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Abstract: Centella asiatica L. as a traditional medicinal plant is popular in several Asian countries and
characterized by the presence of phytochemicals, such as phenolics and flavonoids. Soil salinity can
affect the growth and phytochemical composition in this plant species. In this study, the effects of
incremental soil salinity (0, 25, 50, 75, and 100 mM NaCl) on growth, physiological characteristics,
total phenolic and total flavonoid contents, including the antioxidant activity of Centella asiatica L.,
were evaluated under greenhouse conditions. Salinity stress reduced growth, biomass production,
and total chlorophyll contents, while increasing electrolyte leakage, Na+ and Cl− contents in the
shoots and roots. With the increase of salt concentration, total phenolic, total flavonoid content and
antioxidant activities were increased. The results showed that centella can tolerate saline conditions
up to 100 mM NaCl. Na+ exclusion from the roots, and that increases of phytochemical content in the
shoots were related to the salt tolerance of this species.
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1. Introduction

Centella asiatica L. Urban (centella) as a medicinal plant of the Apiaceae family that
has been used to treat a number of diseases, including varicose veins, certain eczemas,
hypertonic scars, and keloids [1]. Centella is also considered a valuable plant in the
cosmetics and pharmaceutical industries. As a leafy vegetable, this species is consumed
as a juice blend in many Asian countries including Vietnam and Malaysia. The medicinal
properties of centella are determined by a variety of phytochemicals such as phenolics,
flavonoids, and terpenes [2]. The concentration of these compounds is influenced by several
environmental stress factors, including salinity [3].

Salinity as an environmental stress factor affects arable lands worldwide, causing
an annual monetary loss of approximately $27.3 billion to the agricultural industry [4].
Excessive salt concentration reduces the water potential, resulting in osmotic stress and
an increase in the toxic accumulation of sodium and chloride in plant cells. Ionic toxicity
and osmotic stress disrupt photosynthetic functions and reduce growth of plants [5]. This
results in the accumulation of reactive oxygen species (ROS), including hydrogen peroxide
(H2O2), superoxide anions (O2•−), singlet oxygen (1O2), and hydroxyl radicals (OH•),
resulting in protein, DNA, and lipid damages [6]. The extent of the damage depends on
the type, variety, and growth stage of the plant [7].

Plants have evolved antioxidant defense systems to reduce oxidative damage from
salinity stress. Phenolic compounds play a major role in scavenging free radicals [8] by
acting as hydrogen or electron donors that stabilize and delocalize unpaired electrons
or chelate metal ions, preventing the generation of ROS [9]. Plants with higher antiox-
idant levels have an increased tolerance to damages by ROS [10]. Recent studies have
shown various changes in antioxidant compounds when plants are subjected to salinity.
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Salinity increased the total phenolic content in Thymus vulgaris L. [11] and Brassica oleracea
var. acephala [12]. However, higher salt levels reduced the phenolic content of Ocimum
basilicum L. [13] and Nigella sativa [14]. The significant correlation among phenolic content,
antioxidant activity, and salt tolerance is well documented in literature [15]. For example,
Sarker et al. [16] reported that salinity stress enhanced total phenolic, total flavonoid, and
antioxidant activity of amaranth. Razieh et al. [17] also observed that phenolic content
and antioxidant activity were significantly increased by salt stress in wheat. Santander
et al. [18] determined that the greatest total phenolic content and antioxidant activity in
lettuce prevailed at 50 mM NaCl treatment.

Despite numerous studies reporting the responses of plants to saline stress, there is
limited research available on responses of centella to incremental salinity. The present
study, therefore, determined the growth and biomass production of centella under saline
conditions and their effects on ionic uptake, phytochemical content, and antioxidant activity.

2. Materials and Methods
2.1. Plant Materials and Experimental Design

Seeds of Centella asiatica L. were collected from the Lucky Seed Company, Vietnam.
The seeds were sown in trays containing a mixture of coconut fiber and sand. At the third
leaf stage, seedlings were transplanted into garden soil-filled, plastic pots (20 × 18 × 10 cm)
containing 2.5 kg soil. The soil had a pH of 5.5, 1.3 ECe, 35% organic matter, 0.5 mg L−1 Na+,
0.88 mg L−1 Cl−, 0.65% N, 0.71% K2O, and 0.62% P2O5. The study was conducted in a
greenhouse in Huong Tra Town, Thua Thien Hue Province, Vietnam, from February to
November 2021.

