Prebiotic Syntheses of Organophosphorus Compounds from Reduced Source of Phosphorus in Non-Aqueous Solvents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Oxidation of Hypophosphite by Fenton Reaction
2.2. Syntheses of Biological P Esters by P Products from Fenton Solution
2.3. Studies on the Release of Inorganic P from Various Prebiotically Relevant P Minerals
2.4. Analyses, Identification and Characterization of Inorganic and Organic P Compounds
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Karki, M.; Gibard, C.; Bhowmik, S.; Krishnamurthy, R. Nitrogenous Derivatives of Phosphorus and the Origins of Life: Plausible Prebiotic Phosphorylating Agents in Water. Life 2017, 7, 32. [Google Scholar] [CrossRef] [PubMed]
- Gan, D.; Ying, J.; Zhao, Y. Prebiotic Chemistry: The Role of Trimetaphosphate in Prebiotic Chemical Evolution. Front. Chem. 2022, 10, 941228. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Rossi, J.C.; Pascal, R. How Prebiotic Chemistry and Early Life Chose Phosphate. Life 2019, 9, 26. [Google Scholar] [CrossRef]
- Schwartz, A.W. Phosphorus in prebiotic chemistry. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2006, 361, 1743–1749. [Google Scholar] [CrossRef] [PubMed]
- Kamerlin, S.C.; Sharma, P.K.; Prasad, R.B.; Warshel, A. Why nature really chose phosphate. Q. Rev. Biophys. 2013, 46, 1–132. [Google Scholar] [CrossRef]
- Westheimer, F.H. Why Nature Chose Phosphates. Science 1987, 235, 1173–1178. [Google Scholar] [CrossRef] [PubMed]
- Zimmer, C. On the Origin of Life on Earth. Science 2009, 323, 198–199. [Google Scholar] [CrossRef]
- Brady, M.P.; Tostevin, R.; Tosca, N.J. Marine phosphate availability and the chemical origins of life on Earth. Nat. Commun. 2022, 13, 5162. [Google Scholar] [CrossRef]
- Arrhenius, G.; Sales, B.; Mojzsis, S.; Lee, T. Entropy and charge in molecular evolution—The case of phosphate. J. Theor. Biol. 1997, 187, 503–522. [Google Scholar] [CrossRef]
- Fernández-García, C.; Coggins, A.J.; Powner, M.W. A Chemist’s Perspective on the Role of Phosphorus at the Origins of Life. Life 2017, 7, 31. [Google Scholar] [CrossRef]
- Hazen, R.M.; Papineau, D.; Bleeker, W.; Downs, R.T.; Ferry, J.M.; McCoy, T.J.; Yang, H. Mineral evolution. Am. Mineral 2008, 93, 1693–1720. [Google Scholar] [CrossRef]
- Schwartz, A.W. Prebiotic phosphorus chemistry reconsidered. Orig. Life Evol. Biosph. 1997, 27, 505–512. [Google Scholar] [CrossRef]
- Handschuh, G.J.; Lohrmann, R.; Orgel, L.E. The effect of Mg2+ and Ca2+ on urea-catalyzed phosphorylation reactions. J. Mol. Evol. 1973, 2, 251–262. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, A.W. Prebiotic phosphorylation-nucleotide synthesis with apatite. Biochim. Biophys. Acta 1972, 281, 477–480. [Google Scholar] [CrossRef] [PubMed]
- Schoffstall, A.M. Prebiotic phosphorylation of nucleosides in formamide. Orig. Life 1976, 7, 399–412. [Google Scholar] [CrossRef] [PubMed]
- Gulick, A. Phosphorus as a factor in the origin of life. Am. Sci. 1955, 43, 479–489. [Google Scholar]
- Benner, S.A.; Kim, H.J.; Carrigan, M.A. Asphalt, water, and the prebiotic synthesis of ribose, ribonucleosides, and RNA. Acc. Chem. Res. 2012, 45, 2025–2034. [Google Scholar] [CrossRef]
