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Abstract: Keeping up with the shift towards personalized neuroscience essentially requires the
derivation of meaningful insights from individual brain signal recordings by analyzing the descrip-
tive indexes of physio-pathological states through statistical methods that prioritize subject-specific
differences under varying experimental conditions. Within this framework, the current study presents
a methodology for assessing the value of the single-subject fingerprints of brain functional connec-
tivity, assessed both by standard pairwise and novel high-order measures. Functional connectivity
networks, which investigate the inter-relationships between pairs of brain regions, have long been
a valuable tool for modeling the brain as a complex system. However, their usefulness is limited
by their inability to detect high-order dependencies beyond pairwise correlations. In this study, by
leveraging multivariate information theory, we confirm recent evidence suggesting that the brain
contains a plethora of high-order, synergistic subsystems that would go unnoticed using a pairwise
graph structure. The significance and variations across different conditions of functional pairwise
and high-order interactions (HOIs) between groups of brain signals are statistically verified on an
individual level through the utilization of surrogate and bootstrap data analyses. The approach is
illustrated on the single-subject recordings of resting-state functional magnetic resonance imaging
(rest-fMRI) signals acquired using a pediatric patient with hepatic encephalopathy associated with a
portosystemic shunt and undergoing liver vascular shunt correction. Our results show that (i) the
proposed single-subject analysis may have remarkable clinical relevance for subject-specific investi-
gations and treatment planning, and (ii) the possibility of investigating brain connectivity and its
post-treatment functional developments at a high-order level may be essential to fully capture the
complexity and modalities of the recovery.

Keywords: single-subject analysis; functional connectivity; high-order interactions; surrogate data
analysis; bootstrap validation

1. Introduction

Network representation is an effective tool for comprehending complex systems and
the interactions among their distinct components. In neuroscience, network analysis is
valuable for identifying patterns of connectivity and communication within the brain [1,2].
Over the last few decades, brain connectivity has been extensively investigated [2–8], with
the aim to disentangle and understand the underlying mechanisms of resting-state scenar-
ios, as well as of different cognitive and perceptual tasks necessitating a co-ordinated flow
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of information, which, in turn, changes according to the strength and pattern of oscillatory
synchrony within and between networks of functionally specialized brain regions. Modern
neuroscience employs a variety of electrophysiological and neuroimaging techniques to ex-
plore brain connectivity associated with both normal and neuro-pathologic functions, such
as functional magnetic resonance imaging (fMRI), widely used to quantify hemodynamic
changes (i.e., spontaneous blood oxygen level-dependent—BOLD—signal fluctuations)
following the activation of specific brain areas [2,9–11]. Specifically, resting-state fMRI
(rest-fMRI) is a novel neuroimaging technique that explores the intrinsic brain functional
architecture, or connectome, associated with both normal and neuropathologic functions by
examining resting-state networks (RSNs) in the resting or relaxed state [10,12–15]. Despite
ongoing standardization efforts for rest-fMRI, there is evidence suggesting its potential
to provide valuable insights into the organization of brain neuronal networks in routine
clinical settings [10].

Several measures have been developed to examine functional connectivity in the brain,
probing the intricate interactions between the elements of cerebral networks. Approaches
exploring pairwise connectivity patterns, such as mutual information (MI) [16], are easily
applicable, require little computational effort, and offer a straightforward interpretation of
the findings. Although highly effective [17–20], these methods are inherently restricted by
the constructional requirement that every interaction must be between two elements, i.e.,
pairwise. However, there is mounting evidence that such measures cannot fully capture
the interplay among the multiple units of a complex system [18,21,22]. Consequently,
recognizing and modeling high-order functional structures, which are characterized by
statistical interactions involving more than two network units, has become a crucial and
evolving area of complex systems research [1,21,22]. In network neuroscience, high-order
interactions (HOIs) have been suggested to be the fundamental components of complexity
and functional integration in brain networks [23], and they are proposed to be linked
to emergent mental phenomena and consciousness [24]. Nevertheless, in spite of their
promising significance, the investigation of HOIs in the brain is a relatively unexplored do-
main. Given that these interactions are not typically accessible through the well-established
pairwise measures of functional connectivity network analysis, their study has often been
limited by the lack of formal tools, as well as by the involvement of inherent computational
and combinatorial challenges. While many different information theoretic metrics have
been proposed throughout the years, all attempting to capture the information shared by
triplets of random variables or processes [25–28], a recent work [29] suggests the potential
use of information theory for identifying HOIs in multivariate systems, as well as for dis-
tinguishing between qualitatively distinct modes of information sharing, i.e., redundancy
and synergy. These two general concepts refer to the nature of the interactions among the
multiple units of a complex system (e.g., the brain, the human body, the global climate,
or any financial system) [21,22,30]. Specifically, redundancy refers to group interactions
that can be explained by the communication of subgroups of variables, thus pertaining
to information that is replicated across numerous elements of the complex system, i.e.,
common information or patterns being shared: observing subsets of elements can resolve
uncertainty across all the other elements of that system. Conversely, synergistic information
sharing takes place when the joint state of three or more variables is necessary to resolve
uncertainty arising from statistical interactions that can be found collectively in a network
but not in parts of it considered separately. Synergy is a potentially intriguing phenomenon
as it reflects the ability of the human brain to generate new information by combining the
interplay of anatomically distinct but functionally connected brain areas. A measurement
of this quantity in the context of HOIs comes from O-information (OI) [29], which provides
an overall evaluation of whether a system is dominated by redundancy or synergy.

