The Ratio of Monocytes to HDL-Cholesterol Is Associated with Cardiovascular Risk and Insulin Resistance in Patients with Rheumatoid Arthritis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Data Collection and Laboratory Assessments
2.3. Carotid Ultrasound Assessment
2.4. Statistical Analysis
3. Results
3.1. Demographic and Disease-Related Data
3.2. Multivariable Analysis of the Differences between Patients and Controls in Red Cells Count, Lipid Profile and Monocytes to HDL-Cholesterol Ratio
3.3. Relationship of Demographics and Disease-Related Monocytes to HDL-Cholesterol Ratio in Patients with RA
3.4. Relationship of CV Risk Parameters to MRH in Patients with RA
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviation
References
- Mateen, S.; Zafar, A.; Moin, S.; Khan, A.Q.; Zubair, S. Understanding the Role of Cytokines in the Pathogenesis of Rheumatoid Arthritis. Clin. Chim. Acta 2016, 455, 161–171. [Google Scholar] [CrossRef] [PubMed]
- Bonfiglioli, K.R.; de Medeiros Ribeiro, A.C.; Carnieletto, A.P.; Pereira, I.; Domiciano, D.S.; da Silva, H.C.; Pugliesi, A.; Pereira, L.R.; Guimarães, M.F.R.; Giorgi, R.D.N.; et al. Extra-Articular Manifestations of Rheumatoid Arthritis Remain a Major Challenge: Data from a Large, Multi-Centric Cohort. Adv. Rheumatol. 2023, 63, 34. [Google Scholar] [CrossRef] [PubMed]
- Nikiphorou, E.; De Lusignan, S.; Mallen, C.; Khavandi, K.; Roberts, J.; Buckley, C.D.; Galloway, J.; Raza, K. Haematological Abnormalities in New-Onset Rheumatoid Arthritis and Risk of Common Infections: A Population-Based Study. Rheumatology 2020, 59, 997–1005. [Google Scholar] [CrossRef] [PubMed]
- González-Gay, M.A.; González-Juanatey, C. Inflammation and Lipid Profile in Rheumatoid Arthritis: Bridging an Apparent Paradox. Ann. Rheum. Dis. 2014, 73, 1281–1284. [Google Scholar] [CrossRef]
- Ferraz-Amaro, I.; García-Dopico, J.A.; Medina-Vega, L.; González-Gay, M.A.; Díaz-González, F. Impaired Beta Cell Function is Present in Nondiabetic Rheumatoid Arthritis Patients. Arthritis Res. Ther. 2013, 15, R17. [Google Scholar] [CrossRef]
- Tejera-Segura, B.; López-Mejías, R.; De Vera-González, A.M.; Jiménez-Sosa, A.; Olmos, J.M.; Hernández, J.L.; Llorca, J.; González-Gay, M.A.; Ferraz-Amaro, I. Relationship between Insulin Sensitivity and β-Cell Secretion in Nondiabetic Subjects with Rheumatoid Arthritis. J. Rheumatol. 2019, 46, 229–236. [Google Scholar] [CrossRef]
- Ferraz-Amaro, I.; González-Juanatey, C.; López-Mejias, R.; Riancho-Zarrabeitia, L.; González-Gay, M.A. Metabolic Syndrome in Rheumatoid Arthritis. Mediat. Inflamm. 2013, 2013, 710928. [Google Scholar] [CrossRef]
- Ferraz-Amaro, I.; Corrales, A.; Atienza-Mateo, B.; Vegas-Revenga, N.; Prieto-Peña, D.; Blanco, R.; González-Gay, M. Moderate and High Disease Activity Predicts the Development of Carotid Plaque in Rheumatoid Arthritis Patients without Classic Cardiovascular Risk Factors: Six Years Follow-Up Study. J. Clin. Med. 2021, 10, 4975. [Google Scholar] [CrossRef]