- Lohrmann, R.; Orgel, L.E. Prebiotic synthesis: Phosphorylation in aqueous solution. Science 1968, 161, 64–66. [Google Scholar] [CrossRef] [PubMed]
- Saladino, R.; Crestini, C.; Costanzo, G.; Negri, R.; Di Mauro, E. A possible prebiotic synthesis of purine, adenine, cytosine, and 4(3H)-pyrimidinone from formamide: Implications for the origin of life. Bioinorg. Med. Chem. 2001, 9, 1249–1253. [Google Scholar] [CrossRef]
- Costanzo, G.; Saladino, R.; Crestini, C.; Ciciriello, F.; Di Mauro, E. Formamide as the main building block in the origin of nucleic acids. BMC Evol. Biol. 2007, 7, S1. [Google Scholar] [CrossRef]
- Saladino, R.; Carota, E.; Botta, G.; Kapralov, M.; Timoshenko, G.N.; Rozanov, A.Y.; Krasavin, E.; Di Mauro, E. Meteorite-catalyzed synthesis of nucleosides and of other prebiotic compounds from formamide under proton irradiation. Proc. Natl. Acad. Sci. USA 2015, 112, E2746–E2755. [Google Scholar] [CrossRef]
- Gull, M.; Cafferty, B.J.; Hud, N.V.; Pasek, M.A. Silicate-Promoted Phosphorylation of Glycerol in Non-Aqueous Solvents: A Prebiotically Plausible Route to Organophosphates. Life 2017, 7, 29. [Google Scholar] [CrossRef] [PubMed]
- Saladino, R.; Crestini, C.; Pino, S.; Costanzo, G.; Mauro, E.D. Formamide and the origin of life. Phys. Life Rev. 2012, 9, 84–104. [Google Scholar] [CrossRef]
- Hubbard, J.S.; Voecks, G.E.; Hobby, G.L.; Ferris, J.P.; Williams, E.A.; Nicodem, D.E. Ultraviolet-gas phase and -photocatalytic synthesis from CO and NH3. J. Mol. Evol. 1975, 5, 223–241. [Google Scholar] [CrossRef] [PubMed]
- Adande, G.R.; Woolf, N.J.; Ziurys, L.M. Observations of interstellar formamide: Availability of a prebiotic precursor in the galactic habitable zone. Astrobiology 2013, 13, 439–453. [Google Scholar] [CrossRef] [PubMed]
- Abbott, A.P.; Boothby, D.; Capper, G.; Davies, D.L.; Rasheed, R.K. Deep Eutectic Solvents Formed Between Choline Chloride and Carboxylic Acids: Versatile Alternatives to Ionic Liquids. J. Am. Chem. Soc. 2004, 126, 9142–9147. [Google Scholar] [CrossRef]
- Gállego, I.; Grover, M.A.; Hud, N.V. Folding and Imaging of DNA Nanostructures in Anhydrous and Hydrated Deep-eutectic Solvents. Angew. Chem. Int. Ed. 2015, 54, 6765–6769. [Google Scholar] [CrossRef] [PubMed]
- Mamajanov, I.; Engelhart, A.E.; Bean, H.D.; Hud, N.V. DNA and RNA in Anhydrous Media: Duplex, Triplex, and G-quadruplexSecondary Structures in a Deep Eutectic Solvent. Angew. Chem. Int. Ed. 2010, 49, 6310–6314. [Google Scholar] [CrossRef] [PubMed]
- Gull, M.; Zhou, M.; Fernández, F.M.; Pasek, M.A. Prebiotic Phosphate Ester Syntheses in a Deep Eutectic Solvent. J. Mol. Evol. 2014, 78, 109–117. [Google Scholar] [CrossRef]
- Burcar, B.; Pasek, M.A.; Gull, M.; Cafferty, B.J.; Rancisco Velasco, F.; Hud, N.V.; Menor Salván, C. Origins of life Darwin’s warm little pond: A one-pot reaction for prebiotic phosphorylation and the mobilization of phosphate from minerals in a urea-based solvent. Angew. Chem. Int. Ed. 2016, 55, 13249–13253. [Google Scholar] [CrossRef]
- De Graaf, R.M.; Schwartz, A.W. Thermal synthesis of nucleoside H-phosphonates under mild conditions. Orig. Life Evol. Biosph. 2005, 35, 1–10. [Google Scholar] [CrossRef]
