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Abstract: Artificial intelligence (AI) has been an important topic within radiology. Currently, Al is
used clinically to assist with the detection of lesions through detection systems. However, a number
of recent studies have demonstrated the increased value of neural networks in radiology. With an
increasing number of screening requirements for cancers, this review aims to study the accuracy of the
numerous Al models used in the detection and diagnosis of breast, lung, and prostate cancers. This
study summarizes pertinent findings from reviewed articles and provides analysis on the relevancy to
clinical radiology. This study found that whereas Al is showing continual improvement in radiology,
Al alone does not surpass the effectiveness of a radiologist. Additionally, it was found that there are
multiple variations on how Al should be integrated with a radiologist’s workflow.

Keywords: radiology; artificial intelligence; machine learning; breast cancer; prostate cancer; lung
cancer; cancer screening

1. Introduction

Artificial intelligence (Al) refers to the ability for a machine to simulate human in-
telligence to perform tasks involving decision making and problem solving. As in other
industries, Al technologies have found widespread applications in a variety of health-
care tasks including, but not limited to, analyzing unstructured clinical notes, developing
clinical decision support systems, innovating surgical robotics, and establishing patient
engagement and adherence. Within radiology, Al applications have been limited to specific
image recognition tasks associated with patient management [1]. Table 1 provides a brief
definition of Al and other Al-related terms referenced.

Two of the more common Al technologies in healthcare are machine learning (ML)
and deep learning (DL). Machine learning refers to the ability for a machine to develop
algorithms that make predictions on data based on trends and patterns from previous
data [2]. Deep learning is a subset of machine learning that involves layered learning
and model learning via neural networks and allows for predictions in unstructured envi-
ronments [3]. One of the more common architectures of the Al models seen in imaging
analysis is convolutional neural networks (CNN) or deep convolutional neural networks
(DCNN). CNN s allow for the generalization of features and the extraction of such features
in a superior way to prior deep learning models [4]. This allows CNNs to be efficient and
effective in finding patterns and building models from such patterns.

The use of Al within radiological imaging is growing rapidly, especially in the field of
radiomics [5]. Radiomics refers to the extraction of features from images such as shape, size,
and texture [6]. These features can be utilized in an algorithm to provide diagnostic support
for a number of conditions. One of the conditions where radiomics is heavily utilized is
cancer imaging [7,8]. The use of radiomics can be varied from its use in screening to its
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utilization in predicting tumor burden and therapy guidance. The three most common
cancer diagnoses in the United States are lung, breast, and prostate cancer [9]. The diagnosis
and management of such cancers are multifaceted with the involvement of radiologists,
oncologists, and surgeons. Radiomics and Al may assist in the diagnosis and management
of each of these cancers. The use of radiomics and Al in cancers has been seen for nodule
classification, tumor description, metastatic potential, and treatment response [10].

Table 1. Definition of terms relating to artificial intelligence.

Term

Abbreviation Definition

Artificial Intelligence

An overarching term referring to the ability for a machine to

Al perform intelligent tasks such as decision-making.

A subset of artificial intelligence referring to the ability for a

Machine Learning ML machine to make predictions based on trends and patterns.
. A subset of machine learning referring to the utilization of
Deep Learning DL .
neural networks to develop predictions.
A type of algorithm utilized in deep learning that relies on a
Convolutional Neural Network CNN feed forward mechanism and is utilized in object identification.

DCNNSs and RCNNs are specific types of CNNs.

Despite the wide use potential of radiomics and the numerous types of Al software
developed, few software packages have been clinically validated and even fewer have
been implemented in a radiologist’s workflow. The clinical validity of Al, however, has
seen growth in lung cancer screening programs [11]. Radiomics in prostate cancer imaging
has been used for the detection of tumor lesions, lymph node metastasis, and patient risk
stratification [12]. Meanwhile, Al’s use in breast cancer has been seen most predominantly
in breast cancer mammography screening programs. However, the use of Al has also been
seen in magnetic resonance (MR) imaging and ultrasound imaging [13,14].

The goal of this article is to provide a review of the available technologies as well as
the present studies testing the validity and accuracy of Al software in breast, prostate, and
lung cancer screening and diagnosis.