The statistical validation of brain connectivity metrics is essential to detect the signifi-
cance of the associations between pairs or groups of network nodes, as well as to investigate
their variability across subjects or experimental conditions. Indeed, it is commonly known
that spurious connectivity patterns may arise even in the case of complete uncoupling
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between the analyzed signals due to structural misunderstandings [31], finite data size
effects, or acquisition/computation errors that show an estimated value that deviates from
the true connectivity value [32]. Furthermore, while such validation is typically performed
at the level of subject groups, in clinical practice, where the goal is to optimize the individ-
ual treatment plan and look into the effects of interventions on a single patient [2,10,33],
statistical analyses should be focused on subject-specific differences between experimental
conditions. Indeed, the increasing demand for personalized neuroscience necessitates
drawing conclusions from connectivity metrics obtained from individual recordings of
brain signals. In order to address this, methods to determine the accuracy (confidence
limits) of individual estimates of the considered indexes are still necessary. This is especially
important as the accuracy of estimates may vary over time and depend on factors such as
the individual (patho) physiologic state. The absence of confidence limits or error bounds
on estimates may lead to biased clinical decisions, making it imperative to ensure a reliable
assessment of the patient’s underlying condition.

By taking the previous concepts into account, the rationale of this work is to emphasize
the importance of single-subject analysis to investigate brain connectivity in different phys-
iopathological states, as well as the need to exploit novel high-order measures capturing
the properties of complex brain networks as a whole. To this purpose, we propose a single-
subject-based approach to statistically assess pairwise and high-order connectivity patterns
in brain networks, investigated respectively through the MI and OI measures estimated in
the framework of linear parametric regression models based on the utilization of surrogate
and bootstrap data analyses. Specifically, surrogate time series, mimicking the individual
properties of the original series but being otherwise uncoupled [34], are exploited to assess
whether the dynamics of two putatively interacting nodes are significantly coupled or not,
while the bootstrap technique [35] is employed to generate confidence intervals that allow
the significance assessment of HOIs, as well as the comparison of individual estimates of
the considered indexes across different experimental conditions. The approach is validated
on single-subject recordings of multivariate fMRI signals, confirming that the single-subject
analysis of network connectivity can provide detailed information on the brain functions
across different physiopathological states. In clinical practice, the utilization of the pro-
posed single-subject statistical validation approach through surrogate and bootstrap data
analyses is essential to focus on subject-specific interventions and treatments, as well as
to ensure a reliable assessment of the individual’s underlying condition. Moreover, our
results support the application of multivariate information measures on a single-subject
basis to unveil synergistic “shadow structures” emerging from resting-state brain activity,
missed by bivariate functional connectivity approaches, which indeed reveal redundancy-
dominated correlations and do not provide an overall map of the statistical structure of the
network, as clearly demonstrated in [36–38]. This novel combined exploitation of complex
network analysis through high-order measures and single-subject statistical validation
approaches is the core of our work, and this has the great potential to detect subject-specific
changes of complex brain connectivity patterns in different physiopathological states. In
order to visualize these concepts and better understand the rationale behind our study, we
refer the reader to Figure 1.
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Figure 1. Schematic workflow of the proposed methodology.
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2. Methods and Materials

This section reports the mathematical details of the methodology proposed for the
assessment and statistical validation of subject-specific pairwise and high-order brain
functional connectivity measures (Section 2.1). A schematic workflow of the proposed
methodology is reported in Figure 1, illustrating the rationale of the approach and its main
steps. The approach is then validated in a simulation example and applied to a clinical
dataset (Section 2.2).

2.1. Methods

Let us consider a network of Q random variables, S = {S1, . . . , SQ}. The multiple
interactions between N variables taken from the set {S1, . . . , SQ} can be investigated
by means of a static analysis of multiple realizations of these variables, available in the
form of multiple time series; in this analysis, temporal correlations are disregarded, and
only zero-lag effects are taken into account. This is typically carried out in the field of
brain functional connectivity [9,14], which, indeed, quantifies the temporal dependency of
neuronal activation patterns of anatomically separated brain regions [19]. In this context,
well-established measures defined in the framework of information theory can be exploited
to study the interactions between pairs (i.e., N = 2) and/or groups of variables (i.e.,
N = 3, . . . , Q) taken from S.

2.1.1. Connectivity Measures: Pairwise and High-Order Approaches

The pairwise link between two variables, Si and Sj, taken from the set {S1, . . . , SQ},
with i, j = 1, . . . , Q; i 6= j can be investigated by means of the measure of mutual information
(MI), which quantifies the information shared between the two variables based on the
concept of Shannon entropy [16,39]. In the framework of information theory, the MI is
defined as

I(Si; Sj) = H(Si)− H
(
Si|Sj

)
, (1)

where H(·) denotes the entropy of a single variable, measuring the amount of informa-
tion carried by that variable, while H(·|·) denotes conditional entropy, measuring the
information carried by the first variable when the second is known [40].

Nevertheless, in complex networks of interacting variables, HOIs involving more
than two nodes at a time often emerge and display patterns that cannot be detected using
pairwise measures. HOIs can be assessed by means of O-information (OI), a novel theoretic
measure of information that generalizes the concept of MI to groups of variables [29]. The
OI of N random variables taken from the set {S1, . . . , SQ} is defined as

Ω(SN) = Ω(SN
−j) + ∆(SN

−j; Sj), (2)

where SN =
{

Si1 , . . . , SiN

}
(i1, . . . , iN ∈ {1, . . . , Q}, N ≤ Q) is the analyzed group of

random variables, SN
−j = SN\Sj is the subset of random variables where Sj is removed (j ∈

{i1, . . . , iN}), and where the quantity

∆(SN
−j; Sj) = (2− N)I(SN

−j; Sj) +
N

∑
m=1
m 6=j

I(SN
−mj; Sj) (3)

is the variation of the OI obtained with the addition of Sj to SN
−j, being SN

−mj = SN\
{

Sj, Sm
}

(in the following, referred to as ∆(OI)). Importantly, the sign of ∆(OI) can take on both
positive values, meaning that the information brought by Sj to SN

−j is prevalently redundant,

and negative values, meaning that the influence of SN
−j on Sj is prevalently synergistic. Then,

the system is redundancy-dominated when OI > 0, and synergy-dominated when OI < 0;
if OI = 0, synergy and redundancy are balanced in the analyzed network. Moreover, since
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Ω(S2) = 0 for any pair of variables, when N = 3 random variables are considered, i.e.,
S =

{
Si, Sk, Sj

}
, the OI in (2) reduces to the OI increment:

∆(Si, Sk; Sj) = −I
(
Sj; Si, Sk

)
+ I
(
Sj; Si

)
+ I
(
Sj; Sk

)
, (4)

which, in turn, coincides with the well-known interaction information [41,42], measuring
the balance between synergy and redundancy when a target variable is added to a bivariate
source vector process.