- Cooper, G.W.; Onwo, W.M.; Cronin, J.R. Alkyl phosphonic acids and sulfonic acids in the Murchison meteorite. Geochim. Cosmochim. Acta 1992, 56, 4109–4115. [Google Scholar] [CrossRef] [PubMed]
- Pech, H.; Henry, A.; Khachikian, C.S.; Salmassi, T.M.; Hanraha, G.; Foster, K.L. Detection of geothermal phosphite using high-performance liquid chromatography. Environ. Sci. Technol. 2009, 43, 7671–7675. [Google Scholar] [CrossRef] [PubMed]
- Turner, A.M.; Bergantini, A.; Abplanalp, M.J.; Zhu, C.; Góbi, S.; Sun, B.J.; Chao, K.H.; Chang, A.H.; Meinert, C.; Kaiser, R.I. An interstellar synthesis of phosphorus oxoacids. Nat. Commun. 2018, 9, 3851. [Google Scholar] [CrossRef]
- Glindemann, D.; De Graaf, R.M.; Schwartz, A.W. Chemical reduction of phosphate on the primitive Earth. Orig. Life Evol. Biosph. 1999, 29, 555–561. [Google Scholar] [CrossRef]
- De Graaf, R.M.; Visscher, J.; Schwartz, A.W. A plausibly prebiotic synthesis of phosphonic acids. Nature 1995, 378, 474–477. [Google Scholar] [CrossRef]
- Pasek, M.A.; Dworkin, J.P.; Lauretta, D.S. A radical pathway for organic phosphorylation during schreibersite corrosion with implications for the origin of life. Geochim. Cosmochim. Acta 2007, 71, 1721–1736. [Google Scholar] [CrossRef]
- Kaye, K.; Bryant, D.E.; Marriott, K.E.; Ohara, S.; Fishwick, C.W.; Kee, T.P. Selective Phosphonylation of 5′-Adenosine Monophosphate (5’-AMP) via Pyrophosphite [PPi(III)]. Orig. Life Evol. Biosph. 2016, 46, 425–434. [Google Scholar] [CrossRef] [PubMed]
- Gull, M.; Feng, T.; Cruz, H.A.; Krishnamurthy, R.; Pasek, M.A. Prebiotic Chemistry of Phosphite: Mild Thermal Routes to Form Condensed-P Energy Currency Molecules Leading Up to the Formation of Organophosphorus Compounds. Life 2023, 13, 920. [Google Scholar] [CrossRef]
- Ritson, D.J.; Mojzsis, S.J.; Sutherland, J.D. Supply of phosphate to early Earth by photogeochemistry after meteoritic weathering. Nat. Geosci. 2020, 13, 344–348. [Google Scholar] [CrossRef] [PubMed]
- Pasek, M.A.; Kee, T.P.; Bryant, D.E.; Pavlov, A.A.; Lunine, J.I. Production of potentially prebiotic condensed phosphates by phosphorus redox chemistry. Angew. Chem. Int. Ed. 2008, 47, 7918–7920. [Google Scholar] [CrossRef]
- Liang, M.C.; Hartman, H.; Kopp, R.E.; Kirschvink, J.L.; Yung, Y.L. Production of hydrogen peroxide in the atmosphere of a Snowball Earth and the origin of oxygenic photosynthesis. Proc. Natl. Acad. Sci. USA 2006, 103, 18896–18899. [Google Scholar] [CrossRef] [PubMed]
- Levine, J.S.; Hays, P.B.; Walker, J.C. The evolution and variability of atmospheric ozone over geological time. Icarus 1979, 39, 295–309. [Google Scholar] [CrossRef]
- Ślesak, I.; Ślesak, H.; Kruk, J. Oxygen and hydrogen peroxide in the early evolution of life on earth: In silico comparative analysis of biochemical pathways. Astrobiology 2012, 12, 775–784. [Google Scholar] [CrossRef] [PubMed]
- Padan, E. Facultative anoxygenic photosynthesis in cyanobacteria. Annu. Rev. Plant Physiol. 1979, 30, 27–40. [Google Scholar] [CrossRef]
