The Effectiveness of Bivalent COVID-19 Vaccination: A Preliminary Report
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Literature Search
2.2. Study Screening, Data Extraction, Systematic Review, and Meta-Analyses
2.3. Statistical Analyses
3. Results
3.1. A Flowchart of the Systematic Review
3.2. Comparison of Immunogenicity
3.3. Comparison of Clinical Effectiveness
3.4. Comparison of Safety
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ritchie, H.; Mathieu, E.; Rodés-Guirao, L.; Appel, C.; Giattino, C.; Ortiz-Ospina, E.; Hasell, J.; Macdonald, B.; Beltekian, D.; Roser, M. Coronavirus Pandemic (COVID-19). Available online: https://ourworldindata.org/coronavirus (accessed on 12 September 2023).
- Wang, H.; Paulson, K.R.; Pease, S.A.; Watson, S.; Comfort, H.; Zheng, P.; Aravkin, A.Y.; Bisignano, C.; Barber, R.M.; Alam, T.; et al. Estimating excess mortality due to the COVID-19 pandemic: A systematic analysis of COVID-19-related mortality, 2020–2021. Lancet 2022, 399, 1513–1536. [Google Scholar] [CrossRef]
- Lien, C.H.; Lee, M.D.; Weng, S.L.; Lin, C.H.; Liu, L.Y.; Tai, Y.L.; Lei, W.T.; Liu, J.M.; Huang, Y.N.; Chi, H.; et al. Repurposing Colchicine in Treating Patients with COVID-19: A Systematic Review and Meta-Analysis. Life 2021, 11, 864. [Google Scholar] [CrossRef]
- Chi, H.; Chiu, N.C.; Chen, C.C.; Weng, S.L.; Lien, C.H.; Lin, C.H.; Hu, Y.F.; Lei, W.T.; Tai, Y.L.; Lin, L.Y.; et al. To PCR or not? The impact of shifting policy from PCR to rapid antigen tests to diagnose COVID-19 during the omicron epidemic: A nationwide surveillance study. Front. Public Health 2023, 11, 1148637. [Google Scholar] [CrossRef]
- De Francia, S.; Chiara, F.; Allegra, S. COVID-19 Prevention and Treatment. Life 2023, 13, 834. [Google Scholar] [CrossRef]
- Chiu, N.C.; Chi, H.; Tu, Y.K.; Huang, Y.N.; Tai, Y.L.; Weng, S.L.; Chang, L.; Huang, D.T.; Huang, F.Y.; Lin, C.Y. To mix or not to mix? A rapid systematic review of heterologous prime-boost covid-19 vaccination. Expert Rev. Vaccines 2021, 20, 1211–1220. [Google Scholar] [CrossRef]
- Solante, R.; Alvarez-Moreno, C.; Burhan, E.; Chariyalertsak, S.; Chiu, N.-C.; Chuenkitmongkol, S.; Dung, D.V.; Hwang, K.-P.; Ortiz Ibarra, J.; Kiertiburanakul, S.; et al. Expert review of global real-world data on COVID-19 vaccine booster effectiveness and safety during the omicron-dominant phase of the pandemic. Expert Rev. Vaccines 2023, 22, 1–16. [Google Scholar] [CrossRef]
- Yang, Z.-R.; Jiang, Y.-W.; Li, F.-X.; Liu, D.; Lin, T.-F.; Zhao, Z.-Y.; Wei, C.; Jin, Q.-Y.; Li, X.-M.; Jia, Y.-X.; et al. Efficacy of SARS-CoV-2 vaccines and the dose-response relationship with three major antibodies: A systematic review and meta-analysis of randomised controlled trials. Lancet Microbe 2023, 4, e236–e246. [Google Scholar] [CrossRef]
- Tofarides, A.G.; Christaki, E.; Milionis, H.; Nikolopoulos, G.K. Effect of Vaccination against SARS-CoV-2 on Long COVID-19: A Narrative Review. Life 2022, 12, 2057. [Google Scholar] [CrossRef]
- Tondo, G.; Virgilio, E.; Naldi, A.; Bianchi, A.; Comi, C. Safety of COVID-19 Vaccines: Spotlight on Neurological Complications. Life 2022, 12, 1338. [Google Scholar] [CrossRef]
