Emerging Technologies within Spine Surgery
Abstract
:1. Introduction
2. Methodology
3. Robotics, Navigation, and Augmented Reality
4. Sagittal Parameters
5. Artificial Intelligence
6. Implant Materials
6.1. Metals
6.2. PEEK
6.3. Hydroxyapatite
6.4. rhBMP2
6.5. Ceramics
6.6. Bioabsorbable Materials
7. Motion Preservation
7.1. Cervical Disc Arthroplasty
7.2. Laminoplasty
8. Developments in Surgical Training
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Diltz, Z.R.; Sheffer, B.J. Intraoperative Navigation and Robotics in Pediatric Spinal Deformity. Orthop. Clin. N. Am. 2023, 54, 201–207. [Google Scholar] [CrossRef]
- Zhang, H.Q.; Wang, C.C.; Zhang, R.J.; Zhou, L.P.; Jia, C.Y.; Ge, P.; Shen, C.L. Predictors of accurate intrapedicular screw placement in single-level lumbar (L4-5) fusion: Robot-assisted pedicle screw, traditional pedicle screw, and cortical bone trajectory screw insertion. BMC Surg. 2022, 22, 284. [Google Scholar] [CrossRef] [PubMed]
- Baldwin, K.D.; Kadiyala, M.; Talwar, D.; Sankar, W.N.; Flynn, J.J.M.; Anari, J.B. Does intraoperative CT navigation increase the accuracy of pedicle screw placement in pediatric spinal deformity surgery? A systematic review and meta-analysis. Spine Deform. 2022, 10, 19–29. [Google Scholar] [CrossRef] [PubMed]
- Matur, A.V.; Palmisciano, P.; Duah, H.O.; Chilakapati, S.S.; Cheng, J.S.; Adogwa, O. Robotic and navigated pedicle screws are safer and more accurate than fluoroscopic freehand screws: A systematic review and meta-analysis. Spine J. 2023, 23, 197–208. [Google Scholar] [CrossRef] [PubMed]
- Ringel, F.; Stuer, C.; Reinke, A.; Preuss, A.; Behr, M.; Auer, F.; Stoffel, M.; Meyer, B. Accuracy of robot-assisted placement of lumbar and sacral pedicle screws: A prospective randomized comparison to conventional freehand screw implantation. Spine 2012, 37, E496–E501. [Google Scholar] [CrossRef]
- Oba, H.; Uehara, M.; Ikegami, S.; Hatakenaka, T.; Kamanaka, T.; Miyaoka, Y.; Kurogouchi, D.; Fukuzawa, T.; Mimura, T.; Tanikawa, Y.; et al. Tips and pitfalls to improve accuracy and reduce radiation exposure in intraoperative CT navigation for pediatric scoliosis: A systematic review. Spine J. 2023, 23, 183–196. [Google Scholar] [CrossRef]
- Laine, T.; Lund, T.; Ylikoski, M.; Lohikoski, J.; Schlenzka, D. Accuracy of pedicle screw insertion with and without computer assistance: A randomised controlled clinical study in 100 consecutive patients. Eur. Spine J. 2000, 9, 235–240. [Google Scholar] [CrossRef]
- Mendelsohn, D.; Strelzow, J.; Dea, N.; Ford, N.L.; Batke, J.; Pennington, A.; Yang, K.; Ailon, T.; Boyd, M.; Dvorak, M.; et al. Patient and surgeon radiation exposure during spinal instrumentation using intraoperative computed tomography-based navigation. Spine J. 2016, 16, 343–354. [Google Scholar] [CrossRef]
- Bratschitsch, G.; Leitner, L.; Stucklschweiger, G.; Guss, H.; Sadoghi, P.; Puchwein, P.; Leithner, A.; Radl, R. Radiation Exposure of Patient and Operating Room Personnel by Fluoroscopy and Navigation during Spinal Surgery. Sci. Rep. 2019, 9, 17652. [Google Scholar] [CrossRef]
- McAfee, P.C. Spinal Navigation and Robotics Are More Accurate, More Precise, and More Minimally Invasive. Glob. Spine J. 2022, 12, 4S–6S. [Google Scholar] [CrossRef]
- Crawford, A.M.; Striano, B.M.; Lightsey, H.M.t.; Gong, J.; Simpson, A.K.; Schoenfeld, A.J. Intraoperative CT for lumbar fusion is not associated with improved short- or long-term complication profiles. Spine J. 2023, 23, 791–798. [Google Scholar] [CrossRef] [PubMed]
- Sielatycki, J.A.; Mitchell, K.; Leung, E.; Lehman, R.A. State of the art review of new technologies in spine deformity surgery-robotics and navigation. Spine Deform. 2022, 10, 5–17. [Google Scholar] [CrossRef]
- Dominy, C.L.; Tang, J.E.; Arvind, V.; Cho, B.H.; Selverian, S.; Shah, K.C.; Kim, J.S.; Cho, S.K. Trends in the Charges and Utilization of Computer-Assisted Navigation in Cervical and Thoracolumbar Spinal Surgery. Asian Spine J. 2022, 16, 625–633. [Google Scholar] [CrossRef]
- Ghaednia, H.; Fourman, M.S.; Lans, A.; Detels, K.; Dijkstra, H.; Lloyd, S.; Sweeney, A.; Oosterhoff, J.H.F.; Schwab, J.H. Augmented and virtual reality in spine surgery, current applications and future potentials. Spine J. 2021, 21, 1617–1625. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, H.S.; Yoon, J.W. Intra-operative wearable visualization in spine surgery: Past, present, and future. J. Spine Surg. 2022, 8, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Virk, S.; Lafage, R.; Elysee, J.; Louie, P.; Kim, H.J.; Albert, T.; Lenke, L.G.; Schwab, F.; Lafage, V. The 3 Sagittal Morphotypes That Define the Normal Cervical Spine: A Systematic Review of the Literature and an Analysis of Asymptomatic Volunteers. J. Bone Jt. Surg. Am. 2020, 102, e109. [Google Scholar] [CrossRef]
- Ling, F.P.; Chevillotte, T.; Leglise, A.; Thompson, W.; Bouthors, C.; Le Huec, J.C. Which parameters are relevant in sagittal balance analysis of the cervical spine? A literature review. Eur. Spine J. 2018, 27, 8–15. [Google Scholar] [CrossRef]
- Azimi, P.; Yazdanian, T.; Benzel, E.C.; Hai, Y.; Montazeri, A. Sagittal balance of the cervical spine: A systematic review and meta-analysis. Eur. Spine J. 2021, 30, 1411–1439. [Google Scholar] [CrossRef]