- Corrales, A.; Vegas-Revenga, N.; Rueda-Gotor, J.; Portilla, V.; Atienza-Mateo, B.; Blanco, R.; Castañeda, S.; Ferraz-Amaro, I.; Llorca, J.; González-Gay, M.A. Carotid Plaques as Predictors of Cardiovascular Events in Patients with Rheumatoid Arthritis. Results from a 5-Year-Prospective Follow-up Study. Semin. Arthritis Rheum. 2020, 50, 1333–1338. [Google Scholar] [CrossRef]
- Shi, W.R.; Wang, H.Y.; Chen, S.; Guo, X.F.; Li, Z.; Sun, Y.X. The Impact of Monocyte to High-Density Lipoprotein Ratio on Reduced Renal Function: Insights from a Large Population. Biomark Med. 2019, 13, 773–783. [Google Scholar] [CrossRef]
- Yılmaz, M.; Kayançiçek, H. A New Inflammatory Marker: Elevated Monocyte to HDL Cholesterol Ratio Associated with Smoking. J. Clin. Med. 2018, 7, 76. [Google Scholar] [CrossRef] [PubMed]
- Sirin, M.C.; Korkmaz, S.; Erturan, I.; Filiz, B.; Aridogan, B.C.; Cetin, E.S.; Yildirim, M. Evaluation of Monocyte to HDL Cholesterol Ratio and Other Inflammatory Markers in Patients with Psoriasis. An. Bras. Dermatol. 2020, 95, 575–582. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Liang, C.; Lin, H.; Meng, Y.; Tang, Q.; Shi, X.; Zhang, E.; Tang, Q. Monocyte to HDL Cholesterol Ratio as a Marker of the Presence and Severity of Obstructive Sleep Apnea in Hypertensive Patients. Sci. Rep. 2021, 11, 15821. [Google Scholar] [CrossRef] [PubMed]
- Vahit, D.; Mehmet, K.A.; Samet, Y.; Hüseyin, E. Assessment of Monocyte to High Density Lipoprotein Cholesterol Ratio and Lymphocyte-to-Monocyte Ratio in Patients with Metabolic Syndrome. Biomark Med. 2017, 11, 535–540. [Google Scholar] [CrossRef]
- Wu, Q.; Mao, W. New Prognostic Factor for Hepatitis B Virus-Related Decompensated Cirrhosis: Ratio of Monocytes to HDL-Cholesterol. J. Clin. Lab. Anal. 2021, 35, e24007. [Google Scholar] [CrossRef]
- Ganjali, S.; Gotto, A.M.; Ruscica, M.; Atkin, S.L.; Butler, A.E.; Banach, M.; Sahebkar, A. Monocyte-to-HDL-Cholesterol Ratio as a Prognostic Marker in Cardiovascular Diseases. J. Cell Physiol. 2018, 233, 9237–9246. [Google Scholar] [CrossRef]
- Jiang, M.; Yang, J.; Zou, H.; Li, M.; Sun, W.; Kong, X. Monocyte-to-High-Density Lipoprotein-Cholesterol Ratio (MHR) and the Risk of All-Cause and Cardiovascular Mortality: A Nationwide Cohort Study in the United States. Lipids Health Dis. 2022, 21, 30. [Google Scholar] [CrossRef]
- Aletaha, D.; Neogi, T.; Silman, A.J.; Funovits, J.; Felson, D.T.; Bingham, C.O.; Birnbaum, N.S.; Burmester, G.R.; Bykerk, V.P.; Cohen, M.D.; et al. 2010 Rheumatoid Arthritis Classification Criteria: An American College of Rheumatology/European League Against Rheumatism Collaborative Initiative. Arthritis Rheum. 2010, 62, 2569–2581. [Google Scholar] [CrossRef]
- Wallace, T.M.; Levy, J.C.; Matthews, D.R. Use and Abuse of HOMA Modeling. Diabetes Care 2004, 27, 1487–1495. [Google Scholar] [CrossRef]