- Baden, L.R.; El Sahly, H.M.; Essink, B.; Kotloff, K.; Frey, S.; Novak, R.; Diemert, D.; Spector, S.A.; Rouphael, N.; Creech, C.B.; et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N. Engl. J. Med. 2020, 384, 403–416. [Google Scholar] [CrossRef]
- Polack, F.P.; Thomas, S.J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Pérez Marc, G.; Moreira, E.D.; Zerbini, C.; et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N. Engl. J. Med. 2020, 383, 2603–2615. [Google Scholar] [CrossRef]
- Song, S.; Madewell, Z.J.; Liu, M.; Longini, I.M.; Yang, Y. Effectiveness of SARS-CoV-2 vaccines against Omicron infection and severe events: A systematic review and meta-analysis of test-negative design studies. Front. Public Health 2023, 11, 1195908. [Google Scholar] [CrossRef]
- Aguilar-Bretones, M.; Fouchier, R.A.; Koopmans, M.P.; van Nierop, G.P. Impact of antigenic evolution and original antigenic sin on SARS-CoV-2 immunity. J. Clin. Investig. 2023, 133, e162192. [Google Scholar] [CrossRef] [PubMed]
- Chalkias, S.; Harper, C.; Vrbicky, K.; Walsh, S.R.; Essink, B.; Brosz, A.; McGhee, N.; Tomassini, J.E.; Chen, X.; Chang, Y.; et al. A Bivalent Omicron-Containing Booster Vaccine against Covid-19. N. Engl. J. Med. 2022, 387, 1279–1291. [Google Scholar] [CrossRef]
- Barda, N.; Lustig, Y.; Indenbaum, V.; Zibly, D.; Joseph, G.; Asraf, K.; Weiss-Ottolenghi, Y.; Amit, S.; Kliker, L.; Abu-Kadar, B.; et al. Immunogenicity of Omicron BA.1-adapted BNT162b2 vaccines; randomized trial, 3 months follow-up. Clin. Microbiol. Infect. 2023, 29, 918–923. [Google Scholar] [CrossRef] [PubMed]
- Collier, A.Y.; Miller, J.; Hachmann, N.P.; McMahan, K.; Liu, J.; Apraku Bondzie, E.; Gallup, L.; Rowe, M.; Schonberg, E.; Thai, S.; et al. Immunogenicity of the BA.5 Bivalent mRNA Vaccine Boosters. bioRxiv 2022. [Google Scholar] [CrossRef]
- Hutton, B.; Salanti, G.; Caldwell, D.M.; Chaimani, A.; Schmid, C.H.; Cameron, C.; Ioannidis, J.P.; Straus, S.; Thorlund, K.; Jansen, J.P.; et al. The PRISMA extension statement for reporting of systematic reviews incorporating network meta-analyses of health care interventions: Checklist and explanations. Ann. Intern. Med. 2015, 162, 777–784. [Google Scholar] [CrossRef] [PubMed]
- Chi, H.; Chiu, N.C.; Tai, Y.L.; Chang, H.Y.; Lin, C.H.; Sung, Y.H.; Tseng, C.Y.; Liu, L.Y.; Lin, C.Y. Clinical features of neonates born to mothers with coronavirus disease-2019: A systematic review of 105 neonates. J. Microbiol. Immunol. Infect. 2021, 54, 69–76. [Google Scholar] [CrossRef]
- Higgins, J.P.; Altman, D.G.; Gøtzsche, P.C.; Jüni, P.; Moher, D.; Oxman, A.D.; Savovic, J.; Schulz, K.F.; Weeks, L.; Sterne, J.A. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 2011, 343, d5928. [Google Scholar] [CrossRef]
- Wells, G.; Shea, B.; O’Connell, D.; Robertson, J.; Peterson, J.; Welch, V.; Losos, M.; Tugwell, P. The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomised Studies in Meta-Analyses. Available online: http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp (accessed on 1 June 2023).