- Passias, P.G.; Vasquez-Montes, D.; Poorman, G.W.; Protopsaltis, T.; Horn, S.R.; Bortz, C.A.; Segreto, F.; Diebo, B.; Ames, C.; Smith, J.; et al. Predictive model for distal junctional kyphosis after cervical deformity surgery. Spine J. 2018, 18, 2187–2194. [Google Scholar] [CrossRef]
- Pettersson, S.D.; Skrzypkowska, P.; Ali, S.; Szmuda, T.; Krakowiak, M.; Pocivavsek, T.; Sunesson, F.; Fercho, J.; Miekisiak, G. Predictors for cervical kyphotic deformity following laminoplasty: A systematic review and meta-analysis. J. Neurosurg. Spine 2023, 38, 4–13. [Google Scholar] [CrossRef]
- Yang, X.; Bartels, R.; Donk, R.; Arts, M.P.; Goedmakers, C.M.W.; Vleggeert-Lankamp, C.L.A. The association of cervical sagittal alignment with adjacent segment degeneration. Eur. Spine J. 2020, 29, 2655–2664. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.S.; Lafage, V.; Schwab, F.J.; Shaffrey, C.I.; Protopsaltis, T.; Klineberg, E.; Gupta, M.; Scheer, J.K.; Fu, K.M.; Mundis, G.; et al. Prevalence and type of cervical deformity among 470 adults with thoracolumbar deformity. Spine 2014, 39, E1001–E1009. [Google Scholar] [CrossRef] [PubMed]
- Odland, K.; Yson, S.; Polly, D.W., Jr. Wide anatomical variability of PI normative values within an asymptomatic population: A systematic review. Spine Deform. 2023, 11, 559–566. [Google Scholar] [CrossRef]
- Wang, T.; Ding, W. Risk factors for adjacent segment degeneration after posterior lumbar fusion surgery in treatment for degenerative lumbar disorders: A meta-analysis. J. Orthop. Surg. Res. 2020, 15, 582. [Google Scholar] [CrossRef] [PubMed]
- Formica, M.; Quarto, E.; Zanirato, A.; Mosconi, L.; Lontaro-Baracchini, M.; Alessio-Mazzola, M.; Felli, L. ALIF in the correction of spinal sagittal misalignment. A systematic review of literature. Eur. Spine J. 2021, 30, 50–62. [Google Scholar] [CrossRef]
- Ochtman, A.E.A.; Kruyt, M.C.; Jacobs, W.C.H.; Kersten, R.; le Huec, J.C.; Oner, F.C.; van Gaalen, S.M. Surgical Restoration of Sagittal Alignment of the Spine: Correlation with Improved Patient-Reported Outcomes: A Systematic Review and Meta-Analysis. JBJS Rev. 2020, 8, e1900100. [Google Scholar] [CrossRef]
- Eun, I.S.; Son, S.M.; Goh, T.S.; Lee, J.S. Sagittal spinopelvic alignment after spinal fusion in degenerative lumbar scoliosis: A meta-analysis. Br. J. Neurosurg. 2020, 34, 176–180. [Google Scholar] [CrossRef]
- Wan, S.H.; Wong, D.L.; To, S.C.; Meng, N.; Zhang, T.; Cheung, J.P. Patient and surgical predictors of 3D correction in posterior spinal fusion: A systematic review. Eur. Spine J. 2023, 32, 1927–1946. [Google Scholar] [CrossRef]
- Katsuura, Y.; Colon, L.F.; Perez, A.A.; Albert, T.J.; Qureshi, S.A. A Primer on the Use of Artificial Intelligence in Spine Surgery. Clin. Spine Surg. 2021, 34, 316–321. [Google Scholar] [CrossRef]
- Gutman, M.J.; Schroeder, G.D.; Murphy, H.; Flanders, A.E.; Vaccaro, A.R. Artificial Intelligence in Spine Care. Clin. Spine Surg. 2021, 34, 121–124. [Google Scholar] [CrossRef]
- Kelly, C.J.; Karthikesalingam, A.; Suleyman, M.; Corrado, G.; King, D. Key challenges for delivering clinical impact with artificial intelligence. BMC Med. 2019, 17, 195. [Google Scholar] [CrossRef]
- Charles, Y.P.; Lamas, V.; Ntilikina, Y. Artificial intelligence and treatment algorithms in spine surgery. Orthop. Traumatol. Surg. Res. 2023, 109, 103456. [Google Scholar] [CrossRef] [PubMed]
- Grover, P.; Siebenwirth, J.; Caspari, C.; Drange, S.; Dreischarf, M.; Le Huec, J.C.; Putzier, M.; Franke, J. Can artificial intelligence support or even replace physicians in measuring sagittal balance? A validation study on preoperative and postoperative full spine images of 170 patients. Eur. Spine J. 2022, 31, 1943–1951. [Google Scholar] [CrossRef]
- Wu, H.; Bailey, C.; Rasoulinejad, P.; Li, S. Automated comprehensive Adolescent Idiopathic Scoliosis assessment using MVC-Net. Med. Image Anal. 2018, 48, 1–11. [Google Scholar] [CrossRef]
- Korez, R.; Putzier, M.; Vrtovec, T. A deep learning tool for fully automated measurements of sagittal spinopelvic balance from X-ray images: Performance evaluation. Eur. Spine J. 2020, 29, 2295–2305. [Google Scholar] [CrossRef]
- Weng, C.H.; Wang, C.L.; Huang, Y.J.; Yeh, Y.C.; Fu, C.J.; Yeh, C.Y.; Tsai, T.T. Artificial Intelligence for Automatic Measurement of Sagittal Vertical Axis Using ResUNet Framework. J. Clin. Med. 2019, 8, 1826. [Google Scholar] [CrossRef]
- Rasouli, J.J.; Shao, J.; Neifert, S.; Gibbs, W.N.; Habboub, G.; Steinmetz, M.P.; Benzel, E.; Mroz, T.E. Artificial Intelligence and Robotics in Spine Surgery. Glob. Spine J. 2021, 11, 556–564. [Google Scholar] [CrossRef]
- Carson, T.; Ghoshal, G.; Cornwall, G.B.; Tobias, R.; Schwartz, D.G.; Foley, K.T. Artificial Intelligence-enabled, Real-time Intraoperative Ultrasound Imaging of Neural Structures within the Psoas: Validation in a Porcine Spine Model. Spine 2021, 46, E146–E152. [Google Scholar] [CrossRef]
- Won, D.; Lee, H.J.; Lee, S.J.; Park, S.H. Spinal Stenosis Grading in Magnetic Resonance Imaging Using Deep Convolutional Neural Networks. Spine 2020, 45, 804–812. [Google Scholar] [CrossRef]