The NaCl was applied as: 0, 25, 50, 75 and 100 mM. The experiment design was
a completely randomized block (CRB) design with three replicates, and each replicate
included 15 plants. One seedling was transplanted per pot. The soil was drenched with 25,
50, 75, and 100 mM NaCl after transplanting. NaCl was stepped up in daily increments of
25 mM until reaching the final concentration of each treatment. No additional nutrients or
fertilizers were added. The experiment was terminated 45 days after transplantation. The
plants were evaluated for plant growth, as well as phytochemical and ionic analyses.

2.2. Growth Measurement

Plant phenotypes, including the number of leaves, rosette diameter, petiole length,
total leaf area, and specific leaf area were recorded. The millimeter graph paper method
was used to measure total leaf area per plant [19]. At the end of experiment, shoots and
roots were sampled, oven-dried at 60 ◦C for 60 h, and weighted.

2.3. Total Chlorophyll Content Measurement

Two hundred mg of fresh centella leaves were chopped and ground into fine powder in
5 mL 60% acetone (v/v). The extractant was filtered, and then the diluted acetone was added
to make up the 20 mL final volume. The supernatant was recorded spectrophotometrically
at 663 and 645 nm, and the formula given by Lichtenthaler (1987) was used to calculate the
total chlorophyll content:

Total chlorophyll = 7.15A663 + 18.71A645

2.4. Electrolyte Leakage (EC) Measurement

The method described by Lutt et al. [20] was used to determine electrolyte leakage.
The top 4th leaf was collected and thoroughly rinsed with distilled water to remove
contamination. The samples were put into stoppered vials containing 10 mL of distilled
water and then incubated at 25 ◦C on a shaker at 100 rpm for 24 h. After incubation, the
electrical conductivity of the bathing solution (EC1) was immediately measured. After
this, the same leaf samples were placed in an autoclaved at 120 ◦C for 20 min, and again, a
reading EC2 was measured at room temperature using the portable meter HI993310 (Hanna
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Instrument Company, Woonsocket, RI, USA). The electrolyte leakage was measured as a
ratio of EC1/EC2 and expressed as a percentage.

2.5. Determination of Hydrogen Peroxide (H2O2)

Hydrogen peroxide was determined by using the potassium iodide (KI) method.
Three mL leaf extract supernatant was mixed with 0.5 mL trichloroacetic acid (TCA)
(0.1%), 0.5 mL potassium phosphate buffer (100 mM), and 2 mL reagent 1 mL KI (1 M KI
w/v in fresh double-distilled water). A blank probe was made using trichloroacetic acid
(0.1%) in the absence of leaf extract. The reaction was developed for 1 h in darkness and
absorbance measured at 390 nm. A standard curve was used to estimate the amount of
hydrogen peroxide.

2.6. Estimation of Ionic Content

After harvesting, nine plants per treatment were separated into aboveground parts
and roots. They were washed with de-ionized water, dried at 80 ◦C in 48 h, and stored
at room temperature for further processing. The Na+ and Cl− in roots and shoots were
determined by using the method described by AcostaMotos et al. [21].

2.7. Determination of Total Phenolic Content

Total phenolic content was determined following Velioglu et al. [22]. Plant extracted
solution (0.5 mL) was added to diluted Folin–Ciocalteu reagent (2 N, 5 mL), and then
4 mL of 1 M Na2CO3 and 1 mL water were added to the mixture. The leaf extracts were
left to stand for 90 min at 37 ◦C, and then the phenolic content was determined by using
colorimetry at 765 nm. The results were expressed as gallic acid equivalents per milligram
(mg GAE g−1 DW). The gallic acid solutions were prepared in methanol: water (50:50, v/v)
as 0, 50, 100, 150, 200, and 250 mg mL−1 for standard curve (R2 = 0.99).

2.8. Determination of Total Flavonoid Content

The flavonoid content was quantified following the method of Zhishen et al. [23].
The 0.5 mL of plant extract solution was added to 1.0 mL methanol, 0.5 mL of aluminum
chloride, and 0.5 mL of 1 M potassium acetate and allowed to stand for 30 min. The ab-
sorbance of the reaction mixture was detected at 415 nm with a UV/Vis spectrophotometer
(Shimazdu UV-2600, Kyoto, Japan). The total flavonoid content was calculated as quercetin
from a calibration curve prepared by using quercetin solutions of different concentrations
from 12.5 to 100 mg mL−1 in methanol.