- Link-Gelles, R.; Ciesla, A.A.; Roper, L.E.; Scobie, H.M.; Ali, A.R.; Miller, J.D.; Wiegand, R.E.; Accorsi, E.K.; Verani, J.R.; Shang, N.; et al. Early Estimates of Bivalent mRNA Booster Dose Vaccine Effectiveness in Preventing Symptomatic SARS-CoV-2 Infection Attributable to Omicron BA.5- and XBB/XBB.1.5-Related Sublineages Among Immunocompetent Adults—Increasing Community Access to Testing Program, United States, December 2022–January 2023. MMWR Morb. Mortal Wkly. Rep. 2023, 72, 119–124. [Google Scholar] [CrossRef]
- Surie, D.; DeCuir, J.; Zhu, Y.; Gaglani, M.; Ginde, A.A.; Douin, D.J.; Talbot, H.K.; Casey, J.D.; Mohr, N.M.; Zepeski, A.; et al. Early Estimates of Bivalent mRNA Vaccine Effectiveness in Preventing COVID-19-Associated Hospitalization Among Immunocompetent Adults Aged ≥65 Years—IVY Network, 18 States, September 8–November 30, 2022. MMWR Morb. Mortal Wkly. Rep. 2022, 71, 1625–1630. [Google Scholar] [CrossRef]
- Tenforde, M.W.; Weber, Z.A.; Natarajan, K.; Klein, N.P.; Kharbanda, A.B.; Stenehjem, E.; Embi, P.J.; Reese, S.E.; Naleway, A.L.; Grannis, S.J.; et al. Early Estimates of Bivalent mRNA Vaccine Effectiveness in Preventing COVID-19-Associated Emergency Department or Urgent Care Encounters and Hospitalizations Among Immunocompetent Adults—VISION Network, Nine States, September–November 2022. MMWR Morb. Mortal Wkly. Rep. 2022, 71, 1616–1624. [Google Scholar] [CrossRef]
- Collier, A.Y.; Miller, J.; Hachmann, N.P.; McMahan, K.; Liu, J.; Bondzie, E.A.; Gallup, L.; Rowe, M.; Schonberg, E.; Thai, S.; et al. Immunogenicity of BA.5 Bivalent mRNA Vaccine Boosters. N. Engl. J. Med. 2023, 388, 565–567. [Google Scholar] [CrossRef] [PubMed]
- Huth, L.; Schäfer, L.; Almanzar, G.; Lupoli, G.; Bischof, M.; Wratil, P.R.; Stövesand, T.; Drechsler, C.; Keppler, O.T.; Prelog, M. Immunologic Effect of Bivalent mRNA Booster in Patients Undergoing Hemodialysis. N. Engl. J. Med. 2023, 388, 950–952. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Bowen, A.; Valdez, R.; Gherasim, C.; Gordon, A.; Liu, L.; Ho, D.D. Antibody Response to Omicron BA.4-BA.5 Bivalent Booster. New Engl. J. Med. 2023, 388, 567–569. [Google Scholar] [CrossRef]
- Winokur, P.; Gayed, J.; Fitz-Patrick, D.; Thomas, S.J.; Diya, O.; Lockhart, S.; Xu, X.; Zhang, Y.; Bangad, V.; Schwartz, H.I.; et al. Bivalent Omicron BA.1-Adapted BNT162b2 Booster in Adults Older than 55 Years. N. Engl. J. Med. 2023, 388, 214–227. [Google Scholar] [CrossRef]
- Chalkias, S.; Eder, F.; Essink, B.; Khetan, S.; Nestorova, B.; Feng, J.; Chen, X.; Chang, Y.; Zhou, H.; Montefiori, D.; et al. Safety, immunogenicity and antibody persistence of a bivalent Beta-containing booster vaccine against COVID-19: A phase 2/3 trial. Nat. Med. 2022, 28, 2388–2397. [Google Scholar] [CrossRef]
- Huiberts, A.J.; de Gier, B.; Hoeve, C.E.; de Melker, H.E.; Hahné, S.J.; den Hartog, G.; van de Wijgert, J.H.; van den Hof, S.; Knol, M.J. Effectiveness of bivalent mRNA booster vaccination against SARS-CoV-2 Omicron infection, the Netherlands, September to December 2022. Eurosurveillance 2023, 28, 2300087. [Google Scholar] [CrossRef]
- He, Q.; Sun, S.; Chen, X.; Hu, Z.; Zhang, Y.; Peng, H.; Fu, Y.X.; Yang, J.; Chen, L. The Bivalent COVID-19 Booster Immunization after Three Doses of Inactivated Vaccine Augments the Neutralizing Antibody Response against Circulating Omicron Sublineages. J. Clin. Med. 2022, 12, 146. [Google Scholar] [CrossRef] [PubMed]