2. Materials and Methods

A literature review was conducted between the dates of 1 April 2023 and 30 July 2023
by three independent reviewers on PubMed and Google Scholar. The following individual
terms were entered as search criteria: “artificial intelligence”, “Al”, “machine learning”,
“deep learning”, “radiomics”, “prostate”, “breast”, “lung”, “cancer”, “screening”, “mam-
mogram”, “MRI”, “CT”, “ultrasound”, “diagnosis system”, “decision system”, “CNN”,
and “deep learning”. The same terms were searched in both databases.

From the searched criteria, only articles published in 2018 or later were included for
initial review. A 5-year period (2018-2023) was utilized, as the continuous growth rate of
Al research in radiology is approximately 50% for this period. This indicates a significant
growth in Al research during this time frame [15]. The abstracts and manuscripts were
analyzed for relevance to goals of the current review article. Articles that did not include
the measures of sensitivity, specificity, or accuracy of an AI model were not included for
review. Articles were additionally only included if statistical measures were performed,
and size of the study was appropriate. No restrictions were made regarding the location of
where the study was performed.

No statistical analysis was performed by the authors of this article. All included
statistical measures were taken from the respective cited manuscripts. Multiple measures
of accuracy were included within the manuscript and described within the relevant section.
Because all data and studies were sourced from differing imaging databases, the lack of
standardization and inability to therefore perform statistical analysis represents a limitation
of this review.
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3. Breast Cancer Screening

The use of Al to assist in lesion detection has been seen in breast lesion imaging.
Al’s use has been seen in mammography, magnetic resonance imaging (MRI), and the
ultrasonography of breasts. Mammography is the most utilized imaging modality for breast
imaging and plays a pivotal role in the early detection and diagnosis of breast cancer [16].
MRI has been used as a screening tool in patients with dense tissue mass or those with
a high risk of developing breast cancer [17]. Ultrasonography may also be used for the
screening of high-risk patients who are unable to tolerate MRI [18]. The greatest number
of ML and DL models have been developed for mammography. Although some models
have also been developed for MRI and ultrasound, the clinical utility of these tools has yet
to be fully determined. Al tools can be used to assist in either the detection or diagnosis
of breast lesions. Detection systems do not make a diagnosis but rather mark areas of the
image that seem suspicious [19]. The goal of these systems is to point the radiologist to
areas of high concern (such as calcifications, masses, or parenchymal distortions) and notify
them that such areas may need extra attention in reading. Diagnosis systems take detection
systems one step further and classify suspicious findings as either benign or malignant
lesions [20]. Detection systems typically work by processing and enhancing the given
image, followed by selecting and extracting features through pattern recognition. These
steps involve the use of neural networks or ML or DL algorithms developed from training
models [21]. Decision systems follow the above processes but use additional algorithms to
classify the lesions.

A study comparing several different Al algorithms found that from 12 models,
10 models were over 90% accurate in diagnosing breast lesions as either benign or ma-
lignant. The range of accuracies ranged from 85.5% to 97.8% [22]. A large study of
122,969 breast mammograms from Norway utilized an Al software developed by Screen-
Point Medical that graded both interval and screen-detected mammograms on a scale of
1-10, where 10 indicates a lesion is most likely to be malignant. The study found that
86.8% of the screen-detected cancers and 44.9% of the interval cancers were given a score
of 10. Additionally, 2.3% of screen-detected cancers and 19.1% of interval cancers were
given a score of 5 or lower [23]. In another study from Turkey, a retrospective analysis of
211 mammograms using the Lunit INSIGHT software found that 83.8% of screen-detected
cancers were given a risk score above 34.5%, whereas 44.4% of interval cancers were given
a risk score above 34.5% [24]. In this study, the cancer detection rate was 67.3% for the
radiologist, 72.7% for the Al software, and 83.6% when the software and radiologist both
interpreted the imaging, which is evidence supporting the added value of Al in clinical
interpretation. A validation study of the Saige-Q software developed by Deep Health on
Australian patients found that the software positively marked 76.8% of screen-detected
cancers and 36.6% of interval cancers [25]. Further analysis demonstrated that the detec-
tion rate was equivalent for screen-detected ductal carcinoma in situ (DCIS) and invasive
carcinoma. A study from the German national breast cancer screening program performed
an analysis of 4463 screen-detected cancers and 100,005 normal studies using Al. The
sensitivity and specificity of the Al system alone were 2.6% and 2.0% lower than that of
a reading radiologist, respectively. However, the use of both an Al system and a reading
radiologist increased the sensitivity and specificity by 2.6% and 1.0%, respectively, when
compared with a sole reading radiologist [26]. Other studies have similarly shown that
Al is less sensitive and specific compared with a radiologist. A review of a number of
Al mammography software packages showed that 94% of the tested pieces of software
were less accurate than a single reading radiologist and 100% were less accurate than
two reading radiologists [27].