2.9. Determination of Total Antioxidant Activity

The 1,1-Diphenyl -2-picryl-hydrazyl (DPPH) radical degradation method was used
to estimate antioxidant activity [24]. The plant extracts (1 mL) were added at different
concentrations with volumes equal to the methanolic solution of 10 mL DPPH (100 µM) in
a test tube. The mixture was shaken vigorously and was then allowed to stand in the dark.
After 15 min, the absorbance was detected at 517 nm as a lower IC50 value corresponding
to its higher antioxidant activity. This measurement was repeated three times. The IC50
values indicate the concentration of the sample.

2.10. Statistical Analysis

The data was subjected to analysis of variance (ANOVA) using the Statistical Package
for the Social Science (SPSS) software version 12. If the F-test was found significant, mean
comparison was performed using the least significant difference (LSD) test at 5% level.

3. Results
3.1. Plant Growth and Biomass Production

Salinity significantly reduced the centella growth at all NaCl concentrations except
25 mM (Table 1). Plant growth was detrimentally reduced at 100 mM NaCl. High salinity
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level (100 mM) reduced the number of leaves, leaf area, and specific leaf area by 45%, 38.4%
and 35%, respectively. Low and moderate salinity levels (25 and 50 mM NaCl) had no
significant effect on the rosette diameter and petiole length of centella, while high NaCl
concentration (100 mM) reduced these up to 18.9% and 33.6%, respectively.

Table 1. Morphological parameters of Centella asiatica L. as affected by different salinity levels. The
experiment was carried out in triplicate. The data are presented as treatment mean ± SD. Different
letters in the same column represent significant differences at the p < 0.05.

Treatments
(mM NaCl) Number of Leaves Leaf Area (cm2)

Specific Leaf Area
(cm2 g−1)

Rosette Diameter
(cm) Petiole Length (g)

0 20.50± 5.20 a 24.20 ± 2.61 a 347.50 ± 54.61 a 17.30 ± 2.53 a 6.06 ± 1.12 a

25 21.62 a ± 6.12 a 26.00 ± 3.22 a 358.20 ± 93.41 a 18.12 ± 3.34 a 6.37 ± 2.11 a

50 18.40 b ± 5.50 b 22.21 ± 5.81 b 312.80 ± 32.63 b 17.95 ± 2.81 a 5.80 ± 0.92 a

75 15.60 c ± 7.01 c 17.83 ± 3.53 c 265.20 ± 49.74 c 15.53 ± 4.21 b 5.11 ± 1.41 b

100 11.21 d ± 3.52 d 14.92 ± 5.11 d 225.40 ± 77.52 d 14.03 ± 3.14 b 4.02 ± 0.84 b

Plant dry weight also decreased with incremental salinity, except at 25 mM NaCl
(Table 2). The decrease in dry weight ranged from 5.9 to 13.9% with highest reduction of
19.7% at 100 mM NaCl compared with the control.

Table 2. Biomass production of Centella asiatica L. as affected by different salinity levels. The
experiment was carried out in triplicate. The data are presented as treatment mean ± SD. Different
letters in the same column represent significant differences at the p < 0.05.

Treatments Fresh Weight Leaf
(g/plant)

Dry Weight Leaf
(g/plant)

Fresh Weight
Root (g/plant)

Dry Weight Root
(g/plant)

Root/Shoot Ratio
Dry Weight (g)(mM NaCl)

0 50.33 ± 5.21 c 10.06 ± 2.15 c 37.55 ± 6.11 a 7.51 ± 0.85 a 0.40 ± 0.03 a

25 52.65 ± 3.57 c 10.53 ± 3.21 c 33.25 ± 5.40 b 6.65 ± 0.72 b 0.42 ± 0.07 a

50 61.00 ± 7.54 a 12.20 ± 2.20 a 29.65 ± 6.41 c 5.93 ± 0.63 c 0.49 ± 0.04 a

75 57.15 ± 3.90 b 11.42 ± 1.50 b 22.25 ± 8.01 d 4.45 ± 0.51 d 0.58 ± 0.02 b

100 46.71 ± 6.52 d 9.34 ± 1.15 d 20.25 ± 7.24 d 4.05 ± 0.82 d 0.80 ± 0.09 a

3.2. Total Chlorophyll Content

A decrease in the photosynthetic pigment content was observed in centella under salt
stress in this study (Figure 1). The total chlorophyll content decreased by 50% at 100 mM
NaCl. The highest total chlorophyll content was observed under no salinity followed by of
the plants grown under 25 and 50 mM NaCl.
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Figure 1. Total chlorophyll content of Centella asiatica L. as affected by different salinity levels. The
experiment was carried out in triplicate. Different letters represent significant differences at the p <
0.05 (FW: fresh weight).
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3.3. Electrolyte Leakage