- Hannawi, S.; Saifeldin, L.; Abuquta, A.; Alamadi, A.; Mahmoud, S.A.; Li, J.; Chen, Y.; Xie, L. Safety and immunogenicity of a bivalent SARS-CoV-2 protein booster vaccine, SCTV01C in adults previously vaccinated with inactivated vaccine: A randomized, double-blind, placebo-controlled phase 1/2 clinical trial. J. Infect. 2023, 86, 154–225. [Google Scholar] [CrossRef]
- Anft, M.; Skrzypczyk, S.; Frahnert, M.; Fricke, L.; Zapka, J.; Kühn, D.; Koos, B.; Adamzik, M.; Pfaender, S.; Stervbo, U.; et al. Immunogenicity of bivalent omicron BA.4/5 adapted vaccine in hemodialysis patients. Kidney Int. Rep. 2023, 8, 939–941. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Bowen, A.; Tam, A.R.; Valdez, R.; Stoneman, E.; Mellis, I.A.; Gordon, A.; Liu, L.; Ho, D.D. SARS-CoV-2 neutralising antibodies after bivalent versus monovalent booster. Lancet Infect. Dis. 2023, 23, 527–528. [Google Scholar] [CrossRef] [PubMed]
- Dayan, G.H.; Rouphael, N.; Walsh, S.R.; Chen, A.; Grunenberg, N.; Allen, M.; Antony, J.; Asante, K.P.; Suresh Bhate, A.; Beresnev, T.; et al. Efficacy of a bivalent (D614 + B.1.351) SARS-CoV-2 Protein Vaccine. medRxiv 2023. [Google Scholar] [CrossRef]
- Lee, I.T.; Cosgrove, C.A.; Moore, P.; Bethune, C.; Nally, R.; Bula, M.; Kalra, P.A.; Clark, R.; Dargan, P.I.; Boffito, M.; et al. A Randomized Trial Comparing Omicron-Containing Boosters with the Original Covid-19 Vaccine mRNA-1273. medRxiv 2023. [Google Scholar] [CrossRef]
- Canaday, D.H.; Oyebanji, O.A.; White, E.M.; Bosch, J.; Nugent, C.; Vishnepolskiy, I.; Abul, Y.; Didion, E.M.; Paxitzis, A.; Sundheimer, N.; et al. SARS-CoV-2 Antibody Responses to the Ancestral SARS-CoV-2 Strain and Omicron BA.1 and BA.4/BA.5 Variants in Nursing Home Residents After Receipt of Bivalent COVID-19 Vaccine—Ohio and Rhode Island, September–November 2022. MMWR Morb. Mortal Wkly. Rep. 2023, 72, 100–106. [Google Scholar] [CrossRef] [PubMed]
- Johnson, A.G.; Linde, L.; Ali, A.R.; DeSantis, A.; Shi, M.; Adam, C.; Armstrong, B.; Armstrong, B.; Asbell, M.; Auche, S.; et al. COVID-19 Incidence and Mortality Among Unvaccinated and Vaccinated Persons Aged ≥12 Years by Receipt of Bivalent Booster Doses and Time Since Vaccination—24 U.S. Jurisdictions, October 3, 2021–December 24, 2022. MMWR Morb. Mortal Wkly. Rep. 2023, 72, 145–152. [Google Scholar] [CrossRef]
- Lin, D.-Y.; Xu, Y.; Gu, Y.; Zeng, D.; Wheeler, B.; Young, H.; Sunny, S.K.; Moore, Z. Effectiveness of Bivalent Boosters against Severe Omicron Infection. N. Engl. J. Med. 2023, 388, 764–766. [Google Scholar] [CrossRef]
- Chae, C.; Kim, R.K.; Jang, E.J.; Shim, J.A.; Park, E.; Lee, K.H.; Hong, S.L.; Aziz, A.B.; Tadesse, B.T.; Marks, F.; et al. Comparing the Effectiveness of Bivalent and Monovalent COVID-19 Vaccines against COVID-19 Infection during the Winter Season of 2022–2023: A Real-World Retrospective Observational Matched Cohort Study in the Republic of Korea. Int. J. Infect. Dis. 2023, 135, 95–100. [Google Scholar] [CrossRef]
- Link-Gelles, R.; Ciesla, A.A.; Rowley, E.A.K.; Klein, N.P.; Naleway, A.L.; Payne, A.B.; Kharbanda, A.; Natarajan, K.; DeSilva, M.B.; Dascomb, K.; et al. Effectiveness of Monovalent and Bivalent mRNA Vaccines in Preventing COVID-19-Associated Emergency Department and Urgent Care Encounters Among Children Aged 6 Months–5 Years—VISION Network, United States, July 2022–June 2023. MMWR Morb. Mortal Wkly. Rep. 2023, 72, 886–892. [Google Scholar] [CrossRef]