Studies have also shown the accuracy of Al software in breast MRI and ultrasound. In
a study using QuantX'’s computer-aided diagnosis software, the average area under the
curve (AUC) was compared for images with and without Al assistance. It was found that
the AUC was higher when Al software and a reading radiologist were used together (0.76)
versus when a radiologist alone was used (0.71) [28]. A review of Al in breast MRI looked
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at a number of different algorithms and found that the median AUC for prognostic imaging
was 0.80 and median AUC for neoadjuvant therapy response was 0.85 [29]. In a review of
Al in ultrasound, it was found that the AUC for all studies utilizing an AI model was above
0.8. Additionally, in some studies it was found that the use of Al in ultrasound prevented
the need for unnecessary biopsies in patients with suspected BIRADS 4A lesions [30].

The effectiveness of Al in breast screening has led to non-converging results. In some
studies, Al is shown to provide better detection rates than a reading radiologist, whereas in
others it is shown to be less effective. This may stem from the poor consensus in implementing
Al approaches. From the studies of Al utilization in mammography, US, and MR], it appears
that although Al may act as a supplement to a radiologist, the models are not accurate enough
to replace a radiologist. Utilizing Al as an additional screening tool before a radiologist reads
the image or as a checking tool after a radiologist interprets the image may allow for Al to
improve the overall reading accuracy. Moreover, how Al should be utilized in a screening
program is not well demonstrated. Currently, in some screening programs, a mammogram is
read by two radiologists before a decision is made. However, with Al it is possible to allow
Al to act as the second reader, meaning that only one radiologist would be needed. Figure 1
demonstrates the possible pathways for Al in breast imaging [26]. Although studies have
shown that using one radiologist with Al generally produces more sensitive and specific reads
compared with a radiologist alone, few studies demonstrate the outcomes when comparing
Al with two reading radiologists. Furthermore, the use of Al on interval cancers is consistently
less accurate than with screen-detected cancers, which may prevent accurate reads if Al were
to replace a second reading radiologist.

A Existing pathway B Standalone Al pathway
Threshold setting
READ 1 | | READ2 | | READ1 | | Al

C Decision referral pathwayt

|j: Al evaluates if it is confident*
in its predictive ability
v v v
Confident*: Not confident* Confident*
triaged normal no prediction cancer

Decision referral Studies referred to

without

= ~ indicating those with
Radiologist a cancer prediction

BI-RADS <3 BI-RADS =3

Normal Warning displayed to
highlight Al confident
p— cancer predictions

Warning waived

Warning accepted
Y

[ Consensus conference I

Figure 1. Comparison between the decision and referral and standalone Al pathway in double-reader
screening settings. t Decision-referral pathway utilizing Al and one reading radiologist. * Confidence
of the Al model in determining if a lesion is malignant or not. From Leibig, C. et al. [26].
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In MRI and US, Al has also been shown to have positive outcomes in improvement
of the AUC [29,30]. However, similar to mammography studies, the imaging criteria for
cutoffs vary. Additionally, studies are more limited for both MRI and ultrasound and
datasets are generally smaller, indicating the results may not be as reproducible.

4. Lung Cancer Screening

Lung cancer is the leading cause of cancer deaths around the world annually [31].
Although there are multiple standards for the detection of lung nodules on CT imaging,
such as Lung-RADS or Fleischer Society criteria, lung cancer may often be missed on
imaging, especially on plain films. One study found that nearly 90% of missed lung
cancers occur on chest X-ray [32]. Furthermore, chest X-rays are one of the most frequently
requested radiological imaging studies worldwide. Some studies have shown that increased
rates of chest X-ray imaging can lead to earlier lung cancer detection and improved patient
outcomes [33]. Recently, the use of Al in lung cancer imaging has come into the discussion.
Numerous ML and neural network models have been developed, some of which have
shown high sensitivity and accuracy for the detection of lung nodules [31].