- Lalonde, S.V.; Konhauser, K.O. Benthic perspective on Earth’s oldest evidence for oxygenic photosynthesis. Proc. Natl. Acad. Sci. USA 2015, 112, 995–1000. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Wu, X.; Xian, H.; Zhu, J.; Yang, Y.; Lv, Y.; Konhauser, K.O. An abiotic source of Archean hydrogen peroxide and oxygen that pre-dates oxygenic photosynthesis. Nat. Commun. 2021, 12, 6611. [Google Scholar] [CrossRef]
- Gull, M.; Feng, T.; Bracegirdle, J.; Abbott-Lyon, H.; Pasek, M.A. Organophosphorus Compound Formation Through the Oxidation of Reduced Oxidation State Phosphorus Compounds on the Hadean Earth. J. Mol. Evol. 2022, 91, 60–75. [Google Scholar] [CrossRef]
- Gull, M.; Omran, A.; Feng, T.; Pasek, M.A. Silicate-, magnesium ion-, and urea-induced prebiotic phosphorylation of uridine via pyrophosphate; revisiting the hot drying water pool scenario. Life 2020, 10, 122. [Google Scholar] [CrossRef]
- Gull, M.; Pasek, M.A. Catalytic Prebiotic Formation of Glycerol Phosphate Esters and an Estimation of Their Steady State Abundance under Plausible Early Earth Conditions. Catalysts 2021, 11, 1384. [Google Scholar] [CrossRef]
- Gull, M.; Feng, T.; Pasek, M.A. Results of an Eight-Year Extraction of Phosphorus Minerals within the Seymchan Meteorite. Life 2022, 12, 1591. [Google Scholar] [CrossRef] [PubMed]
- Yoza, N.; Ueda, N.; Nakashima, S. pH-dependence of 31 P-NMR spectroscopic parameters of monofluorophosphate, phosphate, hypophosphate, phosphonate, phosphinate and their dimers and trimers. Fresenius J. Anal. Chem. 1994, 348, 633–638. [Google Scholar] [CrossRef]
- Mikkola, S.; Lönnberg, T.; Lönnberg, H. Phosphodiester models for cleavage of nucleic acids. Beilstein J. Org. Chem. 2018, 14, 803–837. [Google Scholar] [CrossRef] [PubMed]
- Wolfenden, R.; Ridgway, C.; Young, G. Spontaneous hydrolysis of ionized phosphate monoesters and diesters and the proficiencies of phosphatases and phosphodiesterases as catalysts. J. Am. Chem. Soc. 1998, 120, 833–834. [Google Scholar] [CrossRef]
- Bryant, D.E.; Kee, T.P. Direct evidence for the availability of reactive, water soluble phosphorus on the early Earth. H-Phosphinic acid from the Nantan meteorite. Chem. Commun. 2006, 22, 2344–2346. [Google Scholar] [CrossRef] [PubMed]
- McCollom, T.M. Miller-Urey and Beyond: What Have We Learned About Prebiotic Organic Synthesis Reactions in the Past 60 Years? Annu. Rev. Earth Planet. Sci. 2013, 41, 207–229. [Google Scholar] [CrossRef]
- Lohrmann, R. Formation of urea and guanidine by irradiation of ammonium cyanide. J. Mol. Evol. 1972, 1, 263–269. [Google Scholar] [CrossRef]
- Fiore, M.; Strazewski, P. Prebiotic Lipidic Amphiphiles and Condensing Agents on the Early Earth. Life 2016, 6, 17. [Google Scholar] [CrossRef]
- Ruiz-Bermejo, M.; de la Fuente, J.L.; Pérez-Fernández, C.; Mateo-Martí, E. A Comprehensive Review of HCN-Derived Polymers. Processes 2021, 9, 597. [Google Scholar] [CrossRef]
- Österberg, R.; Orgel, L.E.; Lohrmann, R. Further studies of urea-catalyzed phosphorylation reactions. J. Mol. Evol. 1973, 2, 231–234. [Google Scholar] [CrossRef] [PubMed]
- Lohrmann, R.; Orgel, L.E. Urea-inorganic phosphate mixtures as prebiotic phosphorylating agents. Science 1971, 171, 490–494. [Google Scholar] [CrossRef]
- Benner, S.A.; Devine, K.G.; Matveeva, L.N.; Powell, D.H. The missing organic molecules on Mars. Proc. Natl. Acad. Sci. USA 2000, 97, 2425–2430. [Google Scholar] [CrossRef]