2.1.2. Computation through Linear Parametric Regression Models

The computation of the pairwise and high-order connectivity measures defined above
requires an approach to compute the MI between random variables. Assuming that the
observed variables are stationary and have a joint Gaussian distribution, the analysis can
be performed by exploiting linear parametric regression models. Furthermore, it was
demonstrated that regression methods show greater sensitivity to the coupling between the
observed variables, with better performances with respect to other, more sophisticated ap-
proaches, requiring specific assumptions about the underlying model of the relationship [8].
Specifically, two generic zero-mean vector variables, X and Y, containing respectively t1
and t2 scalar variables, are related by the following linear regression model:

X = AY + U, (5)

where X is predicted using a t1 × t2 coefficient matrix, A, which weights the regressors of
Y, and U = [U1 . . . Ut1 ]

ᵀ is a vector of t1 zero-mean white noises.
In the multivariate setting introduced in Section 2.1.1, the vectors X and Y can be iden-

tified properly by selecting variables from the set {S1, . . . , SQ} to investigate the pairwise
(i.e., N = 2) or high-order (i.e., N = 3, . . . , Q) interactions between those variables of the
network. Specifically, the MI can be assessed from the linear regression model in (5), exploit-
ing the relation between entropy and variance that is valid for Gaussian variables. In this
case, the entropy of the predicted variable can be expressed as H(X) = 1

2 log
(
(2πe)t1 |ΣX|

)
,

while the conditional entropy of the predicted variable given the predictor is given by
H(X | Y) = 1

2 log
(
(2πe)t1 |ΣU|

)
, where ΣX is the t1 × t1 covariance matrix of the predicted

vector variable, ΣU is the t1 × t1 covariance matrix of the prediction errors, and | · | is the
matrix determinant. This allows us to rewrite the MI in (1) as

I(X; Y) =
1
2

log

(
|ΣX|
|ΣU|

)
. (6)

This measure is symmetric and monotonically related to the cross-correlation between
X and Y [43]. As such, it can be exploited to quantify the pairwise connectivity between
two random variables, Si and Sj, as well as the high-order interactions between Sj and SN

−mj

(or, analogously, SN
−j), taking the role of X and Y in (5), respectively.

2.1.3. Statistical Validation

This section presents the use of surrogate and bootstrap data analyses to statistically
validate the proposed measures of pairwise and high-order interactions. Validation is
performed at the level of individual realizations of the observed variables {S1, . . . , SQ}, ob-
tained in the form of the set of simultaneously measured time series si = {si(1), . . . , si(M)},
where i = 1, . . . , Q and M represent the length of the time series.

Surrogate Data Analysis

The method of surrogate data [34] is employed to obtain a threshold for zero pairwise
connectivity, setting a significance level for the MI measure.
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Specifically, a linear model as in (5) is first identified on the time series {x, y}, with
x = sj and y = si, i, j = 1, . . . , Q; i 6= j. Then, estimates of the MI, denoted as I(x; y), are
obtained using (6), with t1, t2 = 1. Afterward, a surrogate time series that preserves the
individual linear correlation properties of two series but destroys any correlation between
them is obtained through the iterative amplitude-adjusted Fourier transform (iAAFT)
procedure [44], which represents an advancement over the Fourier transform (FT) method.
It generates surrogate time series by computing the FT of the original series, substituting
the Fourier phases with random numbers uniformly distributed between 0 and 2π, and
finally performing the inverse FT. Then, to address the main limitation of the FT method,
which consists of a distortion of the amplitude distribution when such a distribution is
not Gaussian, an iterative procedure is implemented, which alternately ensures that the
surrogate series maintains both the same power spectrum and amplitude distribution as
the original series. This procedure is repeated Ns times to obtain the set of surrogate series
xs and ys, s = 1, . . . , Ns. The MI is then estimated on each surrogate pair, yielding the
distribution Is(x; y), from which the significance threshold Iα(x; y) is derived taking the
100(1− α)th percentile. Finally, the original MI value is deemed as statistically significant
if I(x; y) > Iα(x; y). In this work, Ns = 300 surrogate pairs were generated to assess the
existence of significant pairwise connectivity.

Bootstrap Data Analysis

The bootstrap method [35] is used to identify confidence intervals for the MI and OI
measures. For this purpose, the block bootstrap data generation procedure [45] is followed
to generate, starting from the time series si (i = 1, . . . , Q), Nb bootstrap pseudo-series
sb

i = {sb
i (1), . . . , sb

i (M)}, b = 1, . . . , Nb, which maintain all the features of the original
time series, i.e., individual and coupling properties. The procedure creates the bootstrap
pseudo-series sb

i by joining together k = M
L non-overlapping blocks chosen randomly from

the set {B1, . . . , Bk}, where L is the size of each block, Bm = {si(m), . . . , si(m + L− 1)}, and
m is chosen randomly from the set {1, . . . , M− L + 1}.

Then, the MI is recomputed from the new, full-size bootstrap series xb = sb
i and yb = sb

j

to get the estimate Ib(x; y), while the OI is recomputed at each order N from the new, full-
size bootstrap series sb

i1
, . . . , sb

iN
(i1, . . . , iN ∈ {1, . . . , Q}, N ≤ Q) to get the estimate Ωb(sN).

The procedure is iterated for b = 1, . . . , Nb to construct bootstrap distributions. In this
work, Nb = 300 bootstrap repetitions were generated to identify confidence intervals for
the investigated measures.