- Offit, P.A. Bivalent Covid-19 Vaccines—A Cautionary Tale. N. Engl. J. Med. 2023, 388, 481–483. [Google Scholar] [CrossRef]
- Rijkers, G.T.; van Overveld, F.J. The “original antigenic sin” and its relevance for SARS-CoV-2 (COVID-19) vaccination. Clin. Immunol. Commun. 2021, 1, 13–16. [Google Scholar] [CrossRef]
- Reynolds, C.J.; Pade, C.; Gibbons, J.M.; Otter, A.D.; Lin, K.M.; Muñoz Sandoval, D.; Pieper, F.P.; Butler, D.K.; Liu, S.; Joy, G.; et al. Immune boosting by B.1.1.529 (Omicron) depends on previous SARS-CoV-2 exposure. Science 2022, 377, eabq1841. [Google Scholar] [CrossRef]
- Wheatley, A.K.; Fox, A.; Tan, H.X.; Juno, J.A.; Davenport, M.P.; Subbarao, K.; Kent, S.J. Immune imprinting and SARS-CoV-2 vaccine design. Trends Immunol. 2021, 42, 956–959. [Google Scholar] [CrossRef]
- Sandoval, C.; Guerrero, D.; Muñoz, J.; Godoy, K.; Souza-Mello, V.; Farías, J. Effectiveness of mRNA, protein subunit vaccine and viral vectors vaccines against SARS-CoV-2 in people over 18 years old: A systematic review. Expert Rev. Vaccines 2023, 22, 35–53. [Google Scholar] [CrossRef]
- Chi, H.; Chiu, N.C.; Lin, C.Y. Effectiveness of an Inactivated SARS-CoV-2 Vaccine. N. Engl. J. Med. 2021, 385, 1337–1338. [Google Scholar] [CrossRef]
- Liu, L.T.; Chiu, C.H.; Chiu, N.C.; Tan, B.F.; Lin, C.Y.; Cheng, H.Y.; Lin, M.Y.; Lien, C.E.; Chen, C.; Huang, L.M. Safety and immunogenicity of SARS-CoV-2 vaccine MVC-COV1901 in Taiwanese adolescents: A randomized phase 2 trial. NPJ Vaccines 2022, 7, 165. [Google Scholar] [CrossRef]
- Lu, P.J.; Zhou, T.; Santibanez, T.A.; Jain, A.; Black, C.L.; Srivastav, A.; Hung, M.C.; Kriss, J.L.; Schorpp, S.; Yankey, D.; et al. COVID-19 Bivalent Booster Vaccination Coverage and Intent to Receive Booster Vaccination Among Adolescents and Adults—United States, November–December 2022. MMWR Morb. Mortal Wkly. Rep. 2023, 72, 190–198. [Google Scholar] [CrossRef] [PubMed]
- Hause, A.M.; Marquez, P.; Zhang, B.; Myers, T.R.; Gee, J.; Su, J.R.; Blanc, P.G.; Thomas, A.; Thompson, D.; Shimabukuro, T.T.; et al. Safety Monitoring of Bivalent COVID-19 mRNA Vaccine Booster Doses Among Persons Aged ≥12 Years—United States, August 31–October 23, 2022. MMWR Morb. Mortal Wkly. Rep. 2022, 71, 1401–1406. [Google Scholar] [CrossRef] [PubMed]
- Hause, A.M.; Marquez, P.; Zhang, B.; Su, J.R.; Myers, T.R.; Gee, J.; Panchanathan, S.S.; Thompson, D.; Shimabukuro, T.T.; Shay, D.K. Safety Monitoring of Bivalent COVID-19 mRNA Vaccine Booster Doses Among Children Aged 5-11 Years—United States, October 12–January 1, 2023. MMWR Morb. Mortal Wkly. Rep. 2023, 72, 39–43. [Google Scholar] [CrossRef]
- Sinclair, A.H.; Taylor, M.K.; Weitz, J.S.; Beckett, S.J.; Samanez-Larkin, G.R. Reasons for Receiving or Not Receiving Bivalent COVID-19 Booster Vaccinations Among Adults—United States, November 1–December 10, 2022. MMWR Morb. Mortal Wkly. Rep. 2023, 72, 73–75. [Google Scholar] [CrossRef] [PubMed]
- Della Polla, G.; Miraglia Del Giudice, G.; Pelullo, C.P.; Angelillo, I.F. Bivalent second booster dose of the COVID-19 vaccine: Eligible populations’ reasons for receiving in Italy. Hum. Vaccines Immunother. 2023, 19, 2188856. [Google Scholar] [CrossRef]
- Lasrado, N.; Collier, A.Y.; Miller, J.; Hachmann, N.P.; Liu, J.; Sciacca, M.; Wu, C.; Anand, T.; Bondzie, E.A.; Fisher, J.L.; et al. Waning Immunity Against XBB.1.5 Following Bivalent mRNA Boosters. bioRxiv 2023. [Google Scholar] [CrossRef]
- Emma Hodcroft, e.a. CoVariants. Available online: https://covariants.org/ (accessed on 31 July 2023).
