A Comprehensive Study of Techniques to Optimize the Extraction of Lipids from the Autotrophic Strain of the Microalgae Chlorella vulgaris
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Experimental Setups
2.3. Experimental Methods: Microalgae Lipid Extraction
2.3.1. General Methods
2.3.2. Grinding Study Methods
2.3.3. Microalgae-to-Solvent Ratio Study Methods
2.3.4. Microwave Study Methods
2.3.5. Sonication Study Methods
2.3.6. Temperature Study Methods
2.3.7. In Situ Transesterification Methods
2.3.8. Analytical Methods
3. Results and Discussion
3.1. Solvent Study
3.2. Grinding Study Results
3.3. Microalgae-to-Solvent Ratio Study Results
3.4. Microwave Study Results
3.5. Sonication Study Results
3.6. Temperature Study Results
3.7. In Situ Transesterification Study
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Menegazzo, M.L.; Fonseca, G.G. Biomass recovery and lipid leaching processes for microalgae biofuels production: A review. Renew. Sustain. Energy Rev. 2019, 107, 87–107. [Google Scholar] [CrossRef]
- Li, P.; Sakuragi, K.; Makino, H. Leaching techniques in sustainable biofuel production: A concise review. Fuel Process. Technol. 2019, 193, 295–303. [Google Scholar] [CrossRef]
- Deshmukh, S.; Kumar, R.; Bala, K. Microalgae biodiesel: A review on leaching, fatty acid composition, properties and effect on engine performance and emissions. Fuel Process. Technol. 2019, 191, 232–247. [Google Scholar] [CrossRef]
- Wetterwald, L.; Leybros, A.; Fleury, G.; Delrue, F.; Dimitriades-Lemaire, A.; Chambonniere, P.; Hertz, A. Supercritical CO2 extraction of neutral lipids from dry and wet Chlorella vulgaris NIES 227 microalgae for biodiesel production. J. Environ. Chem. Eng. 2023, 11, 110628. [Google Scholar] [CrossRef]
- López-Bascón, M.A.; Luque de Castro, M.D. Chapter 11—Soxhlet Extraction. In Handbooks in Separation Science, Liquid-Phase Extraction; Colin, F.P., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 327–354. ISBN 9780128169117. [Google Scholar] [CrossRef]
- Inamuddin, A.A.M.; Isloor, A.M. Extraction of lipids from algae using supercritical carbon dioxide. In Green Sustainable Process for Chemical and Environmental Engineering and Science: Supercritical Carbon Dioxide as Green Solvent; Elsevier: Amsterdam, The Netherlands, 2020; pp. 17–39. [Google Scholar]
- Cheng, M.-H.; Rosentrater, K.A. Economic feasibility analysis of soybean oil production by hexane leaching. Ind. Crops Prod. 2017, 108, 775–785. [Google Scholar] [CrossRef]
- Cheng, M.-H.; Sekhon, J.J.K.; Rosentrater, K.A.; Wang, T.; Jung, S.; Johnson, L.A. Environmental impact assessment of soybean oil production: Extruding-expelling process, hexane leaching and aqueous leaching. Food Bioprod. Process. 2018, 108, 58–68. [Google Scholar] [CrossRef]
- Potrich, E.; Miyoshi, S.C.; Machado, P.F.S.; Furlan, F.F.; Ribeiro, M.P.A.; Tardioli, P.W.; Giordano, R.L.C.; Cruz, A.J.G.; Giordano, R.C. Replacing hexane by ethanol for soybean oil leaching: Modeling, simulation, and techno-economic-environmental analysis. J. Clean. Prod. 2020, 244, 118660. [Google Scholar] [CrossRef]
- Viegas, C.V.; Hachemi, I.; Freitas, S.P.; Maki-Arvela, P.; Aho, A.; Hemming, J.; Smeds, A.; Heinmaa, I.; Fontes, F.B.; Cristina, S.P.D.; et al. A route to produce renewable diesel from algae: Synthesis and character-ization of biodiesel via in situ transesterification of Chlorella alga and its catalytic deoxygenation to renewable diesel. Fuel 2015, 155, 144–154. [Google Scholar] [CrossRef]
- Skorupskaite, V.; Makareviciene, V.; Gumbyte, M. Opportunities for simultaneous oil leaching and transesterification during biodiesel fuel production from microalgae: A review. Fuel Process. Technol. 2016, 150, 78–87. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Marhaini, M.; Man, K.L.; Syukriyah, I.; Yaleeni, K.D.; Jun, W.L.; Inn, S.T.; Sie, Y.L.; Bridgid, L.F.C.; Tony, H. Fundamental understanding of in-situ transesterification of microalgae biomass to biodiesel: A critical review. Energy Convers. Manag. 2022, 270, 116212. [Google Scholar] [CrossRef]