Statistical Significance of HOIs

The confidence intervals of the bootstrap distributions obtained, as described above,
can be exploited to check the statistical significance of the absolute OI values in (2) and the
OI increments in (3). Specifically, when a given bootstrap distribution comprises a zero
threshold at the α significance level, i.e., if the zero value is below the 100(1− α

2 )
th and

above the 100( α
2 )

th percentile of that distribution, the corresponding OI measure is deemed
as not statistically significant. Moreover, the proposed bootstrap method allows to check
whether the OI increment in (3), due to the addition of a putative target sj to a given lower-
order group of variables (referred to as multiplet) sN

−j of order N − 1, with N = 4, . . . , Q, is

significant or not, i.e., if the OI value computed for sN significantly differs from the same
measure computed for sN

−j. In order to do that for each order, the bootstrap distributions
of the OI computed for all the multiplets of two consecutive orders N and N − 1 can
be exploited. When fixing the multiplet at order N, all the roots of that multiplet at the
preceding order N− 1, i.e., lower-order multiplets, for which the elements are all contained
in the high-order multiplet, are identified. Then, for each root, the lower-order and the
high-order bootstrap distributions are compared by means of the parametric Student t-test
for unpaired data. Finally, the corresponding OI increment is deemed significant when the
difference between the two distributions is significant at the α significance level according
to the statistical test.
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Statistical Significance of the Difference between Experimental Conditions

When the MI and OI measures are computed on a single-subject basis in two different
experimental conditions, the bootstrap distributions can be employed to assess the signifi-
cance of the difference between the two conditions through a statistical test. To this end,
the bootstrap data generation procedure is executed in both the analyzed experimental
conditions, and the parametric Student t-test for unpaired data is then employed to assess
the statistical significance of the difference between pairs of bootstrap distributions for
a given measure. Note that, in this work, a significance level α = 0.05 was used both to
compute the confidence intervals of the surrogate and bootstrap distributions as well as to
perform statistical tests.

2.2. Materials

This section introduces the application of the proposed methodology to a simulated
network of stochastic Gaussian variables (Section 2.2.1) and to single-subject recordings of
the rest-fMRI signals acquired in a clinical case study of a pediatric patient suffering from
hepatic encephalopathy (Section 2.2.2).

2.2.1. Simulation Example

The framework for the computation of pairwise and high-order interactions is illus-
trated, making use of a theoretical example of simulated linear regression models, for
which the MI and OI measures are computed directly from the known model parameters.
This simulation is exploited to show that high-order measures can be used to highlight the
emergence of the patterns of interaction among groups of variables that cannot be traced
from pairwise connections alone, as well as evidencing the presence of circuits dominated
by synergy or redundancy. Moreover, we show how the methods of surrogate and boot-
strap data analysis can help to disregard nonsignificant interaction pathways among the
variables, thus allowing us to focus only on specific connectivity links within the network.

The simulation is focused on the analysis of Q = 7 random variables, with the network
structure and interdependencies specified in Figure 2A. The parameters a(i), i = 1, . . . , 6,
quantifying the pairwise relationships between the observed variables, are chosen in the
range [0.95–1], setting a(1) = a(2) = 0.99, a(3) = a(6) = 1 and a(4) = a(5) = 0.95. The
parameter range was suitably selected to impose a clear coupling between the observed
variables since lower values of the parameters (i.e., a(i) < 0.95, i = 1, . . . , 6) would lead to
lower and, hence, possibly nonsignificant values of the MI measure computed between
those variables. The network is designed to simulate three zero-mean random noises, X1,
X4, and X5, with unit variance, for which the sink (commonly called common child) is
the node X2. Then, through a chain structure, X2 converges into the node X3, which, in
turn, acts as a common driver for the nodes X6 and X7 (Figure 2A). From the resulting
network S = {X1, . . . , X7}, implemented via time series realizations of M = 500 points, the
time-domain MI between the pairs of variables was estimated, as in (6); then, its significance
was assessed by applying the method of surrogate data and evaluating the existence of
each pairwise link, as described in Section 2.1.3 (Figure 2B). The OI was computed, as in (2),
for all the possible multiplets of orders N = 3, . . . , 7, and deemed as significant when the
OI distributions, computed via bootstrap data analysis, did not comprise the zero level
(Figure 2C). Moreover, the values of the OI increment were computed as in (3), at each
order N and for each target Xj within the selected multiplet XN of that order, and these
were deemed as significant when the information brought by Xj to XN was statistically
significant according to the test discussed in Section 2.1.3 (Figure 2D).
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Figure 2. Theoretical simulation shows that high-order measures capture the synergistic and redun-
dant characters of the interaction pathways involving multiple variables within complex networks,
as well as the fact that the surrogate and bootstrap methods are helpful in the detection of significant
interaction pathways among those variables. (A) Simulation design (top), where the numbers identify
the variables, and model equations (bottom), where Ui, i = 1, . . . , 6 is the zero-mean random noise
with unit variance. (B) Circular graph representing the MI-weighed significant connections among
pairs of simulated variables. Non-significant links detected through surrogate data analysis are not
drawn. (C) Boxplots representing the distributions of the OI values for all the multiplets from order
3 to 7. In each box, the central black mark indicates the mean, and the bottom and top edges of
the box indicate the 25th and 75th percentiles, respectively; the red, blue, and grey circles indicate
positive (redundant), negative (synergistic), and nonsignificant OI values, respectively. (D) ∆(OI)
values computed for each target (numbers in the squares) inside the multiplets (sequences of numbers
along each row) at all orders (separated by black vertical lines). The red, blue, and grey squares
indicate positive (redundant), negative (synergistic), and nonsignificant ∆(OI), respectively, brought
by that target to the multiplet for a given order. The values of OI and ∆(OI) are expressed in nats,
i.e., natural units.