- Chemaitelly, H.; Ayoub, H.H.; AlMukdad, S.; Faust, J.S.; Tang, P.; Coyle, P.; Yassine, H.M.; Al Thani, A.A.; Al-Khatib, H.A.; Hasan, M.R.; et al. Bivalent mRNA-1273.214 vaccine effectiveness against SARS-CoV-2 omicron XBB* infections. J. Travel Med. 2023, 30, taad106. [Google Scholar] [CrossRef] [PubMed]
- Fabiani, M.; Mateo-Urdiales, A.; Sacco, C.; Rota, M.C.; Fotakis, E.A.; Petrone, D.; Del Manso, M.; Siddu, A.; Stefanelli, P.; Bella, A.; et al. Relative effectiveness of bivalent Original/Omicron BA.4-5 mRNA vaccine in preventing severe COVID-19 in persons 60 years and above during SARS-CoV-2 Omicron XBB.1.5 and other XBB sublineages circulation, Italy, April to June 2023. Eurosurveillance 2023, 28, 2300397. [Google Scholar] [CrossRef] [PubMed]
- Zou, J.; Kurhade, C.; Patel, S.; Kitchin, N.; Tompkins, K.; Cutler, M.; Cooper, D.; Yang, Q.; Cai, H.; Muik, A.; et al. Neutralization of BA.4-BA.5, BA.4.6, BA.2.75.2, BQ.1.1, and XBB.1 with Bivalent Vaccine. N. Engl. J. Med. 2023, 388, 854–857. [Google Scholar] [CrossRef] [PubMed]
Study | Country | Study Design | Study Period | Bivalent | Comparator | Population | Outcomes | Conclusion | Safety Concern |
---|---|---|---|---|---|---|---|---|---|
Protein-Based Inactivated Vaccine | |||||||||
He [31] | China | Randomized controlled trial | 2022/08~2022/09 | V-01D-351 (Beta + Delta) BV-01-B5 (ancestral + Omicron) | Inactivated monovalent vaccine | 56 participants | Safety and immunogenicity | The bivalent boosters induced robust antibody responses against multiple Omicron sublineages (GMR: 8.5~31.3). | No |
Bivalent BA.1-containing mRNA Vaccine | |||||||||
Barda N [16] | Israel | Phase 3 trial | ND | Ancestral + BA.1 | Monovalent | 122 elders | Immunogenicity | BA.1-adapted mRNA vaccines led to a stronger neutralizing antibody response against the Omicron BA.1 subvariant (GMR: 2.07 [0.93–4.58]). | No |
Chalkias S, NEJM [15] | USA | Phase 2/3 study | 2022/02–2022/03 | Ancestral + BA.1 | Monovalent vaccination | 812 adults | Safety, reactogenicity, and immunogenicity | High GMT titers of bivalent vaccinations (against BA.1: 2372.4 [2070.6 to 2718.2] vs. 1473.5 [1270.8 to 1708.4]; against BA.4/5: 727.4 [632.8 to 836.1] vs. 492.1 [431.1 to 561.9]). | No |
Huiberts AJ [30] | Netherlands | 2022/09~2022/12 | Prospective cohort study (VASCO) | Ancestral + BA.1 | Monovalent | 32,542 adults | Infection incidence | The overall bivalent vaccine effectiveness was 31% [18–42] (18–59 years) and 14% [3–24] (60–85 years). | No |
Lee IT [36] | UK | Phase 2/3 trial | 2022/04–2022/06 | Ancestral + BA.1 | Monovalent vaccination | 1871 adults | Safety, reactogenicity, immunogenicity | High GMT titers of bivalent vaccinations (against BA.1: GMR 1.53 [1.41–1.67]; against ancestral: GMR 1.05 [0.96–1.15]). | No |
Winokur P [28] | Several countries | Phase 3 trial | 2022/03~2022/04 | Ancestral + BA.1 | Monovalent | 1846 adults older than 55 years | Immunogenicity | BA.1-adapted vaccines induced substantial neutralizing responses against Omicron BA.1 strains (GMR: 1.56 [1.17–2.08] and 1.97 [1.45–2.68]) and ancestral strain, and, to a lesser extent, neutralized the BA.4, BA.5, and BA.2.75 strains. | No |