- Prevoo, M.L.L.; Van’T Hof, M.A.; Kuper, H.H.; Van Leeuwen, M.A.; Van De Putte, L.B.A.; Van Riel, P.L.C.M. Modified Disease Activity Scores That Include Twenty-eight-joint Counts Development and Validation in a Prospective Longitudinal Study of Patients with Rheumatoid Arthritis. Arthritis Rheum. 1995, 38, 44–48. [Google Scholar] [CrossRef]
- Smolen, J.S.; Breedveld, F.C.; Schiff, M.H.; Kalden, J.R.; Emery, P.; Eberl, G.; van Riel, P.L.; Tugwell, P. A Simplified Disease Activity Index for Rheumatoid Arthritis for Use in Clinical Practice. Rheumatology 2003, 42, 244–257. [Google Scholar] [CrossRef]
- Aletaha, D.; Smolen, J. The Simplified Disease Activity Index (SDAI) and the Clinical Disease Activity Index (CDAI): A Review of Their Usefulness and Validity in Rheumatoid Arthritis. Clin. Exp. Rheumatol. 2005, 23, S100–S108. [Google Scholar]
- Aletaha, D.; Ward, M.M.; Machold, K.P.; Nell, V.P.K.; Stamm, T.; Smolen, J.S. Remission and Active Disease in Rheumatoid Arthritis: Defining Criteria for Disease Activity States. Arthritis Rheum. 2005, 52, 2625–2636. [Google Scholar] [CrossRef]
- Aletaha, D.; Martinez-Avila, J.; Kvien, T.K.; Smolen, J.S. Definition of Treatment Response in Rheumatoid Arthritis Based on the Simplified and the Clinical Disease Activity Index. Ann. Rheum. Dis. 2012, 71, 1190–1196. [Google Scholar] [CrossRef]
- Visseren, F.L.J.; Mach, F.; Smulders, Y.M.; Carballo, D.; Koskinas, K.C.; Back, M.; Benetos, A.; Biffi, A.; Boavida, J.M.; Capodanno, D.; et al. 2021 ESC Guidelines on Cardiovascular Disease Prevention in Clinical Practice. Eur. J. Prev. Cardiol. 2022, 29, 5–115. [Google Scholar] [CrossRef]
- Corrales, A.; González-Juanatey, C.; Peiró, M.E.; Blanco, R.; Llorca, J.; González-Gay, M.A. Carotid Ultrasound Is Useful for the Cardiovascular Risk Stratification of Patients with Rheumatoid Arthritis: Results of a Population-Based Study. Ann. Rheum. Dis. 2014, 73, 722–727. [Google Scholar] [CrossRef]
- Touboul, P.-J.; Hennerici, M.G.; Meairs, S.; Adams, H.; Amarenco, P.; Bornstein, N.; Csiba, L.; Desvarieux, M.; Ebrahim, S.; Fatar, M.; et al. Mannheim Carotid Intima-Media Thickness Consensus (2004–2006). An Update on Behalf of the Advisory Board of the 3rd and 4th Watching the Risk Symposium, 13th and 15th European Stroke Conferences, Mannheim, Germany, 2004, and Brussels, Belgium, 2006. Cerebrovasc. Dis. 2007, 23, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Hua, L.; Dong, L.; Wu, Z.; Xue, G. The Value of the Monocyte to High-Density Lipoprotein Cholesterol Ratio in Assessing the Severity of Knee Osteoarthritis: A Retrospective Single Center Cohort Study. J. Inflamm. Res. 2023, 16, 595–604. [Google Scholar] [CrossRef] [PubMed]
- Monocyte-to-High-Density Lipoprotein Cholesterol Ratio as a Novel Inflammatory Marker in Periodontal Disease: A Pilot Study—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/36440517/ (accessed on 8 September 2023).