2.2.2. Application to Brain Networks

The proposed framework is applied to a clinical case involving one pediatric patient
treated at our hospital, the IRCCS—ISMETT (Scientific Institute for Research, Hospital-
ization and Healthcare—Mediterranean Institute for Transplantation and Advanced Spe-
cialized Therapies), Palermo, Italy, with a cavernous transformation of the portal vein,
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an obstruction also known as portal cavernoma, which is a common cause of portal hy-
pertension in children. Even in cases where liver function appears normal, this disease
can result in the development of hepatic encephalopathy (HE) [46] due to the presence
of portal-systemic shunts, which cause an increase in plasma ammonia levels and toxic
brain catabolites deposition in the globi pallidi. HE is a serious condition that can have
a profound impact on the patient’s ability to perform daily tasks, causing psychomotor
sluggishness, attention deficits, and a decline in fine motor performance. Although HE
is currently diagnosed using psychometric and electrophysiological examinations, the
administration and interpretation of psychometric tests can be influenced by a number of
variables, including but not limited to age, educational attainment, and the potential impact
of learning effects. HE may go undiagnosed if these variables are disregarded. In order
to overcome this issue, we investigated the potential of rest-fMRI with a BOLD echo-planar
imaging (EPI) technique to assess brain functional connectivity in order to detect cognitive
impairment related to the presence of HE in the analyzed pediatric patient. Moreover, the
possibility of cognitive improvement following the surgical correction of the disease using
Meso-Rex surgery, as described in [47], is also investigated.

Characteristics, Data Acquisition, and Preprocessing

The patient, an 8-year-old boy, was admitted with cognitive impairment characterized
by psychomotor sluggishness, a decline in fine motor performance, attention deficits, and a
profound reduction in the ability to perform daily tasks. Standard liver function tests and
hematologic markers were determined by obtaining and analyzing blood samples from
veins using conventional methods. A measurement of venous ammonia confirmed the
presence of ammonia.

The patient underwent Doppler ultrasonography, magnetic resonance (MR) imaging,
and MR angiography to diagnose and assess portal cavernoma, collaterals, and spontaneous
shunts. Specifically, baseline MR imaging (MRI) examinations were performed on a 3T MRI
scanner (Discovery 750w, General Electric Medical System, Milwaukee, WI, USA) utilizing a
32-channel head coil during PRE, i.e., before the surgical correction of the portal cavernoma
by means of Meso-Rex surgery and during two follow-up phases, i.e., 1 month (POST1) and
12 months (POST12) after the surgical treatment. The subject was positioned in the scanner
with his head comfortably restrained by foam padding to reduce head movement. Earplugs
were used to reduce the noise of the scanner. During the resting-state scan, the subject was
instructed to keep his eyes closed, remain as motionless as possible, and clear his head of
any particular thoughts. A standard multi-parametric MRI protocol was carried out with
fast spin-echo (FSE) T1-weighted and T2-weighted MR images, fluid-attenuated inversion
recovery (FLAIR), T2*-weighted gradient-recalled-echo (GRE), susceptibility-weighted
imaging (SWI), and standard three-direction diffusion-weighted imaging. Isotropic T1-
weighted volumetric imaging (3D-SPGR or MPRAGE) was acquired as anatomical reference
images for rest-fMRI using a BOLD EPI technique, which was then performed to assess
spontaneous neuronal activity in the resting state networks and evaluate brain network
connectivity [2,15,33,48].

The volume of T1-weighted morphological data and functional slices, obtained re-
spectively through MR and BOLD imaging, was appropriately preprocessed following
a series of steps. First, morphological scans were preprocessed by correcting motion
artifacts. The original data volume was transformed and normalized to the standard
EPI template in the Montreal Neurological Institute (MNI) atlas (https://brainmap.org/
training/BrettTransform.html, accessed on 28 September 2020) and restored to 3× 3× 3
mm3. The resulting images were spatially smoothed with an 8-mm full-width at half-
maximum Gaussian kernel. Nonbrain tissues were removed from the scans, and a segmen-
tation of the brain tissues was performed. Atlas-based cortical parcellation was obtained,
and seed selection was carried out using Brodmann areas (BAs) (https://www.brainm.
com/software/pubs/dg/BA_10-20_ROI_Talairach/functions.htm, accessed on 6 Octo-
ber 2022) after transforming the co-ordinates from the MNI atlas into the Talairach atlas

https://brainmap.org/training/BrettTransform.html
https://brainmap.org/training/BrettTransform.html
https://www.brainm.com/software/pubs/dg/BA_10-20_ROI_Talairach/functions.htm
https://www.brainm.com/software/pubs/dg/BA_10-20_ROI_Talairach/functions.htm
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(https://brainmap.org/training/BrettTransform.html, accessed on 6 October 2022). Then,
confounds, i.e., noise variables representing fluctuations of a non-neuronal origin, such
as residual physiological effects derived from subject motion, were estimated. These con-
founding effects were minimized by performing the so-called denoising procedure. To
this aim, the CONN toolbox (https://web.conn-toolbox.org/, accessed on 11 October
2022) was used, which is an open-source MATLAB/SPM-based cross-platform software
(https://www.nitrc.org/projects/conn, accessed on 11 October 2022). The CompCor func-
tion in CONN was used for spatial and temporal preprocessing to minimize the impact of
motion and physiological noise factors, as well as to define and remove confounds in the
BOLD signals. A regression of first-order derivative terms for the whole brain, ventricular,
and white matter signals was also included in the correlation preprocessing to reduce the
influence of spurious variance on neuronal activity.

Resting State Networks Identification

The assessment of brain functional connectivity for this patient was obtained for a given
number of RSNs selected through a seed-based correlation approach. A seed region of interest
(ROI) was first identified, and then the linear correlation of the seed region with all the other
voxels of the entire brain was computed, making use of statistical analysis [12,14,49]. Among the
commonly known and analyzed 36 RSNs [50], this procedure, for which we refer the reader
to [10,49] for the details, allowed for the identification of eight resting-state networks with
the best signal-to-noise ratio, following the fMRI image denoising and realignment steps.
The chosen networks were then used to evaluate subject-specific cognitive fingerprints
at the baseline and after disease correction and to show any significant improvement
in the individual functional connectivity after surgery. All ROIs encompassing the eight
selected RSNs (Default Mode—DM, SensoriMotor—SM, Visual—VS, Salience—SAL, Dorsal
Attention—DA, FrontoParietal—FP, Language—L, Cerebellar—CB) were imported into
the CONN Toolbox and then used to perform the seed-based extraction of Q = 32 BOLD
fMRI time series as sequences of M = 200 consecutive synchronous values, considered as a
realization of the network S = {S1, . . . , SQ} describing the neural dynamics.

