological, Physiological, and Phytochemical Responses in Centella asiatica L. Urban to Incremental Salinity Stress
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Experimental Design
2.2. Growth Measurement
2.3. Total Chlorophyll Content Measurement
2.4. Electrolyte Leakage (EC) Measurement
2.5. Determination of Hydrogen Peroxide (H2O2)
2.6. Estimation of Ionic Content
2.7. Determination of Total Phenolic Content
2.8. Determination of Total Flavonoid Content
2.9. Determination of Total Antioxidant Activity
2.10. Statistical Analysis
3. Results
3.1. Plant Growth and Biomass Production
3.2. Total Chlorophyll Content
3.3. Electrolyte Leakage
3.4. Hydrogen Peroxide (H2O2)
3.5. Shoot and Root Na+ and Cl− Content
3.6. Phytochemical Content
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Prakash, V.; Jaiswal, N.; Srivastava, M. A review on medicinal properties of Centella asiatica. Asian J. Pharm. Clin. Res. 2017, 10, 69–74. [Google Scholar] [CrossRef] [Green Version]
- Gohil, K.J.; Patil, J.A.; Gajjar, A.K. Pharmacological review on Centella asiatica: A potential herbal cure-all. IJPST 2010, 72, 546–556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahajan, M.; Kuiry, R.; Pal, P.K. Understanding the consequence of environmental stress for accumulation of secondary metabolites in medicinal and aromatic plants. J. Appl. Res. Med. Aromat. Plants 2020, 18, 100255. [Google Scholar] [CrossRef]
- Shokat, S.; Großkinsky, D.K. Tackling Salinity in Sustainable Agriculture—What Developing Countries May Learn from Approaches of the Developed World the saline Global Area under salinity (Million Hectares). Sustainability 2019, 11, 4558. [Google Scholar] [CrossRef] [Green Version]
- Deinlein, U.; Stephan, A.B.; Horie, T.; Luo, W.; Xu, G.; Schroeder, J.I. Plant salt-tolerancemechanisms. Trends Plant Sci. 2014, 19, 371–379. [Google Scholar] [CrossRef] [Green Version]
- Apel, K.; Hirt, H. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 2004, 55, 373–399. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.; Javed, M.A.; Jahan, N.; Manan, F. A Short Review on the Development of Salt Tolerant Cultivars in Rice. Int. J. Publ. Health Sci. 2016, 5, 201–212. [Google Scholar]
- Ksouri, R.; Megdiche, W.; Koyro, H.W.; Abdelly, C. Responses of halophytes to environmental stresses with special emphasis to salinity. Adv. Bot. Res. 2010, 53, 117–145. [Google Scholar]
- Huang, H.; Ulla, H.F.; Zhou, D.X.; Yi, M.; Zhao, Y. Mechanisms of ROS Regulation of Plant Development and Stress Responses. Front. Plant Sci. 2019, 10, 800. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Raihan, M.R.H.; Masud, A.A.C.; Rahman, K.; Nowroz, F.; Rahman, M.; Nahar, K.; Fujita, M. Regulation of Reactive Oxygen Species and Antioxidant Defense in Plants under Salinity. Int. J. Mol. Sci. 2021, 22, 9326. [Google Scholar] [CrossRef]
- Bistgania, Z.E.; Hashemi, M.; Michelle, D.C.; Lyle, C.; Filippo, M.; Reza, M. Effect of salinity stress on the physiological characteristics, phenolic compounds and antioxidant activity of Thymus vulgaris L. and Thymus daenensis Celak. Ind. Crops Prod. 2019, 135, 311–320. [Google Scholar] [CrossRef]