In one multi-center international study utilizing the Samsung Auto Lung Nodule Detec-
tion DCNN software, it was found that utilizing both reading radiologists and the Al software
led to a 5% increase in sensitivity and a significant decrease in the number of false positives for
the detection of lung nodules on chest radiographs [34]. In this study, radiologists were asked
to review a set of images and mark areas of suspicious nodules. The images were later read
again by the same radiologists after the algorithm had marked areas of interest. Radiologists
were then tasked with either accepting or rejecting the algorithm’s suggestions. In another
study of chest plain films from the United Kingdom, it was found that use of a DCNN model
alongside radiologists led to a 60% reduction in the number of missed lung cancers [31]. When
the model was used alone, the sensitivity was 80% and the specificity was 93%, lower than
each of the three reading radiologists in the study. The number of false positives from the
DCNN software was also significantly greater than the radiologists.

In a study using another commercially available DCNN model, the effect of Al as
a second reader differed between radiology residents and radiology attendings. When
utilizing Al as a second reader, sensitivity improved for the radiology residents, whereas
specificity improved for attending radiologists [35]. Thus, the Al software helped more
novice residents find difficult to find lesions, such as those overlapping with mediastinal
structures or vasculature. For attendings, the software helped exclude initially uncertain
lesions more confidently. The benefit of an algorithmic model appears to differ based on
skill level; however, it is apparent that there is a benefit to radiologists when the Al model
functions as a second reader.

When a suspicious nodule is found on chest X-ray, it is likely to be followed up with
either a low-dose CT scan (LDCT) or regular CT scan [36]. Additionally, solitary pulmonary
nodules may be found incidentally on CT imaging conducted on patients. These nodules
may require regular follow-up based on the Fleischner criteria [37]. Al models have also
been developed for the detection and classification of nodules found in CT imaging. There
have been numerous neural network models utilized and researched for the detection of
lung nodules in CT, including regional CNN (RCNN), multi-resolution CNN (MRCNN),
and hierarchical saliency CNN (HSCNN) among others [38]. Newer models are continually
being developed to improve the accuracy of detection. For instance, in one 2020 study
analyzing two datasets, each with over 800 chest CT images, a novel deep convolutional
neural network (DCNN) was compared with older RCNN, MRCNN, and HSCNN models.
Each image was read by four radiologists and the nodules were annotated. The neural
network models were tested against each other and the accuracy was compared with
the radiologists. It was found that the accuracy, sensitivity, and specificity for nodule
detection were significantly improved for the novel DCNN model [38]. In another study
of a commercially available DL-CAD software, nodule detection was compared between
two radiologists (double-reading group) and the DL-CAD software. The software was seen
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to be statistically more significant for nodule detection of all sizes when compared with
the radiologist pair [39]. However, the rate of false positives was also significantly higher
in the DL-CAD group. This study indicates that CAD software may be proficient as a
screening tool for lung nodules. Although these studies did not contain diagnosis systems
for lung cancer, they indicate the continual improvement in neural network models in
feature detection.

In the United States, the USPSTF recommends yearly LDCT for lung cancer screening
in certain individuals with extensive smoking history (i.e., adults 50-80 years old with
a 20 pack-year smoking history, current smoker, or those who have quit within the past
15 years) [40]. Additionally, many countries have begun discussing lung cancer screening
with LDCT, which may result in a significant increase in LDCT volume. With the high
volumes of LDCT anticipated, an AI model may be beneficial to use as a screening tool
for LDCT images. In a study utilizing an RCNN model to investigate over 6700 LDCT
screening cases from the National Lung Cancer Screening Trial dataset, it was found that
the model led to reductions in false positive and false negative rates [41]. The study was
conducted for individuals both with prior LDCT screening imaging and those without. The
study found that in cases where there was no prior LDCT imaging, the Al model had an
11% reduction in false positives and a 5% reduction in false negatives. When there was
prior LDCT imaging, there was no significant difference in false positive and negative rates
between the radiologist and model [41]. This study indicates that an Al model may be
sufficient as an initial screening filter prior to the image being read by a radiologist.