- Cardoso, C.R.L.; Leite, N.C.; Salles, G.F. Importance of Hematological Parameters for Micro- and Macrovascular Outcomes in Patients with Type 2 Diabetes: The Rio de Janeiro Type 2 Diabetes Cohort Study. Cardiovasc. Diabetol. 2021, 20, 133. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Chen, Z.Y.; Guo, X.L.; Tu, M. Monocyte to High-Density Lipoprotein and Apolipoprotein A1 Ratios: Novel Indicators for Metabolic Syndrome in Chinese Newly Diagnosed Type 2 Diabetes. Front. Endocrinol. 2022, 13, 935776. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Tan, Y.; Yang, Y.; Li, M.; He, X.; Lu, Y.; Shi, G.; Zhu, Y.; Nie, Y.; Li, H.; et al. Association of the Monocyte–to–High-Density Lipoprotein Cholesterol Ratio with Diabetic Retinopathy. Front. Cardiovasc. Med. 2021, 8, 707008. [Google Scholar] [CrossRef] [PubMed]
Controls | Rheumatoid Arthritis | ||
---|---|---|---|
(n = 208) | (n = 430) | p | |
Age, years | 56 ± 17 | 55 ± 10 | 0.69 |
Female, n (%) | 162 (79) | 350 (81) | 0.30 |
BMI, kg/m2 | 31 ± 3 | 29 ± 15 | 0.034 |
Cardiovascular risk factors and data | |||
Current smoker | 35 (17) | 93 (22) | 0.16 |
Obesity | 60 (29) | 137 (32) | 0.44 |
Hypertension | 85 (41) | 148 (34) | 0.11 |
Diabetes Mellitus | 39 (19) | 54 (13) | 0.031 |
Dyslipidemia | 164 (79) | 332 (77) | 0.64 |
Statins, n (%) | 58 (28) | 139 (32) | 0.26 |
Aspirin, n (%) | 16 (8) | 24 (10) | 0.061 |
Carotid ultrasound | |||
cIMT, mm | 0.696 ± 0.131 | ||
Carotid plaque, n (%) | 180 (42) | ||
Disease-related data | |||
Disease duration, years | 8 (4–15) | ||
CRP at time of study, mg/L | 2.7 (1.3–6.1) | ||
ESR at time of study, mm/1st hour | 18 (7–32) | ||
IL-6, pg/mL | 5.0 (3.2–8.6) | ||
Rheumatoid factor, n (%) | 303 (72) | ||
ACPA, n (%) | 253 (65) | ||
Swollen joints count, n | 0 (0–1) | ||
Tender joints count, n | 1 (0–4) | ||
DAS28-ESR | 3.13 ± 1.35 | ||
DAS28-CRP | 2.73 ± 1.08 | ||
SDAI | 12 (7–19) | ||
CDAI | 8 (4–14) | ||
History of extra-articular manifestations, n (%) | 38 (10) | ||
Erosions, n (%) | 166 (43) | ||
Current drugs, n (%) | |||
Prednisone | 155 (36) | ||
Prednisone doses, mg/day | 5 (3–5) | ||
NSAIDs | 194 (45) | ||
DMARDs | 373 (87) | ||
Methotrexate | 316 (73) | ||
Leflunomide | 94 (22) | ||
Hydroxychloroquine | 45 (18) | ||
Salazopyrin | 28 (7) | ||
Anti-TNF therapy | 83 (19) | ||
Tocilizumab | 23 (5) | ||
Rituximab | 7 (2) | ||
Abatacept | 12 (3) | ||
JAK inhibitors | 20 (5) |
Controls | RA Patients | ||||
---|---|---|---|---|---|
(n = 208) | (n = 430) | p | Beta Coef. (95%CI), p | ||
Univariable | Multivariable | ||||
Blood cells counts | |||||
Red blood cells, × 106/mm3 | 4.71 ± 0.45 | 4.51 ± 0.40 | <0.001 | ||
Hemoglobin, g/dL | 13.7 ± 1.4 | 13.6 ± 1.3 | 0.099 | ||
Hematocrit, % | 42.3 ± 3.8 | 41.5 ± 3.7 | 0.011 | ||
Leucocytes/mm3 | 7360 ± 1879 | 7158 ± 2144 | 0.25 | ||
Neutrophils/mm3 | 4087 ± 1459 | 4056 ± 1664 | 0.82 | ||