- Linić, I.; Šamec, D.; Grúz, J.; Vujčić Bok, V.; Strnad, M.; Salopek-Sondi, B. Involvement of Phenolic Acids in Short-Term Adaptation to Salinity Stress is Species-Specific among Brassicaceae. Plants 2019, 8, 155. [Google Scholar] [CrossRef] [PubMed]
- Bahcesula, R.B.; Yildirim, E.D.; Karaçocuk, M.; Kulak, M.; Karaman, S. Seed priming with melatonin effects on growth, essential oil compounds and antioxidant activity of basil (Ocimum basilicum L.) under salinity stress. Ind. Crops Prod. 2020, 146, 112165. [Google Scholar] [CrossRef]
- Bourgou, S.; Ksouri, R.; Bellila, A.; Skandrani, I.; Falleh, H.; Marzouk, B. Phenolic composition and biological activities of Tunisian Nigella sativa L. shoots and roots. C. R. -Biol 2008, 331, 48–55. [Google Scholar] [CrossRef]
- Naikoo, M.I.; Dar, M.I.; Raghib, F.; Jaleel, H.; Ahmad, B.; Rain, A.; Khan, F.A.; Naushin, F. Chapter 9-Role and Regulation of Plants Phenolics in Abiotic Stress Tolerance: An Overview. In Plant Signaling Molecules; Woodhead Publishing: Sawston, UK, 2019; pp. 157–168. [Google Scholar]
- Sarker, U.; Oba, S. The Response of Salinity Stress-Induced, A. tricolor to Growth, Anatomy, Physiology, Non-Enzymatic and Enzymatic Antioxidants. Front. Plant Sci. 2020, 11, 559876. [Google Scholar] [CrossRef]
- Razieh, K.; Ahmad, A.; Maibody, M.S.A.M. Polyphenols, Flavonoids, and Antioxidant Activity Involved in Salt Tolerance in Wheat, Aegilops cylindrica and Their Amphidiploids. Front. Plant Sci. 2021, 12, 646221. [Google Scholar]
- Santander, C.; Vidal, G.; Ruiz, A.; Vidal, C.; Cornejo, P. Salinity Eustress Increases the Biosynthesis and Accumulation of Phenolic Compounds That Improve the Functional and Antioxidant Quality of Red Lettuce. Agronomy 2022, 12, 598. [Google Scholar] [CrossRef]
- Pandley, S.K.; Singh, H. A simple, cost- effective method for leaf area estimation. J. Bot. 2011, 20, 658240. [Google Scholar]
- Acosta-Motos, J.R.; álvarez, S.; Hernández, J.A.; Sánchezblanco, M.J. Irrigation of Myrtus communis plants with reclaimed water: Morphological and physiological responses to different levels of salinity. J. Hortic. Sci. Biotechnol. 2014, 89, 487–494. [Google Scholar] [CrossRef] [Green Version]
- Lutts, S.; Kinet, J.M.; Bouharmont, J. Changes in plant response to NaCl during development of rice (Oryza sativa L.) varieties differing in salinity resistance. J. Exp. Bot. 1995, 46, 1843–1852. [Google Scholar] [CrossRef]
- Velioglu, Y.S.; Mazza, G.; Gao, L.; Oomah, B.D. Antioxidant activity and total phenolics in selected fruits, vegetables and grain products. J. Agric. Food Chem. 1998, 46, 4113–4117. [Google Scholar] [CrossRef]
- Zhishen, J.; Mengcheng, T.; Jianming, W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999, 64, 555–559. [Google Scholar] [CrossRef]
- Shimada, K.; Fujikawa, Y.K.; Nakamura, T. Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. J. Agric. Food Chem. 1992, 40, 945–948. [Google Scholar] [CrossRef]