Data and Statistical Analysis

Linear models in the form of (5) were fitted on each pair of BOLD time series x = si
and y = sj (i, j = 1, . . . , Q, i 6= j), preprocessed by removing the mean value and scaled to
have a unitary standard deviation, for which the time-domain MI was then obtained as a
measure of pairwise functional connectivity. In each experimental condition, the existence
of every pairwise link was evaluated applying the surrogate data analysis and assessing
the significance of the estimated MI, as detailed in Section 2.1.3.

Furthermore, the OI measure was computed for a predefined number of multiplets
from order N = 3 to order N = 8. Specifically, among all the possible combinations of order
3 derived from the Q = 32 time series, 56 triplets were selected randomly from different
RSNs. These triplets were then used as roots for building 40 multiplets of order 4, where
the additional time series was chosen randomly within the remaining RSNs. The procedure
was iterated for higher orders, eventually obtaining 30 multiplets of order 5, 20 multiplets of
order 6, 5 multiplets of order 7, and 1 multiplet of order 8. For each order and multiplet, the
significance of the estimated OI and OI increments was assessed by applying the bootstrap
method, as detailed in Section 2.1.3. Specifically, we set L = 50 for the generation of the
bootstrap fMRI time series of length M = 200. Moreover, the significance of the differences
between the MI/OI values measured in three conditions (PRE vs. POST1, PRE vs. POST12,
and POST1 vs. POST12) was assessed by comparing the MI/OI distributions obtained
through the block bootstrap method, as detailed in Section 2.1.3.

https://brainmap.org/training/BrettTransform.html
https://web.conn-toolbox.org/
https://www.nitrc.org/projects/conn
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3. Results and Discussion

This section displays and interprets the results obtained for the simulation example of
Section 2.2.1 (Section 3.1) and the application to the clinical case presented in Section 2.2.2
(Section 3.2).

3.1. Simulation Example

The results of the analysis relevant to the theoretical simulation of Section 2.2.1 are
shown in Figure 2. The MI values shown in Figure 2B reflect the strength of the relationships
between pairs of variables; the values of MI > 0.5 nats are found for the pairs {X2, X3},
{X2, X6}, {X3, X6}, {X3, X7}, and {X6, X7}. However, not all of these connections are
true links of interaction between the investigated variables, as happens, e.g., for the pairs
{X2, X6} and {X6, X7}. Indeed, the nodes X2 and X6, as well as X6 and X7, are not
linked by direct interaction pathways but still show nonzero connectivity (Figure 2A).
This finding is related to the existence of common driving and chain effects in these cases,
respectively, which determine the appearance of indirect links of interaction between the
two investigated variables [31]. This misinterpretation of the network structure does not
occur in the case of the common child effect since truly nonsignificant MI is found for the
pairs {X1, X4}, {X1, X5}, and {X4, X5}, as shown by the absence of links between these
variables in Figure 2B.

A high-order representation of the investigated interactions is provided in Figure 2C,D.
The OI values in Figure 2C show an expected increase in redundancy as the network size
increases (i.e., from order 3 to 7), even though some synergistic multiplets are still found
at orders 3 and 4. Specifically, as shown by the values of the OI increment in Figure 2D,
the synergistic triplets (first column, order 3) are those containing the variables X1, X4, and
X5, which, indeed, are involved in the common child structure (Figure 2A). In addition,
the chain structure for which the node X3 is a sink for X2, and the same applying for X6
and X7 with respect to X3 (Figure 2A), causes the synergy that also involves these variables
when combined with X1, X4 or X5. Interestingly, this pattern is maintained at higher
orders, with most of the multiplets comprising the variables X1, X4, and X5, for which
significant synergistic OI increments are found. On the other hand, the triplets {X2, X3, X6},
{X2, X3, X7}, and {X3, X6, X7}, along with others, such as {X1, X2, X3}, {X1, X2, X6}, and
{X1, X2, X7}, show positive values of the OI increment (Figure 2D, first column, order 3),
confirming that the common driver and chain structures are dominated by redundancy
(Figure 2A). As happens for the synergistic variables X1, X4, and X5, the addition of the
variables X2, X3, X6, and X7 to form groups of orders 4, 5, 6, and 7 is likely to significantly
increase the redundancy of the interactions within the network, as shown by the red squares
containing these variables in Figure 2D (the second, third, fourth, and fifth column).

The bootstrap data approach, applied to the simulated time series to retrieve con-
fidence intervals for the proposed measures, allowed us to statistically validate the OI
values and the OI increments (Figure 2C,D). Specifically, in Figure 2C, the nonsignificant
OI values are depicted as grey circles around the zero threshold; at order 3, the number of
nonsignificant OI values is the highest (4 over 35 multiplets). Conversely, in Figure 2D, the
nonsignificant OI increments are shown as grey squares, where each square corresponds
to the target-specific OI increment for that multiplet. The nonsignificant ∆(OI) values are
found at orders N = 4, 5, especially when the targets X4 and X5, as well as X6, are added
to form multiplets containing the variables X2, X3, and X7 or X6.

In conclusion, this simulation example shows that the connectivity maps traced by the
MI do not provide a fully explanatory description of the complex and multiple interactions
taking place in the analyzed network. Indeed, different network structures, such as common
driver, chain, and child ensembles, are not always truly reproduced by these pairwise maps,
and the resulting MI values between the pairs of observed variables may be biased. The
utilization of high-order measures investigating the relationships between more than
two variables is fundamental to provide a more complete description of the connectivity
patterns emerging from the network. It is noteworthy that the possibility to specify the
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redundant and/or synergistic character of groups of variables would allow for a more
faithful representation of the network ground structure. Moreover, the use of surrogate
and bootstrap methods is essential for disregarding nonsignificant pairwise and high-order
connectivity links between the observed variables.