Lymphocytes/mm3 | 2394 ± 829 | 2232 ± 837 | 0.023 | ||
Monocytes/mm3 | 584 ± 162 | 604 ± 261 | 0.30 | ||
Eosinophils/mm3 | 233 ± 173 | 183 ± 158 | <0.001 | ||
Basophils/mm3 | 40 (30–60) | 50 (30–93) | <0.001 | ||
Platelets ×10 × 103/mm3 | 264 ± 60 | 260 ± 64 | 0.44 | ||
Lipid profile | |||||
Total cholesterol, mg/dL | 198 ± 46 | 206 ± 37 | 0.025 | ||
Triglycerides, mg/dL | 142 ± 62 | 153 ± 90 | 0.15 | ||
HDL-cholesterol, mg/dL | 53 ± 15 | 57 ± 15 | 0.004 | ||
LDL-cholesterol, mg/dL | 117 ± 37 | 119 ± 34 | 0.47 | ||
LDL:HDL cholesterol ratio | 2.33 ± 0.86 | 2.27 ± 0.96 | 0.48 | ||
Non-HDL cholesterol, mg/dL | 145 ± 41 | 150 ± 38 | 0.22 | ||
Lipoprotein (a), mg/dL | 41 (14–106) | 33 (11–103) | 0.68 | ||
Apolipoprotein A1, mg/dL | 177 ± 40 | 174 ± 29 | 0.38 | ||
Apolipoprotein B, mg/dL | 103 ± 30 | 108 ± 48 | 0.25 | ||
Apo B:Apo A1 ratio | 0.60 ± 0.18 | 0.63 ± 0.25 | 0.12 | ||
Atherogenic index | 3.9 ± 1.1 | 3.9 ± 1.3 | 0.54 | ||
Monocytes to HDL-cholesterol ratio | 12 ± 6 | 11 ± 6 | 0.18 | −0.2 (−3–2) | 0.86 |
Monocytes to HDL Cholesterol Ratio | ||||
---|---|---|---|---|
Beta Coefficient (95%CI), p | ||||
Univariable | Multivariable | |||
Age, years | 0.05 (−0.02–0.1) | 0.15 | ||
Female, n (%) | −4 (−5–2−2) | <0.001 | ||
BMI, kg/m2 | 0.02 (−0.02–0.06)) | 0.30 | ||
Cardiovascular risk factors | ||||
Current smoker | 1 (−0.2–3) | 0.099 | ||
Obesity | 2 (0.3–3) | 0.020 | ||
Hypertension | 1 (−0.2–2) | 0.093 | ||
Diabetes Mellitus | 2 (0.2–4) | 0.030 | ||
Dyslipidemia | 2 (0.4–3) | 0.013 | ||
Statins, n (%) | 0.5 (−0.8–2) | 0.44 | ||
Aspirin, n (%) | 1 (−2–4) | 0.46 | ||
Disease-related data | ||||
Disease duration, years | −0.03 (−0.1–0.04) | 0.37 | ||
CRP at time of study, mg/L | 0.04 (−0.01–0.08) | 0.15 | 0.02 (−0.02–0.08) | 0.34 |
ESR at time of study, mm/1st hour | 0.03 (0.007–0.06) | 0.013 | 0.03 (0.007–0.06) | 0.012 |
IL-6, pg/mL | 0.00006 (−0.04–0.04) | 0.99 | ||
Rheumatoid factor, n (%) | −0.4 (−2–1) | 0.59 | ||
ACPA, n (%) | −0.4 (−2–1) | 0.60 | ||
Swollen joints count, n | −0.1 (−0.5–0.3) | 0.58 | ||
Tender joints count, n | −0.1 (−0.3–0.06) | 0.19 | −0.1 (−0.3–0.06) | 0.19 |
DAS28-ESR | −0.09 (−0.5–0.4) | 0.70 | ||
DAS28-CRP | 0.07 (−0.5–0.7) | 0.81 | ||
SDAI | 0.02 (−0.02–0.06) | 0.33 | ||
CDAI | −0.02 (−0.1–0.06) | 0.66 | ||
History of extraarticular manifestations, n (%) | 0.9 (−1–3) | 0.36 | ||
Erosions, n (%) | −0.2 (−2–1) | 0.79 | ||
Current drugs, n (%) | ||||
Prednisone | −0.3 (−2–1) | 0.62 | ||
Prednisone doses, mg/day | −0.1 (−0.4–0.2) | 0.42 | ||
NSAIDs | −0.8 (−2–0.4) | 0.19 | −0.3 (−2–1) | 0.65 |
DMARDs | 0.6 (−1–2) | 0.53 | ||
Methotrexate | −0.3 (−2–1) | 0.65 | ||
Leflunomide | 0.5 (−1–2) | 0.55 | ||
Hydroxychloroquine | −0.4 (−3–2) | 0.71 | ||
Salazopyrin | −0.7 (−3–3) | 0.97 | ||
Anti-TNF therapy | 0.6 (−1–2) | 0.50 | ||
Tocilizumab | −0.5 (−3–2) | 0.70 | ||
Rituximab | −1 (−6–4) | 0.59 | ||
Abatacept | −0.04 (−4–4) | 0.99 | ||