- He, J.; You, X.; Qin, L. High Salinity Reduces Plant Growth and Photosynthetic Performance but Enhances Certain Nutritional Quality of C4 Halophyte Portulaca oleracea L. Grown Hydroponically Under LED Lighting. Front. Plant Sci. 2021, 12, 651341. [Google Scholar] [CrossRef] [PubMed]
- Reginato, M.; Cenzano, A.M.; Arslan, I.; Furlán, A.; Varela, C.; Cavallin, V.; Papenbrock, J.; Luna, V. Na2SO4 and NaCl salts differentially modulate the antioxidant systems in the highly stress tolerant halophyte Prosopis strombulifera. Plant Physiol. Biochem. 2021, 167, 748–762. [Google Scholar] [CrossRef]
- Sogoni, A.; Jimoh, M.O.; Kambizi, L.; Laubscher, C.P. The Impact of Salt Stress on Plant Growth, Mineral Composition, and Antioxidant Activity in Tetragonia decumbens Mill.: An Underutilized Edible Halophyte in South Africa. Horticulturae 2021, 7, 140. [Google Scholar] [CrossRef]
- Hasegawa, P.M.; Bressan, R.A.; Zhu, J.K.; Bohnert, H.J. Plant cellular and molecular responses to high salinity. Annu. Rev. Plant Physiol. Plant Mol. Biol. 2000, 51, 463–499. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Guo, Y. Elucidating the molecular mechanisms mediating plant salt-stress responses. New Phytol. 2018, 217, 523–539. [Google Scholar] [CrossRef] [Green Version]
- Burslem, D.F.R.; Grubb, P.J.; Turner, I.M. Responses to stimulated drought and elevated nutrient supply among shade- tolerant tree seedling of lowland tropical forest in Singapore. Biotropia 1996, 28, 636–648. [Google Scholar] [CrossRef]
- Omami, E.N.; Hammes, P.S.; Robbertse, P.J. Differences in salinity tolerance for growth and water-use efficiency in some amaranth (Amaranthus spp.) genotypes, N.Z.J. Crop Hortic. Sci. 2006, 34, 11–22. [Google Scholar] [CrossRef]
- Tattini, M.; Remorini, D.; Pinelli, P.; Agati, G.; Saracini, E.; Traversi, M.L.; Rossano, M. Morpho-anatomical, physiological and biochemical adjustments in response to root zone salinity stress and high solar radiation in two Mediterranean evergreen shrubs, Myrtus communis and Pistacia lentiscus. New Phytol. 2006, 170, 779–794. [Google Scholar] [CrossRef] [PubMed]
- Banakar, M.H.; Amiri, H.; Sarafraz Ardakani, M.R.; Ranjbar, G.H. Susceptibility and tolerance of fenugreek (Trigonella foenumgraceum L.) to salt stress: Physiological and biochemical inspections. Environ. Exp. Bot. 2022, 194, 104748. [Google Scholar] [CrossRef]
- Karimi, R.; Ebrahimi, M.; Amerian, M. Abscisic acid mitigates NaCl toxicity in grapevine by influencing phytochemical compounds and mineral nutrients in leaves. Sci. Hortic. 2021, 288, 110336. [Google Scholar] [CrossRef]
- Sasan, M.S.; Akbar, K.; Filippo, M. Photosynthesis and chlorophyll fluorescence of Iranian licorice (Glycyrrhiza glabra l.) accessions under salinity stress. Front. Plant Sci. 2022, 13, 984944. [Google Scholar]
- Hoang, L.H.; de Guzman, C.C.; Cadiz, N.M.; Tran, D.H. Physiological and phytochemical responses of red amaranth (Amaranthus tricolor L.) and green amaranth (Amaranthus dubius L.) to different salinity levels. Legum 2019, 43, 206–211. [Google Scholar] [CrossRef]