Bivalent BA.5-containing mRNA Vaccine | |||||||||
Anft M [33] | Germany | Cohort study | ND | Ancestral + BA.5 | Nil | 35 hemodialysis patients | Immunogenicity | Strong immune responses after booster. | No |
Collier AY [25] | USA | Cohort study | ND | Ancestral + BA.5 | Monovalent | 33 adults | Cellular and humoral immunity | Both the monovalent and bivalent mRNA boosters markedly increased antibody responses. | No |
Huth L [26] | Germany | Cohort study | ND | Ancestral + BA.5 | Nil | 55 hemodialysis patients | Immunogenicity | Significant increase after booster (7.3× increase in anti-spike IgG concentrations in those had no previous omicron infection). | No |
Lin DY [39] | USA | Observational cohort study | 2022/09~2022/12 | Ancestral + BA.5 | Monovalent vaccine | 292,659 + 1,070,136 adults | COVID-19 hospitalizations, deaths | Hospitalizations: Monovalent: 25.2% [−0.2 to 44.2] Bivalent: 58.7% [43.7 to 69.8] Severe infection: Monovalent: 24.9% [1.4 to 42.8] Bivalent: 61.8% [48.2 to 71.8] | No |
Link-Gelles [22] | USA | Observational cohort study (ICATT) | ND | Ancestral + BA.4/BA.5 | Unvaccinated; monovalent vaccinations | 360,626 adults | Symptomatic infection | Absolute vaccine effectiveness: 22 [15–29]~43 [39–46]% | No |
Surie D [23] | USA | Observational study (IVY) | 2022/09–2022/11 | Ancestral + BA.4/BA.5 | Unvaccinated; monovalent vaccinations | 798 immunocompetent adults aged > 65 years | Hospitalizations | Unvaccinated: 84% [64–93] MV: 73% [52–85] | No |
Tenforde MW [24] | USA | Observational study (VISION Network) | 2022/09~2022/11 | Ancestral + BA.4/BA.5 | Unvaccinated; monovalent vaccinations | 78,170 immunocompetent adults | Emergency visits and hospitalizations | Vaccine effectiveness against ED visits: Unvaccinated: 56% [49–62] MV: 50% [43–57] Hospitalizations: Unvaccinated:59% [44–70] MV: 48% [30–62] | No |
Wang Q, NEJM [27] | USA | Cohort study | ND | Ancestral + BA.5 | Monovalent vaccine; breakthrough infection | 41 adults | Immunogenicity | Boosting with the bivalent mRNA vaccines is not evidently better than boosting with the original monovalent vaccine (neutralization antibody 1649 vs. 1366, p = 0.57). | No |
Wang Q, LID [34] | USA | Cohort study | 2022/09~2022/10 | Ancestral + BA.5 | Unvaccinated, monovalent vaccine, breakthrough infection | 74 adults | Immunogenicity | The bivalent booster did not elicit a discernibly superior virus-neutralizing peak antibody response (neutralizing antibody 835 vs. 509, p = 0.22). | No |
Bivalent BA.1- or BA.5-containing mRNA Vaccine | |||||||||
Canaday DH [37] | USA | Cohort study | 2022/09~2022/11 | Ancestral + BA.1 or BA.5 | Monovalent vaccination | 261 participants (nursing homes) | Immunogenicity | The bivalent booster substantially elevated neutralizing antibody titers against the Wuhan, BA.1, and BA.4/BA.5 strains (BA.4/5 before vs. after = 160 vs. 1964, p < 0.01). | No |