- Jamaludin, A.; Lootus, M.; Kadir, T.; Zisserman, A.; Urban, J.; Battie, M.C.; Fairbank, J.; McCall, I.; Genodisc, C. ISSLS PRIZE IN BIOENGINEERING SCIENCE 2017: Automation of reading of radiological features from magnetic resonance images (MRIs) of the lumbar spine without human intervention is comparable with an expert radiologist. Eur. Spine J. 2017, 26, 1374–1383. [Google Scholar] [CrossRef]
- Burns, J.E.; Yao, J.; Munoz, H.; Summers, R.M. Automated Detection, Localization, and Classification of Traumatic Vertebral Body Fractures in the Thoracic and Lumbar Spine at CT. Radiology 2016, 278, 64–73. [Google Scholar] [CrossRef] [PubMed]
- Durand, W.M.; Lafage, R.; Hamilton, D.K.; Passias, P.G.; Kim, H.J.; Protopsaltis, T.; Lafage, V.; Smith, J.S.; Shaffrey, C.; Gupta, M.; et al. Artificial intelligence clustering of adult spinal deformity sagittal plane morphology predicts surgical characteristics, alignment, and outcomes. Eur. Spine J. 2021, 30, 2157–2166. [Google Scholar] [CrossRef] [PubMed]
- Ames, C.P.; Smith, J.S.; Pellise, F.; Kelly, M.; Alanay, A.; Acaroglu, E.; Perez-Grueso, F.J.S.; Kleinstuck, F.; Obeid, I.; Vila-Casademunt, A.; et al. Artificial Intelligence Based Hierarchical Clustering of Patient Types and Intervention Categories in Adult Spinal Deformity Surgery: Towards a New Classification Scheme that Predicts Quality and Value. Spine 2019, 44, 915–926. [Google Scholar] [CrossRef] [PubMed]
- Mroz, T.E.; Lubelski, D.; Williams, S.K.; O’Rourke, C.; Obuchowski, N.A.; Wang, J.C.; Steinmetz, M.P.; Melillo, A.J.; Benzel, E.C.; Modic, M.T.; et al. Differences in the surgical treatment of recurrent lumbar disc herniation among spine surgeons in the United States. Spine J. 2014, 14, 2334–2343. [Google Scholar] [CrossRef] [PubMed]
- Mourad, R.; Kolisnyk, S.; Baiun, Y.; Falk, A.; Yuriy, T.; Valerii, F.; Kopeev, A.; Suldina, O.; Pospelov, A.; Kim, J.; et al. Performance of hybrid artificial intelligence in determining candidacy for lumbar stenosis surgery. Eur. Spine J. 2022, 31, 2149–2155. [Google Scholar] [CrossRef] [PubMed]
- Durand, W.M.; Daniels, A.H.; Hamilton, D.K.; Passias, P.; Kim, H.J.; Protopsaltis, T.; LaFage, V.; Smith, J.S.; Shaffrey, C.; Gupta, M.; et al. Artificial Intelligence Models Predict Operative Versus Nonoperative Management of Patients with Adult Spinal Deformity with 86% Accuracy. World Neurosurg. 2020, 141, e239–e253. [Google Scholar] [CrossRef]
- Pellise, F.; Serra-Burriel, M.; Smith, J.S.; Haddad, S.; Kelly, M.P.; Vila-Casademunt, A.; Sanchez Perez-Grueso, F.J.; Bess, S.; Gum, J.L.; Burton, D.C.; et al. Development and validation of risk stratification models for adult spinal deformity surgery. J. Neurosurg. Spine 2019, 31, 587–599. [Google Scholar] [CrossRef]
- Ames, C.P.; Smith, J.S.; Pellise, F.; Kelly, M.; Gum, J.L.; Alanay, A.; Acaroglu, E.; Perez-Grueso, F.J.S.; Kleinstuck, F.S.; Obeid, I.; et al. Development of predictive models for all individual questions of SRS-22R after adult spinal deformity surgery: A step toward individualized medicine. Eur. Spine J. 2019, 28, 1998–2011. [Google Scholar] [CrossRef]
- Ames, C.P.; Smith, J.S.; Pellise, F.; Kelly, M.P.; Gum, J.L.; Alanay, A.; Acaroglu, E.; Perez-Grueso, F.J.S.; Kleinstuck, F.S.; Obeid, I.; et al. Development of Deployable Predictive Models for Minimal Clinically Important Difference Achievement Across the Commonly Used Health-related Quality of Life Instruments in Adult Spinal Deformity Surgery. Spine 2019, 44, 1144–1153. [Google Scholar] [CrossRef]
- Zhou, S.; Zhou, F.; Sun, Y.; Chen, X.; Diao, Y.; Zhao, Y.; Huang, H.; Fan, X.; Zhang, G.; Li, X. The application of artificial intelligence in spine surgery. Front. Surg. 2022, 9, 885599. [Google Scholar] [CrossRef]
- Kuris, E.O.; Veeramani, A.; McDonald, C.L.; DiSilvestro, K.J.; Zhang, A.S.; Cohen, E.M.; Daniels, A.H. Predicting Readmission After Anterior, Posterior, and Posterior Interbody Lumbar Spinal Fusion: A Neural Network Machine Learning Approach. World Neurosurg. 2021, 151, e19–e27. [Google Scholar] [CrossRef] [PubMed]
- Azimi, P.; Benzel, E.C.; Shahzadi, S.; Azhari, S.; Mohammadi, H.R. Use of artificial neural networks to predict surgical satisfaction in patients with lumbar spinal canal stenosis: Clinical article. J. Neurosurg. Spine 2014, 20, 300–305. [Google Scholar] [CrossRef] [PubMed]
- Durand, W.M.; DePasse, J.M.; Daniels, A.H. Predictive Modeling for Blood Transfusion after Adult Spinal Deformity Surgery: A Tree-Based Machine Learning Approach. Spine 2018, 43, 1058–1066. [Google Scholar] [CrossRef] [PubMed]
- Staartjes, V.E.; de Wispelaere, M.P.; Vandertop, W.P.; Schroder, M.L. Deep learning-based preoperative predictive analytics for patient-reported outcomes following lumbar discectomy: Feasibility of center-specific modeling. Spine J. 2019, 19, 853–861. [Google Scholar] [CrossRef]
- Joshi, R.S.; Lau, D.; Ames, C.P. Artificial intelligence for adult spinal deformity: Current state and future directions. Spine J. 2021, 21, 1626–1634. [Google Scholar] [CrossRef]
- Kim, J.S.; Merrill, R.K.; Arvind, V.; Kaji, D.; Pasik, S.D.; Nwachukwu, C.C.; Vargas, L.; Osman, N.S.; Oermann, E.K.; Caridi, J.M.; et al. Examining the Ability of Artificial Neural Networks Machine Learning Models to Accurately Predict Complications Following Posterior Lumbar Spine Fusion. Spine 2018, 43, 853–860. [Google Scholar] [CrossRef]