The results showed that electrolyte leakage increased with increasing salt concentra-
tions. Minimum electrolyte leakage was found in control plants followed by 25 mM NaCl
salinity. Increasing salinity by 50 and 75 mM NaCl and increased electrolyte leakage by 2.7
and 3.4 times compared to control, respectively, while the highest increase of 4.5 times in
electrolyte leakage was found at 100 mM NaCl (Figure 2). There was also a significant and
positive relationship of electrolyte leakage with shoot Na+ (r = 0.85, p < 0.001) and root Na+

content (r = 0.62, p < 0.001) (Table 3).
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Figure 2. Electrolyte leakage of Centella asiatica L. as affected by different salinity levels. The
experiment was carried out in triplicate. Different letters represent significant differences at the
p < 0.05.

Table 3. Correlation coefficients among some morphological and physiological characteristics.

Fresh
Weight

Dry
Weight

Total
Chlorophyll

Content

Electrolyte
Leakage

Hydrogen
Peroxide

Shoot Na+

Content
Root Na+

Content
Shoot Cl−

Content
Root Cl−
Content

Total
Phenolic
Content

Total
Flavonoid
Content

Antioxidant
Activity

Fresh weight 1
Dry weight 0.90 ** 1
Total chlorophyll content 0.85 ** 0.83 ** 1
Electrolyte leakage −0.67 ** −0.70 ** −0.67 ** 1
Hydrogen peroxide −0.56 ** −0.59 ** −0.58 ** 0.81 ** 1
Shoot Na+ content −0.67 ** −0.62 ** −0.59 ** 0.85 ** 0.80 ** 1
Root Na+ content −0.56 ** −0.58 ** −0.53 ** 0.62 ** 0.65 ** 0.61 ** 1
Shoot Cl− content −0.68 ** −0.65 ** −0.60 ** 0.76 ** 0.74 ** 0.67 ** 0.55 ** 1
Root Cl− content −0.53 ** −0.55 ** −0.52 ** 0.60 ** 0.53 ** 0.45 ** 0.61 ** 0.55 ** 1
Total phenolic content −0.54 ** −0.67 ** −0.51 ** 0.31 ns 0.23 ns 0.65 ** 0.52 ** 0.50 ** 0.52 ** 1
Total flavonoid content −0.70 ** −0.64 ** −0.54 ** 0.75 ** 0.62 ** 0.83 ** 0.61 ** 0.65 ** 0.67 ** 0.84 ** 1
Antioxidant activity −0.20 ns −0.31 ns −0.03 ns −0.16 ns −0.21 ns 0.56 ** 0.60 ** 0.58 ** 0.60 ** −0.78 ** −0.56 * 1

* and **: significant difference at 5 and 1%, respectively; ns: not significant.

3.4. Hydrogen Peroxide (H2O2)

Salt stress increased hydrogen peroxide content significantly in centella. The highest
hydrogen peroxide was obtained at 100 mM NaCl (5.1 µmol g−1 FW) followed by 75
mM NaCl. The lowest hydrogen peroxide content was found in the control and were
comparable to 25 mM NaCl content. At 50 mM NaCl, the hydrogen peroxide in the centella
leaf was 4.1 µmol g−1 FW (Figure 3). There was also a significant relationship between
H2O2 content and Na+ content (Table 3).
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Figure 3. Hydrogen peroxide of Centella asiatica L. as affected by different salinity levels. The
experiment was carried out in triplicate. Different letters represent significant differences at the
p < 0.05.

3.5. Shoot and Root Na+ and Cl− Content

The presence of NaCl in the soil medium resulted in the accumulation of Na+ and Cl−

in the roots and shoots of centella, with higher accumulation found in the roots than in
the shoots (Figures 4 and 5). Incremental salinity increased the accumulation of highest
Na+ content with the highest observed in the roots at 100 mM NaCl, which was 5.7 times
greater, followed by 3 and 4.4 times at 50 mM and 75 mM NaCl salinity, respectively. A
similar trend in Na+ content was observed in the shoots. The highest Na+ in the shoot 3.8
times higher was found at 100 mM NaCl than the control.
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Figure 4. (a) Shoot and (b) root Na+ content of Centella asiatica L. as affected by different salinity
levels. The experiment was carried out in triplicate. Different letters represent significant differences
at the p < 0.05.
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Figure 5. (a) Shoot and (b) root Cl− content of Centella asiatica L. as affected by different salinity
levels. The experiment was carried out in triplicate. Different letters represent significant differences
at the p < 0.05.