Johnson AG [38] | USA | Retrospective surveillance data | 2021/03~2022/12 | Ancestral + BA.1 or BA.5 | Unvaccinated or monovalent | 21,296,326 COVID-19 cases | COVID-19 incidence and mortality | The bivalent booster recipients in 24 US jurisdictions had slightly higher protection against infection and significantly higher protection against death (for people aged 65–79, a risk ratio of 23.7 [12.6–44.7] was observed in unvaccinated people). | No |
Bivalent mRNA Vaccine with other Components | |||||||||
Chalkias S, Nat Med [29] | USA | Phase 2/3 study | 2021/05~2021/07 | Ancestral + Beta | Monovalent vaccination | 895 + 584 + 171 adults | Safety, reactogenicity, immunogenicity | Higher immunogenicity of bivalent vaccinations (GMR: 1.23 [1.01–1.50]~2.74 [2.22–3.40]). | No |
Dayan GH [35] | 8 countries | Phase 3 trial | 2021/10~2022/02 | Ancestral + Beta | Placebo | 12,924 adults | Symptomatic infection | A vaccine efficacy 64.7% [46.6 to 77.2]. | No |
Hannawi S [32] | China | Phase 1/2 | 2022/01~2022/04 | Alpha + Beta | Placebo | 234 adults | Reactogenicity, immunogenicity | The SCTV01C booster was safe with reactogenicity profiles. | No |
Monovalent Vaccines vs. Bivalent Vaccines (BA.1 or BA.5) | Monovalent Vaccines vs. Bivalent Vaccines (BA.1) | Monovalent Vaccines vs. Bivalent Vaccines (BA.5) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Against New Variant | Against Ancestral Strain | Against BA.1 | Against Ancestral Strain | Against BA.5 | Against Ancestral Strain | |||||||
Vaccine | BV | MV | BV | MV | BV | MV | BV | MV | BV | MV | BV | MV |
GMT | 1065.9 | 719.8 | 4526 | 3911.4 | 948.5 | 583.7 | 4232.8 | 4157.8 | 4325.7 | 3288.9 | 26,049.9 | 22,297 |
MD | 383.75 | 235.68 | 419.13 | 81.68 | 925.83 | 1416.82 | ||||||
95% CI | 126.16 | 641.33 | −82.23 | 553.59 | 49.53 | 788.72 | −149.04 | 312.4 | −402.62 | 2254.28 | −20,408.9 | 23,242.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.-Y.; Lin, C.-Y.; Chi, H.; Weng, S.-L.; Li, S.-T.; Tai, Y.-L.; Huang, Y.-N.; Huang, H.; Lin, C.-H.; Chiu, N.-C. The Effectiveness of Bivalent COVID-19 Vaccination: A Preliminary Report. Life 2023, 13, 2094. https://doi.org/10.3390/life13102094
Chen S-Y, Lin C-Y, Chi H, Weng S-L, Li S-T, Tai Y-L, Huang Y-N, Huang H, Lin C-H, Chiu N-C. The Effectiveness of Bivalent COVID-19 Vaccination: A Preliminary Report. Life. 2023; 13(10):2094. https://doi.org/10.3390/life13102094
Chicago/Turabian StyleChen, Ssu-Yu, Chien-Yu Lin, Hsin Chi, Shun-Long Weng, Sung-Tse Li, Yu-Lin Tai, Ya-Ning Huang, Hsiang Huang, Chao-Hsu Lin, and Nan-Chang Chiu. 2023. "The Effectiveness of Bivalent COVID-19 Vaccination: A Preliminary Report" Life 13, no. 10: 2094. https://doi.org/10.3390/life13102094
APA StyleChen, S. -Y., Lin, C. -Y., Chi, H., Weng, S. -L., Li, S. -T., Tai, Y. -L., Huang, Y. -N., Huang, H., Lin, C. -H., & Chiu, N. -C. (2023). The Effectiveness of Bivalent COVID-19 Vaccination: A Preliminary Report. Life, 13(10), 2094. https://doi.org/10.3390/life13102094