- Kim, J.S.; Arvind, V.; Oermann, E.K.; Kaji, D.; Ranson, W.; Ukogu, C.; Hussain, A.K.; Caridi, J.; Cho, S.K. Predicting Surgical Complications in Patients Undergoing Elective Adult Spinal Deformity Procedures Using Machine Learning. Spine Deform. 2018, 6, 762–770. [Google Scholar] [CrossRef]
- Hopkins, B.S.; Mazmudar, A.; Driscoll, C.; Svet, M.; Goergen, J.; Kelsten, M.; Shlobin, N.A.; Kesavabhotla, K.; Smith, Z.A.; Dahdaleh, N.S. Using artificial intelligence (AI) to predict postoperative surgical site infection: A retrospective cohort of 4046 posterior spinal fusions. Clin. Neurol. Neurosurg. 2020, 192, 105718. [Google Scholar] [CrossRef]
- Khan, O.; Badhiwala, J.H.; Wilson, J.R.F.; Jiang, F.; Martin, A.R.; Fehlings, M.G. Predictive Modeling of Outcomes After Traumatic and Nontraumatic Spinal Cord Injury Using Machine Learning: Review of Current Progress and Future Directions. Neurospine 2019, 16, 678–685. [Google Scholar] [CrossRef]
- Merali, Z.G.; Witiw, C.D.; Badhiwala, J.H.; Wilson, J.R.; Fehlings, M.G. Using a machine learning approach to predict outcome after surgery for degenerative cervical myelopathy. PLoS ONE 2019, 14, e0215133. [Google Scholar] [CrossRef]
- Scheer, J.K.; Oh, T.; Smith, J.S.; Shaffrey, C.I.; Daniels, A.H.; Sciubba, D.M.; Hamilton, D.K.; Protopsaltis, T.S.; Passias, P.G.; Hart, R.A.; et al. Development of a validated computer-based preoperative predictive model for pseudarthrosis with 91% accuracy in 336 adult spinal deformity patients. Neurosurg. Focus 2018, 45, E11. [Google Scholar] [CrossRef] [PubMed]
- Haddad, S.; Pizones, J.; Raganato, R.; Safaee, M.M.; Scheer, J.K.; Pellise, F.; Ames, C.P. Future Data Points to Implement in Adult Spinal Deformity Assessment for Artificial Intelligence Modeling Prediction: The Importance of the Biological Dimension. Int. J. Spine Surg. 2023, 17, S34–S44. [Google Scholar] [CrossRef] [PubMed]
- Veronesi, F.; Sartori, M.; Griffoni, C.; Valacco, M.; Tedesco, G.; Davassi, P.F.; Gasbarrini, A.; Fini, M.; Barbanti Brodano, G. Complications in Spinal Fusion Surgery: A Systematic Review of Clinically Used Cages. J. Clin. Med. 2022, 11, 6279. [Google Scholar] [CrossRef]
- Warburton, A.; Girdler, S.J.; Mikhail, C.M.; Ahn, A.; Cho, S.K. Biomaterials in Spinal Implants: A Review. Neurospine 2020, 17, 101–110. [Google Scholar] [CrossRef]
- Iunes, E.A.; Barletta, E.A.; Barba Belsuzarri, T.A.; Onishi, F.J.; Cavalheiro, S.; Joaquim, A.F. Correlation Between Different Interbody Grafts and Pseudarthrosis After Anterior Cervical Discectomy and Fusion Compared with Control Group: Systematic Review. World Neurosurg. 2020, 134, 272–279. [Google Scholar] [CrossRef] [PubMed]
- Lv, Z.T.; Xu, Y.; Cao, B.; Dai, J.; Zhang, S.Y.; Huang, J.M.; Liang, S.; Jiang, F.X. Titanium-coated PEEK Versus Uncoated PEEK Cages in Lumbar Interbody Fusion: A Systematic Review and Meta-analysis of Randomized Controlled Trial. Clin. Spine Surg. 2023, 36, 198–209. [Google Scholar] [CrossRef] [PubMed]
- Seaman, S.; Kerezoudis, P.; Bydon, M.; Torner, J.C.; Hitchon, P.W. Titanium vs. polyetheretherketone (PEEK) interbody fusion: Meta-analysis and review of the literature. J. Clin. Neurosci. 2017, 44, 23–29. [Google Scholar] [CrossRef]
- Ament, J.D.; Vokshoor, A.; Yee, R.; Johnson, J.P. A Systematic Review and Meta-Analysis of Silicon Nitride and Biomaterial Modulus as it Relates to Subsidence Risk in Spinal Fusion Surgery. N. Am. Spine Soc. J. 2022, 12, 100168. [Google Scholar] [CrossRef]
- Shi, L.Y.; Wang, A.; Zang, F.Z.; Wang, J.X.; Pan, X.W.; Chen, H.J. Tantalum-coated pedicle screws enhance implant integration. Colloids Surf. B Biointerfaces 2017, 160, 22–32. [Google Scholar] [CrossRef]
- Fiani, B.; Jarrah, R.; Shields, J.; Sekhon, M. Enhanced biomaterials: Systematic review of alternatives to supplement spine fusion including silicon nitride, bioactive glass, amino peptide bone graft, and tantalum. Neurosurg. Focus 2021, 50, E10. [Google Scholar] [CrossRef]
- Tan, J.H.; Cheong, C.K.; Hey, H.W.D. Titanium (Ti) cages may be superior to polyetheretherketone (PEEK) cages in lumbar interbody fusion: A systematic review and meta-analysis of clinical and radiological outcomes of spinal interbody fusions using Ti versus PEEK cages. Eur. Spine J. 2021, 30, 1285–1295. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Zhao, H.; Li, C.; Liu, T.; Guan, J.; Yang, Y.; Yu, X. Polyetheretherketone (PEEK) rods versus titanium rods for posterior lumbar fusion surgery: A systematic review and meta-analysis. J. Orthop. Surg. Res. 2023, 18, 348. [Google Scholar] [CrossRef] [PubMed]
- Takayanagi, A.; Siddiqi, I.; Ghanchi, H.; Lischalk, J.; Vrionis, F.; Ratliff, J.; Bilsky, M.; Hariri, O.R. Radiolucent Carbon Fiber-Reinforced Implants for Treatment of Spinal Tumors-Clinical, Radiographic, and Dosimetric Considerations. World Neurosurg. 2021, 152, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Perez-Roman, R.J.; Boddu, J.V.; Bashti, M.; Bryant, J.P.; Amadasu, E.; Gyedu, J.S.; Wang, M.Y. The Use of Carbon Fiber-Reinforced Instrumentation in Patients with Spinal Oncologic Tumors: A Systematic Review of Literature and Future Directions. World Neurosurg. 2023, 173, 13–22. [Google Scholar] [CrossRef]