3.2. Application to Brain Networks

The results of the analysis relevant to the application of the proposed methodology
to the clinical case discussed in Section 2.2.2 are reported in Figure 3, showing the subject-
specific maps of brain functional connectivity in the three conditions (Figure 3A), the
distributions of the OI values for all the orders (N = 3, . . . , 8), where each order comprises
a given number of analyzed multiplets (Figure 3B), and the values of the OI increment
computed, as in (3), for each target sj within the multiplet sN at order N (Figure 3C).
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Figure 3. In the application to resting-state fMRI data, the MI detects an increase in the number and
strength of connections, while the OI reveals high-order synergistic interactions 12 months after the
surgical treatment. (A) Symmetric matrices representing the MI-weighed significant connections
among pairs of variables in PRE (left), POST1 (middle), and POST12 (right) conditions. White spaces
indicate nonsignificant connections. Black squares along the main diagonal group show all the time
series belonging to the same RSN. (B) Boxplots representing the distributions of the OI values for all
the multiplets from order 3 to 8, in PRE (left), POST1 (middle), and POST12 (right) conditions. In
each box, the central black mark indicates the mean, and the bottom and top edges of the box indicate
the 25th and 75th percentiles. The red, blue, and grey circles indicate positive (redundant), negative
(synergistic), and nonsignificant OI values, respectively. The dashed grey horizontal line corresponds to
the zero level. (C) ∆(OI) values computed for each target inside the multiplets at all orders (separated by
black vertical lines). Red, blue, and grey squares indicate positive (redundant), negative (synergistic), and
nonsignificant ∆(OI), respectively, brought by that target to the whole multiplet for a given order. Values
of MI, OI, and ∆(OI) are expressed in nats, i.e., natural units.
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The presurgery phase is characterized by a relatively sparse functional connectivity
network (Figure 3A), with 41% of the MI values detected as statistically significant by
surrogate data analysis. When compared to this phase, the immediate postsurgery period
shows a weakening of functional brain connectivity, as evidenced by the lower number
of statistically significant MI values between the pairs of BOLD series determined by the
surrogate data approach (Figure 3A, PRE vs. POST1). Indeed, the global density of the
network, i.e., the number of significant connections, decreases from 41% in PRE to 25% in
POST1. The number of significant connections increased markedly 12 months after surgery
(Figure 3A, POST12, 52% of significant connections), suggesting that the proposed surgery
correction of the portosystemic shunt worked in recovering brain functional connectivity
in this patient. Interestingly, the local densities, i.e., the number of significant functional
connections within (and between) RSNs, are characterized by a drop in the immediate
postsurgery period (Table 1, POST1) followed by an increase 12 months after the treatment
(Table 1, POST12), for almost all the (pairs of) RSNs. This suggests that the weakening and
reduction in the number of links within the network is not localized to a specific brain area
but spread over the whole cortex.

The decrease in functional connectivity 1 month after the treatment and its increase
12 months after, observed with the pairwise estimator of MI, are translated into consequent
decreases and increases in the OI values, respectively. Specifically, while all three phases
are characterized by the presence of a great number of nonsignificant connections, the
strength and number of these high-order links decreased 1 month after and increased again
12 months after the treatment (Figure 3B; e.g., in the case of N = 3, the significance rate
goes from 16% in PRE to 3.6% and 16% in POST1 and POST12, respectively). This finding
confirms the main result coming from MI analysis, i.e., that the surgery correction of the
portosystemic shunt worked in recovering brain connectivity in this patient. Moreover,
in the last experimental phase, the number of synergistic interactions predominates over
redundancy, suggesting that the recovered brain can display synergy as an emergent
behavior, as well as that synergistic interactions may serve to integrate and complement
redundant subnetworks in recovered physiological conditions.

These findings are confirmed by the decrease in ∆(OI) values in POST1, and their
subsequent increase in POST12 (Figure 3C, POST1 vs. POST12), characterized by a tendency
towards synergy (dark-blue rectangles).

Table 1. Local density within and between resting state networks, expressed in % of significant
connections, before the treatment (PRE, left) and 1 month (POST1, middle) and 12 months (POST12,
right) after the treatment.

PRE POST1 POST12

DM SM VS SAL DA FP L CB DM SM VS SAL DA FP L CB DM SM VS SAL DA FP L CB

DM 50 67 25 54 31 38 69 38 16 25 25 18 31 38 31 13 50 58 50 46 38 44 44 63

SM 0 58 52 67 33 58 33 33 33 33 58 33 25 17 67 42 71 67 58 67 33

VS 100 14 25 69 31 25 67 25 25 6 19 25 50 43 31 63 63 75

SAL 33 29 36 39 21 14 29 18 25 7 62 32 50 57 64

DA 33 25 31 38 50 13 0 0 33 63 50 38

FP 50 13 25 17 19 25 50 50 38

L 83 63 50 13 67 50

CB 100 100 100

Figure 4 shows the maps of the pairwise differences between the MI (Figure 4A) and
OI (Figure 4B) values computed in two different experimental conditions. The impairment
of brain connectivity in POST1 and its recovery in POST12 is confirmed for this patient,
looking at the variations in the MI across conditions established by the bootstrap technique
(Figure 4A). This analysis documents, indeed, that the functional connectivity decreases
1 month after surgery (red squares in POST1-PRE) but markedly increases 1 year after (green



Life 2023, 13, 2075 15 of 19

squares in POST12-PRE and POST12-POST1), suggesting an improvement in cognitive
functions for this patient. The utilization of the bootstrap technique for the detection of OI
variations across conditions are confirmed in the results shown in Figure 3B,C. In detail,
the high number of nonsignificant differences, indicated by grey rectangles in Figure 4B,
reflect the presence of nonsignificant OI values in the three conditions (Figure 3B, grey
circles) with only a few significant connections left. Looking at the differences between
the experimental conditions, the decrease in OI values toward synergy 12 months after the
treatment is documented by the predominance of red rectangles in Figure 4B, POST12-PRE
and POST12-POST1. This reduction is localized to specific multiplets, suggesting that the
recovery of high-order interactions is specific to certain areas of the pediatric brain.
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δ
δ

A

Order Order Order

B
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Figure 4. The difference in the MI and OI values between pairs of experimental conditions was
assessed through the bootstrap data analysis. The figure shows networks of the differences (δ)
between the MI (A) and OI (B) values estimated in two conditions; the green and red squares indicate
positive and negative differences, respectively, while the white squares (A) or grey rectangles (B)
indicate nonstatistically significant differences. In (A), the black squares along the main diagonal
group represent all the time series belonging to the same RSN. In (B), the orders are separated by
black vertical lines; for each order, the rows correspond to the multiplets selected for that order.