- Akhter, N.; Aqeel, M.; Shahnaz, M.M.; Alnusairi, G.S.; Alghanem, S.M.; Kousar, A.; Hashem, M.; Kanwal, H.; Alamri, S.; Ilyas, A. Physiological homeostasis for ecological success of Typha (Typha domingensis Pers.) populations in saline soils. Physiol. Mol. Biol. Plants 2021, 27, 687–701. [Google Scholar] [CrossRef]
- Shin, Y.K.; Bhandari, S.R.; Jo, J.S.; Song, J.W.; Cho, M.C.; Yang, E.Y.; Lee, J.G. Response to Salt Stress in Lettuce: Changes in Chlorophyll Fluorescence Parameters, Phytochemical Contents, and Antioxidant Activities. Agronomy 2020, 10, 1627. [Google Scholar] [CrossRef]
- Zhang, L.; Ma, H.; Chen, T.; Pen, J.; Yu, S.; Zhao, X. Morphological and Physiological Responses of Cotton (Gossypium hirsutum L.) Plants to Salinity. PLoS ONE 2014, 9, e112807. [Google Scholar] [CrossRef] [Green Version]
- Zahra, N.; Al Hinai, M.S.; Hafeez, M.B.; Rehman, A.; Wahid, A.; Siddique, K.H.M.; Farooq, M. Regulation of photosynthesis under salt stress and associated tolerance mechanisms. Plant Physiol. Biochem. 2022, 178, 55–69. [Google Scholar] [CrossRef]
- Farhat, N.; Kouas, W.; Braun, H.P.; Debez, A. Stability of thylakoid protein complexes and preserving photosynthetic efficiency are crucial for the successful recovery of the halophyte Cakile maritima from high salinity. Plant Physiol. Biochem. 2021, 166, 177–190. [Google Scholar] [CrossRef]
- Naheed, R.; Aslam, H.; Kanwal, H.; Farhat, F.; Mohammad, I.A.G.; Amina, A.M.A.; Dilfuza, J.; Mohammad, J.A.; Sehar, S.; Muhammad, A.; et al. Growth attributes, biochemical modulations, antioxidant enzymatic metabolism and yield in Brassica napus varieties for salinity tolerance. Saudi J. Biol. Sci. 2021, 28, 5469–5479. [Google Scholar] [CrossRef]
- Abdallah, M.M.S.; El Sebai, T.N.; Ramadan, A.A.E.M.; El-Bassiouny, H.M.S. 2020. Physiological and biochemical role of proline, trehalose, and compost on enhancing salinity tolerance of quinoa plant. Bull Natl. Res. Cent. 2020, 44, 96. [Google Scholar] [CrossRef]
- Ahanger, M.A.; Qin, C.; Maodong, Q.; Dong, X.X.; Ahmad, P.; Abd_Allah, E.F.; Zhang, L. Spermine application alleviates salinity induced growth and photosynthetic inhibition in Solanum lycopersicum by modulating osmolyte and secondary metabolite accumulation and differentially regulating antioxidant metabolism. Plant Physiol. Biochem. 2019, 144, 1–13. [Google Scholar] [CrossRef]
- ElYacoubi, H.; Mouhssine, F.; Imtara, H.; Ouallal, I.; Ech-cheddadi, S.; Koutoua, A.; Lagzouli, M.; Alotaibi, B.S.; Alkamaly, O.; Parvez, M.K.; et al. Insight into Membrane Stability and Physiological Responses of Selected Salt-Tolerant and Salt-Sensitive Cell Lines of Troyer Citrange (Citrus sinensis [L.] x Citrus trifoliata [L.] Raf.) under Salt Stress. Sustainability 2022, 14, 9583. [Google Scholar] [CrossRef]
- Behdad, A.; Mohsenzadeh, S.; Azizi, M. Growth, leaf gas exchange and physiological parameters of two Glycyrrhiza glabra L. populations subjected to salt stress condition. Rhizosphere 2021, 17, 100319. [Google Scholar] [CrossRef]