3.6. Phytochemical Content

Salinity stress significantly increased the total phenolic and total flavonoid contents
of the centella (Figure 6). The highest total phenolic and flavonoid contents were found
in the plants at 75 mM NaCl. The increase in total phenolic and total flavonoid contents
augmented the antioxidant activity up to 34% when compared to the control (Figure 7). At
a high salt concentration (100 mM NaCl) their accumulation was reduced; however, it was
not significantly different from 75 mM NaCl salinity.
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Figure 6. (a) Total phenolic, (b) total flavonoid (b) of Centella asiatica L. as affected by different salinity
levels. The experiment was carried out in triplicate. Different letters represent significant differences
at the p < 0.05. (GAE: gallic acid; QE: quercetin; DW: dry weight).
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Figure 7. Antioxidant activity of Centella asiatica L. as affected by different salinity levels. The
experiment was carried out in triplicate. Different letters represent significant differences at the
p < 0.05.

4. Discussion

The results of the present study showed that centella growth was decreased by in-
cremental salinity. A similar response in plant growth was reported in Portulaca oleracea
L. [25], Prosopis strombulifera [26], and Tetragonia decumbens [27] due to salt stress. High
saline concentrations reduced growth by decreasing the uptake of water and nutrients by
the plants [28], accumulating toxic ions in the plant cells, and disrupting the metabolic path-
ways [29]. In this study, specific leaf area decreased with an increase in salinity. Burslem
et al. [30] showed that a higher leaf thickness is associated with an increase in the ratio of
mesophyll area available for the absorption of CO2 per unit leaf area, thereby enhancing
CO2 assimilation and biomass production. However, Omami et al. [31] found that CO2
assimilation decreased with increasing salinity in amaranth. They suggested that the lower
specific leaf area in salt stressed plants overloaded the leaves with inorganic and organic
solutes, thereby permitting osmotic flow but limiting the efficient use of carbon. Increase in
the leaf thickness could be an adaptation of the plant to increase intercellular space and to
counteract the decrease of transpiration [32].

The current study indicated that the root biomass decreased under high salt concentra-
tion treatments. According to Banaka et al. [33], the main reasons for reduced plant growth
and biomass under high salinity were ion toxicity and nutrient imbalance. Moreover, the
increase of soluble salts in the soil leads to an increase of osmotic pressure and a reduction
of water potential, thus reducing the water uptake by the root [34]. In this study, although
salt stress inhibited plant growth and decreased biomass production, the root/shoot dry
weight increased. This indicated that salinity affected the aboveground part more severely
than the underground part and the plant had the ability to change biomass allocation. It
means that the plants had the ability to maintain the root system while salt stress inhibited
shoot growth. This response is one of the most popular strategies of plants to adapt to
abiotic stress.

Chlorophyll content is an important factor in assessing photosynthetic activity in
plants [35]. The results showed a decrease in the total chlorophyll content of the centella
under saline conditions. Previous studies showed that the depletion of photosynthetic
pigments reducing plant growth and crop yield under saline stress was also evident from a
significant relationship between total chlorophyll content and biomass production in the
present study (r = 0.9, p < 0.001) (Table 3). This was observed in Amaranthus tricolor [36],
Typha domingensis [37], and Lactuca sativa L. [38].

There was also a negative correlation between the total chlorophyll content and
the shoot Na+ content (r = −0.67, p < 0.001), showing degradation of photosynthetic
pigments under the incremental salinity (Table 3). This leads to a reduction in biomass
production as indicated by the negative correlation between fresh weight/dry weight with
Na+ concentration (Table 3). Depletion of chlorophyll under saline conditions may be
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caused by the accumulation of toxic ions, such as Na+ and Cl− inhibiting the enzymes
function responsible for chlorophyll synthesis [39]. Zahra et al. [40] also reported that salt
stress could reduce the CO2 supplement through hydrostatic stomata closure or by changing
the mesophyll conductance. According to Farhat et al. [41], a high salt concentration may
damage the thylakoid membranes and protein modulation by inhibiting photosynthesis.
Recent studies showed that the formation of ROS disrupted the chloroplasts and ultimately
reduced the total population of Brassica napus [42], Chenopodium quinoa [43] and Solanum
lycopersicum [44].