- Singhatanadgige, W.; Tangchitcharoen, N.; Kerr, S.J.; Tanasansomboon, T.; Yingsakmongkol, W.; Kotheeranurak, V.; Limthongkul, W. A Comparison of Polyetheretherketone and Titanium-Coated Polyetheretherketone in Minimally Invasive Transforaminal Lumbar Interbody Fusion: A Randomized Clinical Trial. World Neurosurg. 2022, 168, e471–e479. [Google Scholar] [CrossRef]
- Hasegawa, T.; Inufusa, A.; Imai, Y.; Mikawa, Y.; Lim, T.H.; An, H.S. Hydroxyapatite-coating of pedicle screws improves resistance against pull-out force in the osteoporotic canine lumbar spine model: A pilot study. Spine J. 2005, 5, 239–243. [Google Scholar] [CrossRef]
- Sanden, B.; Olerud, C.; Johansson, C.; Larsson, S. Improved bone-screw interface with hydroxyapatite coating: An in vivo study of loaded pedicle screws in sheep. Spine 2001, 26, 2673–2678. [Google Scholar] [CrossRef]
- Liu, X.J.; Zhu, Q.S.; Sun, H.F.; Song, X.J.; Wang, C.L.; Wu, Y.T.; Ma, Y.H. The clinical efficacy of hydroxyapatite and its composites in spinal reconstruction: A meta-analysis. Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 4614–4624. [Google Scholar] [CrossRef]
- Zhang, K.; Zhu, Y.; Wang, W. Application of nano-hydroxyapatite matrix graft in inter-vertebral fusion therapy: A meta-analysis. BMC Musculoskelet. Disord. 2023, 24, 427. [Google Scholar] [CrossRef]
- Feng, J.T.; Yang, X.G.; Wang, F.; He, X.; Hu, Y.C. Efficacy and safety of bone substitutes in lumbar spinal fusion: A systematic review and network meta-analysis of randomized controlled trials. Eur. Spine J. 2020, 29, 1261–1276. [Google Scholar] [CrossRef]
- Plantz, M.; Lyons, J.; Yamaguchi, J.T.; Greene, A.C.; Ellenbogen, D.J.; Hallman, M.J.; Shah, V.; Yun, C.; Jakus, A.E.; Procissi, D.; et al. Preclinical Safety of a 3D-Printed Hydroxyapatite-Demineralized Bone Matrix Scaffold for Spinal Fusion. Spine 2022, 47, 82–89. [Google Scholar] [CrossRef] [PubMed]
- Menezes, C.M.; Lacerda, G.C.; do Valle, G.S.O.; de Oliveira Arruda, A.; Menezes, E.G. Ceramic bone graft substitute vs autograft in XLIF: A prospective randomized single-center evaluation of radiographic and clinical outcomes. Eur. Spine J. 2022, 31, 2262–2269. [Google Scholar] [CrossRef] [PubMed]
- Cottrill, E.; Premananthan, C.; Pennington, Z.; Ehresman, J.; Theodore, N.; Sciubba, D.M.; Witham, T. Radiographic and clinical outcomes of silicate-substituted calcium phosphate (SiCaP) bone grafts in spinal fusion: Systematic review and meta-analysis. J. Clin. Neurosci. 2020, 81, 353–366. [Google Scholar] [CrossRef] [PubMed]
- Choi, U.Y.; Kim, K.T.; Kim, K.G.; Lim, S.H.; Kim, Y.J.; Sohn, S.; Sheen, S.H.; Heo, C.Y.; Han, I. Safety and Tolerability of Stromal Vascular Fraction Combined with beta-Tricalcium Phosphate in Posterior Lumbar Interbody Fusion: Phase I Clinical Trial. Cells 2020, 9, 2250. [Google Scholar] [CrossRef]
- Kwon, B.T.; Kim, H.J.; Lee, S.; Park, S.M.; Ham, D.W.; Park, H.J.; Kwon, O.; Yeom, J.S. Feasibility and safety of a CaO-SiO2-P2O5-B2O3 bioactive glass ceramic spacer in posterior lumbar interbody fusion compared with polyetheretherketone cage: A prospective randomized controlled trial. Acta Neurochir. 2023, 165, 135–144. [Google Scholar] [CrossRef]
- Frost, A.; Bagouri, E.; Brown, M.; Jasani, V. Osteolysis following resorbable poly-L-lactide-co-D, L-lactide PLIF cage use: A review of cases. Eur. Spine J. 2012, 21, 449–454. [Google Scholar] [CrossRef]
- DiStefano, T.J.; Shmukler, J.O.; Danias, G.; Iatridis, J.C. The Functional Role of Interface Tissue Engineering in Annulus Fibrosus Repair: Bridging Mechanisms of Hydrogel Integration with Regenerative Outcomes. ACS Biomater. Sci. Eng. 2020, 6, 6556–6586. [Google Scholar] [CrossRef]
- Salamanna, F.; Tschon, M.; Borsari, V.; Pagani, S.; Martini, L.; Fini, M. Spinal fusion procedures in the adult and young population: A systematic review on allogenic bone and synthetic grafts when compared to autologous bone. J. Mater. Sci. Mater. Med. 2020, 31, 51. [Google Scholar] [CrossRef]
- Swank, M.L.; Lowery, G.L.; Bhat, A.L.; McDonough, R.F. Anterior cervical allograft arthrodesis and instrumentation: Multilevel interbody grafting or strut graft reconstruction. Eur. Spine J. 1997, 6, 138–143. [Google Scholar] [CrossRef]
- Lowery, G.L.; McDonough, R.F. The significance of hardware failure in anterior cervical plate fixation. Patients with 2- to 7-year follow-up. Spine 1998, 23, 181–186, discussion 186–187. [Google Scholar] [CrossRef]
- Lopez-Espina, C.G.; Amirouche, F.; Havalad, V. Multilevel cervical fusion and its effect on disc degeneration and osteophyte formation. Spine 2006, 31, 972–978. [Google Scholar] [CrossRef] [PubMed]
- Radcliff, K.; Davis, R.J.; Hisey, M.S.; Nunley, P.D.; Hoffman, G.A.; Jackson, R.J.; Bae, H.W.; Albert, T.; Coric, D. Long-term Evaluation of Cervical Disc Arthroplasty with the Mobi-C(c) Cervical Disc: A Randomized, Prospective, Multicenter Clinical Trial with Seven-Year Follow-up. Int. J. Spine Surg. 2017, 11, 31. [Google Scholar] [CrossRef] [PubMed]