- Demidchik, V.; Straltsova, D.; Medvedev, S.S.; Pozhvanov, G.A.; Sokolik, A.; Yurin, V. Stress-induced electrolyte leakage: The role of K+-permeable channels and involvement in programmed cell death and metabolic adjustment. J. Exp. Bot. 2014, 65, 1259–1270. [Google Scholar] [CrossRef]
- Tavakkoli, E.; Rengasamy, P.; McDonald, G.K. High concentrations of Na+ and Cl– ions in soil solution have simultaneous detrimental effects on growth of faba bean under salinity stress. J. Exp. Bot. 2010, 61, 4449–4459. [Google Scholar] [CrossRef]
- Tejera, N.A.; Soussi, M.; Lluch, C. Physiological and nutritional indicators of tolerance to salinity in chickpea plants growing under symbiotic conditions. Environ. Exp. Bot. 2006, 58, 17–24. [Google Scholar] [CrossRef]
- Greenway, H.; Munns, R. Mechanisms of salt tolerance in nonhalophytes. Annu. Rev. Plant Physiol. 1980, 31, 149–190. [Google Scholar] [CrossRef]
- Wang, C.F.; Han, G.L.; Qiao, Z.Q.; Li, Y.X.; Yang, Z.R.; Wang, B.S. Root Na+ Content Negatively Correlated to Salt Tolerance Determines the Salt Tolerance of Brassica napus L. Inbred Seedlings. Plants 2022, 11, 906. [Google Scholar] [CrossRef]
- Farooq, M.; Ahmad, R.; Shahzad, M.; Sajjad, Y.; Hassan, A.; Shah, M.M.; Naz, S.; Ali Khan, S. Differential variations in total flavonoid content and antioxidant enzymes activities in pea under different salt and drought stresses. Sci. Hortic. 2021, 287, 110258. [Google Scholar] [CrossRef]
- Akram, W.; Yasin, N.A.; Shah, A.A.; Khan, W.U.; Li, G.; Ahmad, S.; Ahmed, S.; Hussaan, M.; Rizwan, M.; Ali, S. Exogenous application of liquiritin alleviated salt stress and improved growth of Chinese kale plants. Sci. Hortic. 2022, 294, 110762. [Google Scholar] [CrossRef]
- Nijveldt, R.J.; Nood, E.V.; van Hoorn, D.E.C.; Boelens, P.G.; van Norren, K.; van Leeuwen, P.A.M. Flavonoids: A review of probable mechanisms of action and potential applications. Am. J. Clin. Nutr. 2001, 74, 418–425. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Cao, H.; Huang, Q.; Xiao, J.; Teng, H. Absorption, metabolism and bioavailability of flavonoids: A review. Crit. Rev. Food Sci. Nutr. 2022, 62, 7730–7742. [Google Scholar] [CrossRef]
- Ates, M.T.; Yildirim, A.B.; Turker, A.U. Enhancement of alkaloid content (galanthamine and lycorine) and antioxidant activities (enzymatic and non-enzymatic) under salt stress in summer snowflake (Leucojum aestivum L.). S. Afr. J. Bot. 2021, 140, 182–188. [Google Scholar] [CrossRef]
Treatments (mM NaCl) | Number of Leaves | Leaf Area (cm2) | Specific Leaf Area (cm2 g−1) | Rosette Diameter (cm) | Petiole Length (g) |
---|---|---|---|---|---|
0 | 20.50± 5.20 a | 24.20 ± 2.61 a | 347.50 ± 54.61 a | 17.30 ± 2.53 a | 6.06 ± 1.12 a |
25 | 21.62 a ± 6.12 a | 26.00 ± 3.22 a | 358.20 ± 93.41 a | 18.12 ± 3.34 a | 6.37 ± 2.11 a |
50 | 18.40 b ± 5.50 b | 22.21 ± 5.81 b | 312.80 ± 32.63 b | 17.95 ± 2.81 a | 5.80 ± 0.92 a |
75 | 15.60 c ± 7.01 c | 17.83 ± 3.53 c | 265.20 ± 49.74 c | 15.53 ± 4.21 b | 5.11 ± 1.41 b |