In this study, the centella was able to maintain membrane stability under slight salt
stress (Figure 2) as evident from the electrolyte leakage which increased when the plants
were subjected to a high salt concentration. A similar response was observed by ElYacoubi
et al. [45] in ryegrass and by Behdad et al. [46] in licorice. This was mainly due to the efflux
of K+ and the flow of counter ions (Cl–, HPO4

2–, NO3
–, citrate3–, and malate2–) counter-

balancing the efflux of K+ [47]. According to Tavakkoli et al. [48], the distribution of Na+

within cells and organs may subsequently cause toxic effects on membrane permeability
and increased electrolyte leakage.

In this study, the increase of Na+ and Cl− concentrations in the tissues was accompa-
nied by salinity stress. High accumulations of Na+ and Cl− reduced plant growth. High
Na+ concentrations interfered with the absorption of K+ and Ca2+ ions and disturbed
stomatal regulation, thereby inhibiting photosynthesis and growth. High Cl− concentra-
tions caused the degradation of chlorophyll, leading to a reduction in the photosynthesis
rate [48]. However, plants have different coping mechanisms for dealing with Na+ toxicity.
Some plants transport Na+ from the roots to the leaves where it is retained in the vacuoles,
whereas others store Na+ in the roots [49]. Salt tolerance is associated with the ability to
limit the uptake and/or to transport Na+ from the root zone to aerial parts [50]. Based
on the distribution of Na+ and Cl− between shoots and roots, a similar mechanism could
occur in centella. The accumulation of Na+ and Cl− in the roots provided a mechanism
for centella to cope with salinity in the rooting medium. This mechanism reduced the
transport of Na+ and Cl− to the leaves, thereby reducing the impact of the toxic ions to
the aboveground parts of the plant. The leaves of centella are usually harvested, which is
advantageous for growing this plant in saline environments. This mechanism has also been
reported in amaranth [36] and rapeseed [51].

One of the effects of salt stress on plants is the overproduction of ROS, which leads to
oxidative stress. However, plants have evolved mechanisms to counteract the effects of
this process by producing compatible metabolites and different antioxidants [10]. Phenolic
compounds are the most abundant secondary metabolites in the plant kingdom which have
a pivotal effect in scavenging the excessive ROS. Flavonoids as a group belong to phenolic
compounds and are known to have antioxidant properties [10]. The presence of phenolics
and flavonoids in plants contributed to the prevention of cell damage by abiotic stress, as
demonstrated by several studies on peas [52] and kale [53]. These compounds neutralize the
radicals accumulated in lipids or prevent their breakdown into free radicals. Furthermore,
they can inhibit lipoxygenase activity, thus preventing lipid peroxidation [54,55]. The
result showed that there was a significant increase in the phenolic and flavonoid content in
response to salt stress. The increase in phenolic and flavonoid content indicates that they
play a significant role in the adaptation of centella to salinity as evident from a positive
correlation between total phenolic content and antioxidant activity in the present study
(Table 3). The increase in these compounds is related to their function as a non-enzyme
antioxidant to counteract the increase of ROS and hence contribute to the plant’s health
under salt stress. In the present study, antioxidant activity of the centella leaf increased
with the salt treatments, and the highest antioxidant activity was observed at 100 mM NaCl.
This finding is consistent with the important relationship that exists between antioxidant
activity and the total phenolic content in the leaves of Leucojum aestivum and Lactuca sativa
under salt stress conditions [19,56]. Although the centella was also negatively affected
by salt stress, as demonstrated by yield decline and increased accumulation of Na+ and
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Cl− ions, the study results showed an increase in phytochemicals content and antioxidant
activity in centellas. This opens the way to cultivating this plant in saline soils to boost the
production of bioactive compounds used in the pharmaceutical and cosmetics industries.
However, studies on extraction techniques for specific bioactive compounds should be
carried out to ensure the exclusion of ions and impurities.

5. Conclusions

Salinity stress caused a reduction in biomass yield and induced some physiological
and phytochemical modification in centella. The results indicated that Centella asiatica
showed moderate tolerance to severe salt stress, which was attributed to the exclusion of
Na+ and Cl− in the root to protect the aboveground plant tissues from salt toxicity and to
increase the total phenolic and flavonoid content of the centella. The centella is an herb
with a rich source of phytochemical content. Thus, the response of the centella under salt
conditions may be used to improve the production of bioactive compounds to be used in
the manufacture of pharmaceuticals, supplements, food, and cosmetics.
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