Some software packages have also aimed to utilize radiomic data to predict the genotypic
variation of lung nodules. For instance, the epidermal growth factor receptor (EGFR) mutation
may be seen in certain non-small cell lung cancers (NSCLCs) [42]. Optimal pharmaceutical
treatment may vary based on specific EGFR mutation types; thus, the classification of the
specific EGFR genotype may be of increased importance. One study utilized a DL model to
study both nodule features and whole-lung features. The model achieved over 65% accuracy
in correctly detecting the EGFR genotype among all tested data sets [43]. By utilizing radiomic
features both within and outside a pulmonary nodule, Al models may be able to better predict
tumor mutations and genotypes prior to lesion biopsy.

Beyond nodule feature detection, models have been developed to improve upon
current imaging guidelines, such as those set forth by Lung-RADS. The DeepLR model
developed at Johns Hopkins was shown to more accurately predict the risk of malignancy
development at one, two, and three years’ post-LDCT imaging than the imaging criteria set
forth by Lung-RADS [44]. Similar to the Lung-RADS criteria, the DeepLR model considered
nodule features; however, extranodular features such as the presence of cardiac disease
or emphysema were also considered. Additionally, the DeepLR model further considered
other nodular features such as a change in attenuation, location, or nodule margins when
building the model. When comparing the specificity of diagnosis of lung cancer using
DeepLR vs. Lung-RADS, DeepLR was seen superior at the one-, two-, and three-year
timepoints (Figure 2).

For patients found to have a suspicious lesion over 8 mm in size on LDCT screening,
there does not exist a definite clinical decision pathway for follow-up. Some recommen-
dations included a 3-month follow-up LDCT to measure for volumetric and size change,
tissue sampling, or ¥fluorodeoxyglucose (FDG) positron emission tomography—computed
tomography (PET/CT) [37]. In a study of Swedish PET/CT images, a dual CNN system
was used to characterize and segment lung nodules found on PET/CT. The CNN utilized in
the CT imaging was used to segment organs, which would demonstrate high FDG uptake
and hypermetabolism on PET/CT. The other CNN was used with both the CT and PET
imaging to classify lung lesions from non-lesions. The study found that the combined CNN
models resulted in 90% sensitivity in detecting abnormal lung lesions [45]. The model was
noted to have lower segmentation accuracy when the lesions were located more medially
or when lesions contained necrotic components [45]. Whereas intra- and inter-observer
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Figure 2. Upper panels: comparison of AUC values for DeepLR and Lung-RADS in the NLST train-
ing cohort (n = 25,097) at 1 year (A), 2 years (B), and 3 years (C) after the S2 scan. Lower panels:
comparison of AUC values for DeepLR, Lung-RADS and VDT in the the PanCan validation cohort
(n =2294) at 1 year (D), 2 years (E), and 3 years (F) after the S2 scan. NLST = National Lung Screening
Trial. Lung-RADS = Lung CT Screening Reporting and Data System. VDT = volume doubling time.
AUC = area under the receiver operating characteristic curve. PanCan = Pan-Canadian Early Detection
of Lung Cancer Study. S2 = last CT screening without cancer diagnosis. From Huang, P. et al., [44].

The use of Al has been well studied in lung cancer. Research tools have been developed
for X-ray, CT, and PET imaging. Furthermore, with the growth of lung cancer diagnosis
and further regulations on screening, a highly sensitive CNN model may be an effective
tool in serving as a first-line screening agent for lung cancer imaging.

5. Prostate Cancer Screening

In the United States, prostate cancer is the most common non-cutaneous malignancy
and the second leading cause of cancer death in men [9,46]. It is the sixth most common
cancer worldwide and is often diagnosed by a prostate biopsy and graded according to
the Gleason scale [46,47]. Other forms of screening and diagnostics include the prostate-
specific antigen (PSA) blood test, MRI imaging of the prostate, and newer tests including
urine biomarkers and genetic testing. After all the information is collected, the prostate
cancer is staged from low-risk to high-risk, with wide variation in the intermediate-risk
category [46,48]. It is important to limit the variation of pathological scoring and proper
radiological detection of prostate cancer tumors, as this information can inform methods of
treatment—active surveillance, radiation, surgical excision, or a combination of multiple
therapies [46,49]. Artificial intelligence has shown promising results in improving the de-
tection and grading of prostate cancer, which would help ensure that patients are receiving
the best treatment for their stage of cancer. Figure 3 demonstrates the multiple uses of Al
in prostate cancer imaging [48].
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Figure 3. Potential of Al to assist prostate cancer diagnosis via imaging. AI models can help in

detecting and characterizing cancer aggressiveness on non-invasive radiology images (MRI and
ultrasound), as well as on histopathology images acquired through prostate biopsy. Aggressive
cancer is shown in yellow and indolent cancer in green in the “AlI for cancer diagnosis” panel. Al
models can also help in supporting tasks for cancer detection, namely prostate gland segmentation,
MRI-ultrasound registration, and MRI-histopathology registration. From Bhattacharya et al. [48].