- Santillan-Jimenez, E.; Pace, R.; Marques, S.; Morgan, T.; McKelphin, C.; Mobley, J.; Crocker, M. Leaching, characterization, purification and catalytic upgrading of algae lipids to fuel-like hydrocarbons. Fuel 2016, 180, 668–678. [Google Scholar] [CrossRef]
- Kumar, K.S.; Prasanthkumar, S.; Ray, J.G. Experimental assessment of productivity, oil-yield and oil-profile of eight different common freshwater-blooming green algae of Kerala. Biocatal. Agric. Biotechnol. 2016, 8, 270–277. [Google Scholar] [CrossRef]
- Kumari, N.; Singh, R.K. Biofuel and co-products from algae solvent leaching. J. Environ. Manag. 2019, 247, 196–204. [Google Scholar] [CrossRef] [PubMed]
- Shi, R.; Handler, R.M.; Shonnard, D.R. Life cycle assessment of novel technologies for algae harvesting and oil leaching in the renewable diesel pathway. Algal Res. 2019, 37, 248–259. [Google Scholar] [CrossRef]
- Hossain, S.M.Z.; Al-Bastaki, N.; Alnoaimi, A.M.A.; Ezuber, H.; Razzak, S.A.; Hossain, M.M. Mathematical Modeling of Temperature Effect on Algal Growth for Biodiesel Application. In Renewable Energy and Sustainable Buildings: Selected Papers from the World Renewable Energy Congress WREC; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Lee, A.K.; Lewis, D.M.; Ashman, P.J. Disruption of microalgal cells for the leaching of lipids for biofuels: Processes and specific energy requirement. Biomass Bioenergy 2012, 46, 89–101. [Google Scholar] [CrossRef]
- Milestone, StartSYNTH Microwave Synthesis Labstation. Available online: https://ats-scientific.com/uploads/products/docs/Milestone-Start-Synth-Brochure.pdf (accessed on 14 July 2021).
- Voeller, K.; Bílek, H.; Kreft, J.; Dostálková, A.; Kozliak, E.; Kubátová, A. Thermal Carbon Analysis Enabling Comprehensive Characterization of Lignin and Its Degradation Products. ACS Sustain. Chem. Eng. 2017, 5, 10334–10341. [Google Scholar] [CrossRef]
- Lima, D.G.; Soares, V.C.D.; Ribeiro, E.B.; Carvalho, D.A.; Cardoso, E.C.V.; Rassi, F.C.; Mundim, K.C.; Rubim, J.C.; Suarez, P.A. Diesel-like fuel obtained by pyrolysis of vegetable oils. J. Anal. Appl. Pyrolysis 2004, 71, 987–996. [Google Scholar] [CrossRef]
- Van Wychen, S.; Ramirez, K.; Laurens, L.M.L. Determination of Total Lipids as Fatty Acid Methyl Esters (FAME) by In Situ Transesterification: Laboratory Analytical Procedure (LAP); U.S. Department of Energy National Renewable Energy Laboratory: Golden, CO, USA, 2016. [CrossRef]
- Yew, G.Y.; Lee, S.Y.; Show, P.L.; Tao, Y.; Law, C.L.; Nguyen, T.T.C.; Chang, J.-S. Recent advances in algae biodiesel production: From upstream cultivation to downstream processing. Bioresour. Technol. Rep. 2019, 7, 100227. [Google Scholar] [CrossRef]
- Ranjan, A.; Patil, C.; Moholkar, V.S. Mechanistic Assessment of Microalgal Lipid Leaching. Ind. Eng. Chem. Res. 2010, 49, 2979–2985. [Google Scholar] [CrossRef]
- Araujo, G.S.; Matos, L.J.B.L.; Fernandes, J.O.; Cartaxo, S.J.M.; Goncalves, L.R.B.; Fernandes, F.A.N.; Farias, W.R.L. Leaching of lipids from microalgae by ultrasound application: Prospection of the optimal leaching method. Ultrason. Sonochemistry 2012, 20, 95–98. [Google Scholar] [CrossRef]
- Menendez, J.M.B.; Arenillas, A.; Diaz, J.A.M.; Boffa, L.; Mantegna, S.; Binello, A.; Cravotto, G. Optimization of microalgae oil leaching under ultrasound and microwave irradiation. J. Chem. Technol. Biotechnol. 2013, 89, 1779–1784. [Google Scholar] [CrossRef]
- Amarni, F.; Kadi, H. Kinetics study of microwave-assisted solvent leaching of oil from olive cake using hexane: Comparison with the conventional leaching. Innov. Food Sci. Emerg. Technol. 2010, 11, 322–327. [Google Scholar] [CrossRef]
- Ramola, B.; Kumar, V.; Nanda, M.; Mishra, Y.; Tyagi, T.; Gupta, A.; Sharma, N. Evaluation, comparison of different solvent leaching, cell disruption methods and hydrothermal liquefaction of Oedogonium macroalgae for biofuel production. Biotechnol. Rep. 2019, 22, e00340. [Google Scholar] [CrossRef]