Our preliminary results agree with previous findings [38], obtained by applying
multivariate information metrics to fMRI data and documenting the presence of copious
and widely distributed synergistic subsystems across the entire cerebral cortex. In our
application to fMRI data, we randomly selected nodes from different RSNs to build high-
order structures comprising between 3 and 8 regions and showed that synergistic subsets
are ubiquitous, arising at higher orders systematically across the cortex. Specifically, while
redundant interactions dominate at larger subset sizes, especially during the pre-operative
and the immediate post-operative phases, the late post-operative phase is characterized
by the appearance of a previously hidden repertoire of synergistic ensembles, as also
demonstrated by the bootstrap data analysis applied to detect subject-specific differences
between conditions. In detail, these randomly sampled assemblies expressing synergy were
found to involve nodes from the DM, SAL, and FP networks in the pre-operative phase,
together with the VS, L, and CB networks twelve months after the surgical correction, when
the number of synergistic pathways of interaction was definitely increased.

The application of multivariate information measures demonstrates that high-order
synergies represent a kind of “shadow structure” emerging from resting-state brain ac-
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tivity and missed by bivariate functional connectivity approaches, which indeed reveal
redundancy-dominated correlations and do not provide an overall map of the statistical
structure of the network [36–38]. Given the novelty of our findings, the significance of
these synergistic dependencies remains almost entirely unknown, although the clinical
importance of studying and comprehending these intriguing patterns persists unaltered.

In conclusion, we propose here a subject-specific statistical evaluation of functional
network connectivity analysis in the peculiar case of pediatric portal cavernoma. Our math-
ematical framework, based on the combined use of pairwise and high-order functional
connectivity measures, allowed us to display subject-specific features of brain connectivity
in a patient before and after the surgical correction of the portosystemic shunt. Moreover,
the utilization of surrogate and bootstrap data analyses was essential to statistically vali-
date the functional connectivity maps obtained before surgery and during the follow-up
phases (1 month and 12 months after the surgical treatment), as well as the differences
between pairs of these. This has great clinical relevance for single-subject investigations
and treatment planning, particularly when it is necessary to study the effects of clinical
diseases on single individuals and the subject-specific responses to personalized diagnosis
and care. The statistical assessment of intra-subject connectivity network changes over time
could be interpreted as evidence of statistically significant increases/decreases in functional
connectivity related to an event, i.e., the surgical procedure to remove the shunt in our
clinical case. Specifically, the overall increase in the number and strength of functional pair-
wise and synergistic connections after the surgical treatment, resulting from our analyses,
was confirmed by clinical findings: during the follow-up phases, the patient recovered
well from HE, as evidenced by the improvement in his cognitive functions, the recovery
from psychomotor sluggishness and attention deficits, and the subsequent return to school,
which he had dropped out of before the treatment. Therefore, the proposed statistical
approaches can successfully help scientists and clinicians to identify significant pairwise
but especially high-order brain functional connectivity signatures on a single-subject basis
in different physiological and diseased conditions.

4. Conclusions

In this study, we propose a subject-specific statistical assessment of pairwise and
high-order functional connectivity in brain networks, thus relying on a dual aim. First, our
work supports the use of surrogate and bootstrap data analyses for the single-subject inves-
tigation of brain connectivity in fMRI studies. Moreover, it expands the well-established
framework of pairwise functional connectivity analysis to the less explored concept of
high-order interactions in brain networks, which allows for uncovering effects and con-
nection modalities that, otherwise, using the current pairwise approaches, would remain
hidden. In perspective, the proposed single-subject analysis may have clinical relevance
for subject-specific investigations and treatment planning. Indeed, the method based on
surrogate and bootstrap data generation is able to reproduce the peculiar features of brain
network connectivity on a single-subject basis. While this approach should be tested on a
larger number of individuals to validate the clinical findings, it still revealed clinically and
physiologically plausible patterns of brain pairwise connectivity in the reported application.
On the other hand, the possibility to investigate brain connectivity and its post-treatment
functional developments at a high-order level was essential to fully capture the complexity
and modalities of the recovery. The results obtained here, albeit in a preliminary fashion,
support the need to investigate the complex behavior of brain structures and their emergent
synergistic patterns. We assert that high-order interactions in the brain represent a vast and
under-explored space that is now accessible using the tools of multivariate information
theory, and this may offer novel scientific insights, even in today’s clinical practice. In
conclusion, this study paves the path for extensive examinations on larger datasets to
assess the coherence between subject-specific observations and their clinical significance in
a broader patient population. Future developments should further address the importance
of combining multiple functional connectivity methods to achieve a thorough description
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of brain networks. Additionally, these advancements should also consider transient be-
haviors [51], enhance the identification of topological and causal structures [31,52], and go
beyond the use of the first-order gradient (i.e., the OI increment defined in (3)). Expanding
the study in terms of increments in information across orders, as well as of their assessment
through surrogate and bootstrap approaches, would allow researchers to further unveil
synergistic structures and investigate their role in complex networks of multiple interacting
nodes in the brain [53]. Furthermore, the exploration of dynamic forms of pairwise and
high-order connectivity [18,54], which account for temporal correlations in the detection of
brain functional couplings, may spark great interest among neuro-scientists and assume
high relevance in the field of fMRI data analysis.
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