JAK inhibitors | −0.7 (−4–2) | 0.67 |
Monocytes to HDL Cholesterol Ratio | |||||
---|---|---|---|---|---|
Beta Coefficient (95%CI), p | |||||
Univariable | Multivariable | ||||
Carotid ultrasound | |||||
cIMT, mm | 0.0696 ± 0.131 | 2 (−3–7) | 0.43 | ||
Carotid plaque, n (%) | 180 (42) | 1 (−0.1–2) | 0.074 | 0.5 (−0.9–2) | 0.48 |
SCORE2 | |||||
SCORE2, % | 3.6 (1.8–5.8) | 0.4 (0.2–0.5) | <0.001 | ||
Low or moderate risk | 282 (66) | ref. | |||
High risk | 112 (26) | 1.6 (0.2–3.0) | 0.021 | ||
Very high risk | 36 (8) | 5.3 (2.8–7.8) | <0.001 | ||
Insulin resistance indices * | |||||
Glucose, mg/dL | 87 ± 10 | 0.02 (−0.05–0.08) | 0.56 | 0.01 (−0.05–0.0006) | 0.68 |
Insulin, µU/mL | 7.7 (5.2–12.4) | 0.1 (0.08–0.2) | <0.001 | 0.1 (0.06–0.2) | <0.001 |
C-peptide, ng/mL | 2.32 (1.51–3.44) | 0.7 (0.04–1) | <0.001 | 0.6 (0.3–0.9) | <0.001 |
HOMA2-IR | 1.00 (0.66–1.56) | 1 (0.6–2) | <0.001 | 1 (0.5–2) | 0.001 |
HOMA2-S% | 118 ± 76 | −0.02 (−0.02–(−0.009)) | <0.001 | −0.01 (−0.02–(−0.005)) | 0.001 |
HOMA2-B%-C-peptide | 165 ± 75 | 0.02 (0.01–0.03) | <0.001 | 0.02 (0.009–0.03) | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romo-Cordero, A.; González-Sierra, M.; Quevedo-Abeledo, J.C.; Quevedo-Rodríguez, A.; Gómez-Bernal, F.; de Vera-González, A.; López-Mejías, R.; Jiménez-Sosa, A.; Martín-González, C.; González-Gay, M.Á.; et al. The Ratio of Monocytes to HDL-Cholesterol Is Associated with Cardiovascular Risk and Insulin Resistance in Patients with Rheumatoid Arthritis. Life 2023, 13, 1995. https://doi.org/10.3390/life13101995
Romo-Cordero A, González-Sierra M, Quevedo-Abeledo JC, Quevedo-Rodríguez A, Gómez-Bernal F, de Vera-González A, López-Mejías R, Jiménez-Sosa A, Martín-González C, González-Gay MÁ, et al. The Ratio of Monocytes to HDL-Cholesterol Is Associated with Cardiovascular Risk and Insulin Resistance in Patients with Rheumatoid Arthritis. Life. 2023; 13(10):1995. https://doi.org/10.3390/life13101995
Chicago/Turabian StyleRomo-Cordero, Alejandro, Marta González-Sierra, Juan Carlos Quevedo-Abeledo, Adrián Quevedo-Rodríguez, Fuensanta Gómez-Bernal, Antonia de Vera-González, Raquel López-Mejías, Alejandro Jiménez-Sosa, Candelaria Martín-González, Miguel Ángel González-Gay, and et al. 2023. "The Ratio of Monocytes to HDL-Cholesterol Is Associated with Cardiovascular Risk and Insulin Resistance in Patients with Rheumatoid Arthritis" Life 13, no. 10: 1995. https://doi.org/10.3390/life13101995
APA StyleRomo-Cordero, A., González-Sierra, M., Quevedo-Abeledo, J. C., Quevedo-Rodríguez, A., Gómez-Bernal, F., de Vera-González, A., López-Mejías, R., Jiménez-Sosa, A., Martín-González, C., González-Gay, M. Á., & Ferraz-Amaro, I. (2023). The Ratio of Monocytes to HDL-Cholesterol Is Associated with Cardiovascular Risk and Insulin Resistance in Patients with Rheumatoid Arthritis. Life, 13(10), 1995. https://doi.org/10.3390/life13101995