- Veeranan, T.; Kasirajaan, R.; Gurunathan, B.; Sahadevan, R. A novel approach for leaching of algal oil from marine macroalgae Ulva fasciata. Renew. Energy 2018, 127, 64–73. [Google Scholar] [CrossRef]
- Chamola, R.; Khan, M.F.; Raj, A.; Verma, M.; Jain, S. Response surface methodology based optimization of in situ trans-esterification of dry algae with methanol, H2SO4 and NaOH. Fuel 2012, 239, 511–520. [Google Scholar] [CrossRef]
- Moradi-Kheibari, N.; Ahmadzadeh, H.; Hosseini, M. Use of solvent mixtures for total lipid extraction of Chlorella vulgaris and gas chromatography FAME analysis. Bioprocess Biosyst. Eng. 2017, 40, 1363–1373. [Google Scholar] [CrossRef] [PubMed]
Compound (Source) | Quantity |
---|---|
Sodium Nitrate (Fisher Scientific, Waltham MA, USA, 7631-99-4) | 25 g |
Calcium Chloride (Fisher Scientific, C70-500) | 2.5 g |
Magnesium Sulfate Heptahydrate (Fisher Scientific, 10034-99-8) | 7.5 g |
Dipotassium Hydrogen Phosphate (Sigma Aldrich, St. Louis, MO, USA, P3786-100G) | 7.5 g |
Potassium Dihydrogen Phosphate (Fisher Scientific, 7778-77-0) | 17.5 g |
Sodium Chloride (Fisher Scientific, 7647-14-5) | 2.5 g |
Zinc Sulfate Heptahydrate (Fisher Scientific, AC205982500) | 8.8 mg |
Manganese Chloride Tetrahydrate (Fisher Scientific, M87-100) | 1.4 mg |
Molybdenum Trioxide (Fisher Scientific, ICN15254880) | 0.71 mg |
Copper Sulfate Pentahydrate (Fisher Scientific, 60-004-59) | 1.6 mg |
Cobalt Nitrate Hexahydrate (Fisher Scientific, AC213091000) | 0.49 mg |
Ethylenediaminetetraacetic Acid (Sigma Aldrich, ED2SSS-50G) | 9.3 mg |
Acidified Iron Stock Solution (Fisher Scientific, 7782-63-0) | 3 mg |
Boric Acid (Fisher Scientific, A74-500) | 5.7 mg |
Distilled Water | 1 L |
Experimental Set | Grinding Study | Solvent Screening Study | Microalgae to Solvent Ratio Study I | Microalgae to Solvent Ratio Study II | Microalgae to Solvent Ratio Study III | In Situ Transesterification Study | Microwave Study | Temperature Study |
---|---|---|---|---|---|---|---|---|
Number of Experiments | 15 | 36 | 15 | 15 | 5 | 4 | 15 | 12 |
Microalgae Type 1 | UoL | UoL, UND | UoL | UoL | UoL | UoL | UoL | UoL |
Solvent 2 | M, E, H | M, E, H, C, AC, BD | M, E, H | M, E, H | M | M, E, H, C, AC, BD | M, E, H | M |
Mill Grinding Speed (RPM) | 200, 300, 400, 500, 600 | 250 | 500 | 500 | 500 | 500 | 500 | 500 |
Microalgae-to-Solvent Ratio (gbiomass/mL) | 1:10 | 1:10 | 1:3, 1:7, 1:10, 1:11, 1:15, 1:19 | 1:7, 1:8, 1:9, 1:10, 1:11 | 1:8, 1:8.5, 1:9,1: 9.5, 1:10 | 1:10 | 1:10 | 1:10 |
Temperature (°C) | 25 | 50 | 80 | 25 | 25 | 50 | 25, 50, 80, 110 140 | 25, 50, 80, 110, 140, 150, 160, 170, 180, 190, 200, 210, 20, 230 |
Microwave-Assisted 3 | - | + | + | - | - | - | + | - |
Temperature-Assisted 3 | - | + | - | - | - | + | - | + |
Sonicator-Assisted 3 | - | + | - | + | + | + | - | - |
Transesterification (HCl Addition) 3 | - | - | - | - | - | + | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Foerster, I.; Seames, W.; Oleksik, J.; Kubatova, A.; Ross, A. A Comprehensive Study of Techniques to Optimize the Extraction of Lipids from the Autotrophic Strain of the Microalgae Chlorella vulgaris. Life 2023, 13, 1997. https://doi.org/10.3390/life13101997
Foerster I, Seames W, Oleksik J, Kubatova A, Ross A. A Comprehensive Study of Techniques to Optimize the Extraction of Lipids from the Autotrophic Strain of the Microalgae Chlorella vulgaris. Life. 2023; 13(10):1997. https://doi.org/10.3390/life13101997
Chicago/Turabian StyleFoerster, Ian, Wayne Seames, Jasmine Oleksik, Alena Kubatova, and Andrew Ross. 2023. "A Comprehensive Study of Techniques to Optimize the Extraction of Lipids from the Autotrophic Strain of the Microalgae Chlorella vulgaris" Life 13, no. 10: 1997. https://doi.org/10.3390/life13101997
APA StyleFoerster, I., Seames, W., Oleksik, J., Kubatova, A., & Ross, A. (2023). A Comprehensive Study of Techniques to Optimize the Extraction of Lipids from the Autotrophic Strain of the Microalgae Chlorella vulgaris. Life, 13(10), 1997. https://doi.org/10.3390/life13101997