100 | 11.21 d ± 3.52 d | 14.92 ± 5.11 d | 225.40 ± 77.52 d | 14.03 ± 3.14 b | 4.02 ± 0.84 b |
Treatments | Fresh Weight Leaf (g/plant) | Dry Weight Leaf (g/plant) | Fresh Weight Root (g/plant) | Dry Weight Root (g/plant) | Root/Shoot Ratio Dry Weight (g) |
---|---|---|---|---|---|
(mM NaCl) | |||||
0 | 50.33 ± 5.21 c | 10.06 ± 2.15 c | 37.55 ± 6.11 a | 7.51 ± 0.85 a | 0.40 ± 0.03 a |
25 | 52.65 ± 3.57 c | 10.53 ± 3.21 c | 33.25 ± 5.40 b | 6.65 ± 0.72 b | 0.42 ± 0.07 a |
50 | 61.00 ± 7.54 a | 12.20 ± 2.20 a | 29.65 ± 6.41 c | 5.93 ± 0.63 c | 0.49 ± 0.04 a |
75 | 57.15 ± 3.90 b | 11.42 ± 1.50 b | 22.25 ± 8.01 d | 4.45 ± 0.51 d | 0.58 ± 0.02 b |
100 | 46.71 ± 6.52 d | 9.34 ± 1.15 d | 20.25 ± 7.24 d | 4.05 ± 0.82 d | 0.80 ± 0.09 a |
Fresh Weight | Dry Weight | Total Chlorophyll Content | Electrolyte Leakage | Hydrogen Peroxide | Shoot Na+ Content | Root Na+ Content | Shoot Cl− Content | Root Cl− Content | Total Phenolic Content | Total Flavonoid Content | Antioxidant Activity | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Fresh weight | 1 | |||||||||||
Dry weight | 0.90 ** | 1 | ||||||||||
Total chlorophyll content | 0.85 ** | 0.83 ** | 1 | |||||||||
Electrolyte leakage | −0.67 ** | −0.70 ** | −0.67 ** | 1 | ||||||||
Hydrogen peroxide | −0.56 ** | −0.59 ** | −0.58 ** | 0.81 ** | 1 | |||||||
Shoot Na+ content | −0.67 ** | −0.62 ** | −0.59 ** | 0.85 ** | 0.80 ** | 1 | ||||||
Root Na+ content | −0.56 ** | −0.58 ** | −0.53 ** | 0.62 ** | 0.65 ** | 0.61 ** | 1 | |||||
Shoot Cl− content | −0.68 ** | −0.65 ** | −0.60 ** | 0.76 ** | 0.74 ** | 0.67 ** | 0.55 ** | 1 | ||||
Root Cl− content | −0.53 ** | −0.55 ** | −0.52 ** | 0.60 ** | 0.53 ** | 0.45 ** | 0.61 ** | 0.55 ** | 1 | |||
Total phenolic content | −0.54 ** | −0.67 ** | −0.51 ** | 0.31 ns | 0.23 ns | 0.65 ** | 0.52 ** | 0.50 ** | 0.52 ** | 1 | ||
Total flavonoid content | −0.70 ** | −0.64 ** | −0.54 ** | 0.75 ** | 0.62 ** | 0.83 ** | 0.61 ** | 0.65 ** | 0.67 ** | 0.84 ** | 1 | |
Antioxidant activity | −0.20 ns | −0.31 ns | −0.03 ns | −0.16 ns | −0.21 ns | 0.56 ** | 0.60 ** | 0.58 ** | 0.60 ** | −0.78 ** | −0.56 * | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoang, H.L.; Rehman, H. Unravelling the Morphological, Physiological, and Phytochemical Responses in Centella asiatica L. Urban to Incremental Salinity Stress. Life 2023, 13, 61. https://doi.org/10.3390/life13010061
Hoang HL, Rehman H. Unravelling the Morphological, Physiological, and Phytochemical Responses in Centella asiatica L. Urban to Incremental Salinity Stress. Life. 2023; 13(1):61. https://doi.org/10.3390/life13010061
Chicago/Turabian StyleHoang, Hai Ly, and Hafeezur Rehman. 2023. "Unravelling the Morphological, Physiological, and Phytochemical Responses in Centella asiatica L. Urban to Incremental Salinity Stress" Life 13, no. 1: 61. https://doi.org/10.3390/life13010061
APA StyleHoang, H. L., & Rehman, H. (2023). Unravelling the Morphological, Physiological, and Phytochemical Responses in Centella asiatica L. Urban to Incremental Salinity Stress. Life, 13(1), 61. https://doi.org/10.3390/life13010061