MRI is a tremendously important tool in the diagnosis of prostate cancer, both for
the initial detection and for MRI-ultrasound fusion biopsies of lesions. In terms of the
detection and localization of the cancer, multiparametric MRI (mpMRI) is the most sensitive
non-invasive method for identifying prostate cancer; however, there still exists variation
in the subtle interpretations of visual cues [48]. Sonn et al. evaluated the mpMRI scans of
409 patients and found high variability of inter-rater and intra-rater radiologic assessment
using PI-RADS (Prostate Imaging Reporting and Data System) [50]. Al can be utilized here
to improve detection of prostate cancer that is not easily visible to the naked eye. One study
by Lay et al., using a computer-aided diagnosis (CAD) model, achieved an AUC score
of 0.93 in distinguishing low-grade from high-grade prostate cancer [51]. Other studies
using CAD have achieved AUC scores from 0.80 to 0.96, showcasing improvements in inter-
rater reliability and accuracy, though some of these studies may lack generalizability [52].
Hiremath et al. performed a retrospective multicenter study and constructed an integrated
nomogram using a DL model, PI-RADS, and clinical attributes to risk stratify prostate
cancer according to mpMRI. With nearly 600 patients total, the nomogram achieved an
AUC of 0.81 when detecting prostate cancer and developed significantly different Kaplan—
Meier curves when measuring biochemical recurrence in patients, performing better than a
solely deep-learning-based predictor or the PI-RADS model [53].

Li et al. conducted a retrospective analysis of 203 patients using a radiomics model
trained on mpMRI and PI-RADS to distinguish between patients with and without prostate
cancer. The radiomics model combined with PI-RADS was significantly better than using
PI-RADS alone for diagnosing prostate cancer (AUC of 0.93) [54]. Another recent study
of Al and mpMRI detected the extracapsular extension (ECE) of prostate cancer with an
AUC range of 0.728-0.857, which was higher than assessments by two experts, which had
an AUC range of 0.632-0.857 [55]. Improving detection of ECE can help to inform surgical
planning or guide certain radiotherapies. CAD, radiomics, and DL algorithms have great
potential to improve the detection and diagnosis of prostate cancer while limiting errors
and decreasing variability.

The interplay between radiological screening, urological intervention (i.e., biopsies,
prostatectomy), and histopathology is the key to the accurate diagnosis and staging of
prostate cancer. There have been some indications that Al algorithms can decrease the
variability of Gleason scoring across pathologists, which can improve radiology—pathology
correlation of detecting prostate cancer. One difficulty in applying machine learning
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algorithms to Gleason grading is due to the subjectivity of the system, especially for
intermediate-to-high risk prostate cancer, which potentiates issues when generating a
training dataset for the model to properly classify the Gleason grade [46]. Although
automated detection of tissue components has been proven to be helpful in determining
prognoses for patients with breast cancer, there is still work to be performed for prostate
cancer, in part due to the heterogeneity of the tissue samples and labeling.

Strom et al. trained an Al algorithm to distinguish benign and malignant biopsies of
nearly 1000 patients and achieved an AUC of 0.997 [56]. Another study evaluated the use of an
Al prostate biopsy cancer detection system for whole-slide imaging compared with an expert
alone, which resulted in a significant increase in sensitivity from 74% (expert alone) to 90% [57].
It is important that histopathological readings of prostate tissue are as accurate as possible,
as these are the foundation for training data and the key to improving Al models, which
can then be extended to improving the non-invasive radiological screening and diagnostic
methods. Furthermore, Al applications correlating tissue-level components of the prostate
with MRI signals have shown promising results for guiding prognosis. According to one study
by McGarry et al., combining mpMRI and histopathology indicated regions of epithelium
and lumen density differences that correlated better with post-prostatectomy-confirmed
high-grade prostate cancer [58]. Another study utilizing hybrid multidimensional MRI and
pathology after prostatectomy identified AUCs of 0.991, 0.800, and 0.789 for differentiation
of epithelium, lumen, and stroma, respectively, when comparing malignant tissue with non-
cancerous tissue [59]. There is great value in utilizing Al to understand and further investigate
the radiologic—pathologic correlation of grading prostate cancer, as combining information
from both disciplines can give a more complete picture.