- Vleggeert-Lankamp, C.L.A.; Janssen, T.M.H.; van Zwet, E.; Goedmakers, C.M.W.; Bosscher, L.; Peul, W.; Arts, M.P. The NECK trial: Effectiveness of anterior cervical discectomy with or without interbody fusion and arthroplasty in the treatment of cervical disc herniation; a double-blinded randomized controlled trial. Spine J. 2019, 19, 965–975. [Google Scholar] [CrossRef] [PubMed]
- Ghobrial, G.M.; Lavelle, W.F.; Florman, J.E.; Riew, K.D.; Levi, A.D. Symptomatic Adjacent Level Disease Requiring Surgery: Analysis of 10-Year Results from a Prospective, Randomized, Clinical Trial Comparing Cervical Disc Arthroplasty to Anterior Cervical Fusion. Neurosurgery 2019, 84, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Phillips, F.M.; Geisler, F.H.; Gilder, K.M.; Reah, C.; Howell, K.M.; McAfee, P.C. Long-term Outcomes of the US FDA IDE Prospective, Randomized Controlled Clinical Trial Comparing PCM Cervical Disc Arthroplasty with Anterior Cervical Discectomy and Fusion. Spine 2015, 40, 674–683. [Google Scholar] [CrossRef]
- Loumeau, T.P.; Darden, B.V.; Kesman, T.J.; Odum, S.M.; Van Doren, B.A.; Laxer, E.B.; Murrey, D.B. A RCT comparing 7-year clinical outcomes of one level symptomatic cervical disc disease (SCDD) following ProDisc-C total disc arthroplasty (TDA) versus anterior cervical discectomy and fusion (ACDF). Eur. Spine J. 2016, 25, 2263–2270. [Google Scholar] [CrossRef]
- Lavelle, W.F.; Riew, K.D.; Levi, A.D.; Florman, J.E. Ten-year Outcomes of Cervical Disc Replacement with the BRYAN Cervical Disc: Results from a Prospective, Randomized, Controlled Clinical Trial. Spine 2019, 44, 601–608. [Google Scholar] [CrossRef]
- Sasso, W.R.; Smucker, J.D.; Sasso, M.P.; Sasso, R.C. Long-term Clinical Outcomes of Cervical Disc Arthroplasty: A Prospective, Randomized, Controlled Trial. Spine 2017, 42, 209–216. [Google Scholar] [CrossRef]
- Goffin, J.; Van Calenbergh, F.; van Loon, J.; Casey, A.; Kehr, P.; Liebig, K.; Lind, B.; Logroscino, C.; Sgrambiglia, R.; Pointillart, V. Intermediate follow-up after treatment of degenerative disc disease with the Bryan Cervical Disc Prosthesis: Single-level and bi-level. Spine 2003, 28, 2673–2678. [Google Scholar] [CrossRef]
- Alvin, M.D.; Mroz, T.E. The Mobi-C cervical disc for one-level and two-level cervical disc replacement: A review of the literature. Med. Devices 2014, 7, 397–403. [Google Scholar] [CrossRef]
- Huppert, J.; Beaurain, J.; Steib, J.P.; Bernard, P.; Dufour, T.; Hovorka, I.; Stecken, J.; Dam-Hieu, P.; Fuentes, J.M.; Vital, J.M.; et al. Comparison between single- and multi-level patients: Clinical and radiological outcomes 2 years after cervical disc replacement. Eur. Spine J. 2011, 20, 1417–1426. [Google Scholar] [CrossRef] [PubMed]
- Gornet, M.F.; Lanman, T.H.; Burkus, J.K.; Hodges, S.D.; McConnell, J.R.; Dryer, R.F.; Copay, A.G.; Nian, H.; Harrell, F.E., Jr. Cervical disc arthroplasty with the Prestige LP disc versus anterior cervical discectomy and fusion, at 2 levels: Results of a prospective, multicenter randomized controlled clinical trial at 24 months. J. Neurosurg. Spine 2017, 26, 653–667. [Google Scholar] [CrossRef] [PubMed]
- Coric, D.; Guyer, R.D.; Bae, H.; Nunley, P.D.; Strenge, K.B.; Peloza, J.H.; Boltes, M.O.; Ohnmeiss, D.D. Prospective, multicenter study of 2-level cervical arthroplasty with a PEEK-on-ceramic artificial disc. J. Neurosurg. Spine 2022, 37, 357–367. [Google Scholar] [CrossRef] [PubMed]
- Davis, R.J.; Kim, K.D.; Hisey, M.S.; Hoffman, G.A.; Bae, H.W.; Gaede, S.E.; Rashbaum, R.F.; Nunley, P.D.; Peterson, D.L.; Stokes, J.K. Cervical total disc replacement with the Mobi-C cervical artificial disc compared with anterior discectomy and fusion for treatment of 2-level symptomatic degenerative disc disease: A prospective, randomized, controlled multicenter clinical trial: Clinical article. J. Neurosurg. Spine 2013, 19, 532–545. [Google Scholar] [CrossRef]
- Cheng, L.; Nie, L.; Zhang, L.; Hou, Y. Fusion versus Bryan Cervical Disc in two-level cervical disc disease: A prospective, randomised study. Int. Orthop. 2009, 33, 1347–1351. [Google Scholar] [CrossRef]
- Gornet, M.F.; Lanman, T.H.; Burkus, J.K.; Dryer, R.F.; McConnell, J.R.; Hodges, S.D.; Schranck, F.W. Two-level cervical disc arthroplasty versus anterior cervical discectomy and fusion: 10-year outcomes of a prospective, randomized investigational device exemption clinical trial. J. Neurosurg. Spine 2019, 31, 508–518. [Google Scholar] [CrossRef]
- Hou, Y.; Liu, Y.; Yuan, W.; Wang, X.; Chen, H.; Yang, L.; Zhang, Y. Cervical kinematics and radiological changes after Discover artificial disc replacement versus fusion. Spine J. 2014, 14, 867–877. [Google Scholar] [CrossRef]
- Kim, K.; Hoffman, G.; Bae, H.; Redmond, A.; Hisey, M.; Nunley, P.; Jackson, R.; Tahernia, D.; Araghi, A. Ten-Year Outcomes of 1- and 2-Level Cervical Disc Arthroplasty from the Mobi-C Investigational Device Exemption Clinical Trial. Neurosurgery 2021, 88, 497–505. [Google Scholar] [CrossRef]
- Kim, S.W.; Shin, J.H.; Arbatin, J.J.; Park, M.S.; Chung, Y.K.; McAfee, P.C. Effects of a cervical disc prosthesis on maintaining sagittal alignment of the functional spinal unit and overall sagittal balance of the cervical spine. Eur. Spine J. 2008, 17, 20–29. [Google Scholar] [CrossRef]