There are several challenges that exist prohibiting the widespread use of Al for prostate
cancer. First, there is a lack of generalizability due to overfitting of the Al models. This
is largely due to the lack of widespread, public data when training the models, resulting
in smaller sample sizes and models that are overly specific to their training data set [60].
There are also imbalances in the samples. For example, many studies utilize lesions that are
located in the peripheral zone of the prostate rather than other zones (transition, central,
etc.). This is an important consideration because it will contribute to the lack of variability
within the training dataset and therefore lead to more overfitting. There is an effort to
address this, as Mehralivand et al. performed a multicenter study that showed minimal
increase in sensitivity overall when using Al to compare benign and malignant lesions on
mpMRI but demonstrated a statistically significant increase in the sensitivity for identifying
cancerous lesions in the transition zone of the prostate [61].

Another challenge with adopting the use of Al is lack of standardization and repro-
ducibility of the research and protocols [60]. There is an increased effort to conduct more
multi-center studies to attempt to overcome the lack of standardization and ability to
generalize the results. Recent studies have indicated strong results utilizing CAD with
mpMRI across multiple institutions, achieving high AUC scores (0.81-0.96) [62]. Despite
these efforts, however, there is still a lack of reproducibility in the research, as there is no
standardized method to report specific information regarding protocols such as guidelines
on how to use the datasets [60]. Ultimately there are a variety of factors that contribute to
obstacles when employing Al in prostate cancer—lack of high-quality data, lack of available
data, operating costs, lack of validation, etc. [46]. More high-quality research showcasing
proven methodologies should be conducted to fully unlock the potential that Al can bring
to assist clinicians in diagnosing and detecting prostate cancer.

Despite this host of challenges, there is great potential for adapting Al into the diagnos-
tic process for prostate cancer. There are many new avenues of research being undertaken.
The combination of newer techniques and imaging modalities with Al can provide novel
methods to improve the accuracy and efficiency for detecting prostate cancer. AI combined
with tools such as the PSMA PET (Prostate Specific Membrane Antigen Positron Emission
Tomography) for focal localization of prostate cancer and metastases, TRUS (transrectal
ultrasound scan) fusion biopsies with MRI for superior prostate mapping and radiother-
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apy, and radiogenomics to identify new genetic biomarkers are only a few hot areas for
exploration [63,64].

6. Summary

Radiological imaging plays an important role in the screening and diagnosis of breast,
lung, and prostate cancers. With an aging population and guidelines recommending screen-
ing be started at an earlier age, the need for rapid and accurate screening grows more critical.
During the past few years, there have been numerous ML and DL models researched that
address this issue. Many of these models use DCNN algorithms, which allow for superior
image recognition. This study reviewed the accuracy and effectiveness of a number of Al
models created within the past few years on numerous modalities. Additionally, this study
reviewed manuscripts utilizing numerous different DCNN algorithms. The findings of this
review indicate that although Al does perform well on its own for imaging analysis, in
almost all cases the combination of using a trained radiologist and an Al model provides
superior benefit than either one used individually. Additionally, Al models tend to produce
more false positives, which limits their standalone ability in interpreting images. It is
apparent that Al has significant benefits for radiologists; however, how to utilize AI within
a clinical workflow should be researched further. Whether Al should be used to triage
imaging or to catch potential misses by a radiologist should be discussed. Furthermore, the
use of Al for training radiologists should be researched, as AI models have shown efficacy
in finding lesions that an untrained radiologist may not initially see. Overall, Al has shown
tremendous growth in capability over the past few years. Nevertheless, it is still too early to
determine the best use of Al in radiology. Al has shown efficacy in improving workflows,
diagnosis abilities, and teaching abilities; however, further research must be conducted
before a specific utilization use case can be recommended. However, it is evident that with
continual improvement Al will play an active role in some form for radiologists.
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