- Liu, B.; Zeng, Z.; Hoof, T.V.; Kalala, J.P.; Liu, Z.; Wu, B. Comparison of hybrid constructs with 2-level artificial disc replacement and 2-level anterior cervical discectomy and fusion for surgical reconstruction of the cervical spine: A kinematic study in whole cadavers. Med. Sci. Monit. 2015, 21, 1031–1037. [Google Scholar] [CrossRef]
- Gandhi, A.A.; Kode, S.; DeVries, N.A.; Grosland, N.M.; Smucker, J.D.; Fredericks, D.C. Biomechanical Analysis of Cervical Disc Replacement and Fusion Using Single Level, Two Level, and Hybrid Constructs. Spine 2015, 40, 1578–1585. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Li, Y.; Feng, R.; Han, S. Study on biomechanical analysis of two-level cervical Mobi-C and arthrodesis. Am. J. Transl. Res. 2021, 13, 12714–12723. [Google Scholar] [PubMed]
- Zhang, J.; Meng, F.; Ding, Y.; Li, J.; Han, J.; Zhang, X.; Dong, W. Comprehensive Analysis of Hybrid Surgery and Anterior Cervical Discectomy and Fusion in Cervical Diseases: A Meta-Analysis. Medicine 2020, 99, e19055. [Google Scholar] [CrossRef]
- Coric, D.; Guyer, R.D.; Nunley, P.D.; Musante, D.; Carmody, C.; Gordon, C.; Lauryssen, C.; Boltes, M.O.; Ohnmeiss, D.D. Prospective, randomized multicenter study of cervical arthroplasty versus anterior cervical discectomy and fusion: 5-year results with a metal-on-metal artificial disc. J. Neurosurg. Spine 2018, 28, 252–261. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.J.; Kim, K.R.; Son, D.W.; Shin, D.A.; Yi, S.; Kim, K.N.; Yoon, D.H.; Ha, Y. Radiological Changes in Adjacent and Index Levels after Cervical Disc Arthroplasty. Yonsei Med. J. 2022, 63, 72–81. [Google Scholar] [CrossRef]
- Wu, T.K.; Wang, B.Y.; Meng, Y.; Ding, C.; Yang, Y.; Lou, J.G.; Liu, H. Multilevel cervical disc replacement versus multilevel anterior discectomy and fusion: A meta-analysis. Medicine 2017, 96, e6503. [Google Scholar] [CrossRef]
- Li, Y.; Shen, H.; Khan, K.Z.; Fang, S.; Liao, Z.; Liu, W. Comparison of Multilevel Cervical Disc Replacement and Multilevel Anterior Discectomy and Fusion: A Systematic Review of Biomechanical and Clinical Evidence. World Neurosurg. 2018, 116, 94–104. [Google Scholar] [CrossRef]
- Loidolt, T.; Kurra, S.; Riew, K.D.; Levi, A.D.; Florman, J.; Lavelle, W.F. Comparison of adverse events between cervical disc arthroplasty and anterior cervical discectomy and fusion: A 10-year follow-up. Spine J. 2021, 21, 253–264. [Google Scholar] [CrossRef]
- Satin, A.M.; Rogers-LaVanne, M.P.; Derman, P.B. Cervical Disk Arthroplasty and Range of Motion at 7 Years: Impact on Adjacent Level Degeneration. Clin. Spine Surg. 2023, 36, 83–89. [Google Scholar] [CrossRef]
- Miller, J.; Sasso, R.; Anderson, P.; Riew, K.D.; McPhilamy, A.; Gianaris, T. Adjacent Level Degeneration: Bryan Total Disc Arthroplasty Versus Anterior Cervical Discectomy and Fusion. Clin. Spine Surg. 2018, 31, E98–E101. [Google Scholar] [CrossRef]
- Jawahar, A.; Cavanaugh, D.A.; Kerr, E.J., 3rd; Birdsong, E.M.; Nunley, P.D. Total disc arthroplasty does not affect the incidence of adjacent segment degeneration in cervical spine: Results of 93 patients in three prospective randomized clinical trials. Spine J. 2010, 10, 1043–1048. [Google Scholar] [CrossRef] [PubMed]
- Jackson, R.J.; Davis, R.J.; Hoffman, G.A.; Bae, H.W.; Hisey, M.S.; Kim, K.D.; Gaede, S.E.; Nunley, P.D. Subsequent surgery rates after cervical total disc replacement using a Mobi-C Cervical Disc Prosthesis versus anterior cervical discectomy and fusion: A prospective randomized clinical trial with 5-year follow-up. J. Neurosurg. Spine 2016, 24, 734–745. [Google Scholar] [CrossRef] [PubMed]
- Janssen, M.E.; Zigler, J.E.; Spivak, J.M.; Delamarter, R.B.; Darden, B.V., 2nd; Kopjar, B. ProDisc-C Total Disc Replacement Versus Anterior Cervical Discectomy and Fusion for Single-Level Symptomatic Cervical Disc Disease: Seven-Year Follow-up of the Prospective Randomized U.S. Food and Drug Administration Investigational Device Exemption Study. J. Bone Joint Surg. Am. 2015, 97, 1738–1747. [Google Scholar] [CrossRef] [PubMed]
- Smucker, J.D.; Bassuener, S.R.; Sasso, R.C.; Riew, K.D. Comparison of Long-term Differences in Dysphagia: Cervical Arthroplasty and Anterior Cervical Fusion. Clin. Spine Surg. 2017, 30, E1160–E1164. [Google Scholar] [CrossRef]
- Zarkadis, N.J.; Cleveland, A.W.; Kusnezov, N.A.; Dunn, J.C.; Caram, P.M.; Herzog, J.P. Outcomes Following Multilevel Cervical Disc Arthroplasty in the Young Active Population. Mil. Med. 2017, 182, e1790–e1794. [Google Scholar] [CrossRef]
- Mehren, C.; Suchomel, P.; Grochulla, F.; Barsa, P.; Sourkova, P.; Hradil, J.; Korge, A.; Mayer, H.M. Heterotopic ossification in total cervical artificial disc replacement. Spine 2006, 31, 2802–2806. [Google Scholar] [CrossRef]
- Boody, B.S.; Lee, E.N.; Sasso, W.R.; Vinayek, S.; Demeter, J.M.; Sasso, R.C.; Smucker, J.D. Functional Outcomes Associated With Adjacent-level Ossification Disease 10 Years After Cervical Disc Arthroplasty or ACDF. Clin. Spine Surg. 2020, 33, E420–E425. [Google Scholar] [CrossRef]
- Xie, L.; Liu, M.; Ding, F.; Li, P.; Ma, D. Cervical disc arthroplasty (CDA) versus anterior cervical discectomy and fusion (ACDF) in symptomatic cervical degenerative disc diseases (CDDDs): An updated meta-analysis of prospective randomized controlled trials (RCTs). Springerplus 2016, 5, 1188. [Google Scholar] [CrossRef]
- Paracino, R.; Fasinella, M.R.; Mancini, F.; Marini, A.; Dobran, M. Review of laminoplasty versus laminectomy in the surgical management of cervical spondylotic myelopathy. Surg. Neurol. Int. 2021, 12, 44. [Google Scholar] [CrossRef]
- Li, X.; Yu, H.; Welle, K.; Gathen, M.; Zhang, L.; Xiao, J.; Kabir, K. Comparative Effectiveness and Safety of Open-Door Laminoplasty, French-Door Laminoplasty, Laminectomy and Fusion, and Laminectomy Alone for Multilevel Degenerative Cervical Myelopathy: A Bayesian Network Analysis. Adv. Ther. 2022, 39, 117–139. [Google Scholar] [CrossRef]
- Weinberg, D.S.; Rhee, J.M. Cervical laminoplasty: Indication, technique, complications. J. Spine Surg. 2020, 6, 290–301. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wo, J.; Wen, J.; Zhang, L.; Xu, W.; Wang, X. Laminoplasty versus laminectomy with fusion for treatment of multilevel cervical compressive myelopathy: An updated meta-analysis. Postgrad. Med. J. 2022, 98, 680–688. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Ren, R.; Ma, W.; Xu, S.; Peng, L.; Zhong, Z.; Zheng, Y. Comparison of Laminoplasty vs. Laminectomy for Cervical Spondylotic Myelopathy: A Systematic Review and Meta-Analysis. Front. Surg. 2021, 8, 790593. [Google Scholar] [CrossRef] [PubMed]
- Yoshii, T.; Egawa, S.; Chikuda, H.; Wakao, N.; Furuya, T.; Kanchiku, T.; Nagoshi, N.; Fujiwara, Y.; Yoshida, M.; Taguchi, T.; et al. A systematic review and meta-analysis comparing anterior decompression with fusion and posterior laminoplasty for cervical spondylotic myelopathy. J. Orthop. Sci. 2021, 26, 116–122. [Google Scholar] [CrossRef]
- Waisbrod, G.; Mannion, A.F.; Fekete, T.F.; Kleinstueck, F.; Jeszenszky, D.; Haschtmann, D. Surgical training in spine surgery: Safety and patient-rated outcome. Eur. Spine J. 2019, 28, 807–816. [Google Scholar] [CrossRef]
- Pham, M.H.; Jakoi, A.M.; Wali, A.R.; Lenke, L.G. Trends in Spine Surgery Training During Neurological and Orthopaedic Surgery Residency: A 10-Year Analysis of ACGME Case Log Data. J. Bone Jt. Surg. Am. 2019, 101, e122. [Google Scholar] [CrossRef]
- Boody, B.S.; Hashmi, S.Z.; Rosenthal, B.D.; Maslak, J.P.; McCarthy, M.H.; Patel, A.A.; Savage, J.W.; Hsu, W.K. The Effectiveness of Bioskills Training for Simulated Lumbar Pedicle Screw Placement. Glob. Spine J. 2018, 8, 557–562. [Google Scholar] [CrossRef]
- McCarthy, M.H.; Boody, B.S.; Swiatek, P.R.; Rosenthal, B.D.; Savage, J.; Hsu, W.K.; Patel, A.A. The perceived efficacy and utility of spine bioskills curricula for resident and fellow education. J. Orthop. 2020, 20, 87–91. [Google Scholar] [CrossRef]
- Wang, Z.; Shen, J. Simulation Training in Spine Surgery. J. Am. Acad. Orthop. Surg. 2022, 30, 400–408. [Google Scholar] [CrossRef]
- Gotfryd, A.O.; Paula, F.C.; Sauma, M.L.; Iutaka, A.S.; Rodrigues, L.M.R.; Meyer, G.P.C.; Teivelis, M.P.; Poetscher, A.W.; Del Curto, D.; Kang, D.W.W.; et al. Minimally invasive swine spine surgery training: Technical aspects, benefits, and anatomical limitations. Einstein 2022, 20, eAO6318. [Google Scholar] [CrossRef]
- Sayari, A.J.; Chen, O.; Harada, G.K.; Lopez, G.D. Success of Surgical Simulation in Orthopedic Training and Applications in Spine Surgery. Clin. Spine Surg. 2021, 34, 82–86. [Google Scholar] [CrossRef] [PubMed]
- Gragnaniello, C.; Abou-Hamden, A.; Mortini, P.; Colombo, E.V.; Bailo, M.; Seex, K.A.; Litvack, Z.; Caputy, A.J.; Gagliardi, F. Complex Spine Pathology Simulator: An Innovative Tool for Advanced Spine Surgery Training. J. Neurol. Surg. A Cent. Eur. Neurosurg. 2016, 77, 515–522. [Google Scholar] [CrossRef] [PubMed]
- Furst, D.; Hollensteiner, M.; Gabauer, S.; Esterer, B.; Trieb, K.; Eckstein, F.; Schrempf, A. Transpedicular Approach on a Novel Spine Simulator: A Validation Study. J. Surg. Educ. 2018, 75, 1127–1134. [Google Scholar] [CrossRef] [PubMed]
- Stefan, P.; Pfandler, M.; Wucherer, P.; Habert, S.; Furmetz, J.; Weidert, S.; Euler, E.; Eck, U.; Lazarovici, M.; Weigl, M.; et al. Team training and assessment in mixed reality-based simulated operating room: Current state of research in the field of simulation in spine surgery exemplified by the ATMEOS project. Unfallchirurg 2018, 121, 271–277. [Google Scholar] [CrossRef] [PubMed]
- Liounakos, J.I.; Chenin, L.; Theodore, N.; Wang, M.Y. Robotics in Spine Surgery and Spine Surgery Training. Oper. Neurosurg. 2021, 21, 35–40. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Foley, D.; Hardacker, P.; McCarthy, M. Emerging Technologies within Spine Surgery. Life 2023, 13, 2028. https://doi.org/10.3390/life13102028
Foley D, Hardacker P, McCarthy M. Emerging Technologies within Spine Surgery. Life. 2023; 13(10):2028. https://doi.org/10.3390/life13102028
Chicago/Turabian StyleFoley, David, Pierce Hardacker, and Michael McCarthy. 2023. "Emerging Technologies within Spine Surgery" Life 13, no. 10: 2028. https://doi.org/10.3390/life13102028
APA StyleFoley, D., Hardacker, P., & McCarthy, M. (2023). Emerging Technologies within Spine Surgery. Life, 13(10), 2028. https://doi.org/10.3390/life13102028