- Clancy, R.T.; Sandor, B.J.; Moriarty-Schieven, G.H. A measurement of the 362 GHz absorption line of Mars atmospheric H2O2. Icarus 2004, 168, 116–121. [Google Scholar] [CrossRef]
- Encrenaz, T.; Bézard, B.; Owen, T.; Lebonnois, S.; Lefèvre, F.; Greathouse, T.; Forget, F. Infrared imaging spectroscopy of Mars: H2O mapping and determination of CO2 isotopic ratios. Icarus 2005, 179, 43–54. [Google Scholar] [CrossRef]
- Guilbaud, R.; Poulton, S.; Butterfield, N.; Zhu, M.; Sheields-Zhou, G.A. A global transition to ferruginous conditions in the early Neoproterozoic oceans. Nat. Geosci. 2015, 8, 466–470. [Google Scholar] [CrossRef]
- Poulton, S.W.; Canfield, D.E. Ferruginous Conditions: A Dominant Feature of the Ocean through Earth’s History. Elements 2011, 7, 107–112. [Google Scholar] [CrossRef]
- Xiong, Y.; Guilbaud, R.; Peacock, C.L.; Krom, M.D.; Poulton, S.W. Phosphorus controls on the formation of vivianite versus green rust under anoxic conditions. Geochim. Cosmochim. Acta 2023, 351, 139–151. [Google Scholar] [CrossRef]
- Guilbaud, R.; Slater, B.J.; Poulton, S.W.; Harvey, T.H.; Brocks, J.J.; Nettersheim, B.J.; Butterfield, N.J. Oxygen minimum zones in the early Cambrian ocean. Geochem. Perspect. Lett. 2018, 6, 33–38. [Google Scholar] [CrossRef]
- Gedulin, B.; Arrhenius, G. Sources and geochemical evolution of RNA precursor molecules—The role of phosphate. In Early Life on Earth, 1st ed.; Bengston, S., Ed.; Columbia University Press: New York, NY, USA, 1994; pp. 91–110. [Google Scholar]
- Schwartz, A.W. Phosphorus in Prebiotic Chemistry—An Update and a Note on Plausibility. In Handbook of Astrobiology, 1st ed.; Kolb, V.M., Ed.; CRC Press: Boca Raton, FL, USA, 2019; p. 5. [Google Scholar]
- Kolodiazhnyi, O.I. Phosphorus Compounds of Natural Origin: Prebiotic, Stereochemistry, Application. Symmetry 2021, 13, 889. [Google Scholar] [CrossRef]
Sample Name | Description |
---|---|
For | 7 mL IPF solution, 4 mL formamide, pH = 11–12, 65–68 °C, 3 days |
UAFW | 7 mL IPF solution, 4 mL UAFW, pH = 11, 65–68 °C, 3 days |
AD-Form-1 | 0.65 g adenosine, 7 mL IPF solution, 4 mL formamide, 65–68 °C, 1 day |
AD-UAFW-1 | 0.65 g adenosine, 7 mL IPF solution, 4 mL UAFW, 65–68 °C, 1 day |
AD-UAFW3 | 0.65 g adenosine, 7 mL IPF solution, 4 mL UAFW, 65–68 °C, 3 days |
AD-Form-3 | 0.65 g adenosine, 7 mL IPF solution, 4 mL formamide, 65–68 °C, 3 days |
CY-Form-3 | 0.60 g cytidine, 7 mL IPF solution, 4 mL formamide, 65–67 °C, 3 days |
CY-UAFW-3 | 0.60 g cytidine, 7 mL IPF solution, 4 mL UAFW, 65–67 °C, 3 days |
CY-Form-1 | 0.60 g cytidine, 7 mL IPF solution, 4 mL formamide, 65–67 °C, 1 day |
CY-UAFW-2 | 0.60 g cytidine, 7 mL IPF solution, 4 mL UAFW, 65–67 °C, 2 days |
UR-Form-2 | 0.65 g uridine, 7 mL IPF solution, 4 mL formamide, 55–57 °C, 2 days |
UR-UAFW-2 | 0.65 g uridine, 7 mL IPF solution, 4 mL UAFW, 55–57 °C, 2 days |
UR-Form-3 | 0.65 g uridine, 7 mL IPF solution, 4 mL formamide, 55–58 °C, 3 days |
UR-Form-1 | 0.65 g uridine, 7 mL IPF solution, 4 mL UAFW, 55–57 °C, 1 day |
CH-Form-5 | 0.80 g choline chloride, 7 mL IPF solution, 4 mL formamide, 65–68 °C, 5 days |
CH-UAFW-5 | 0.80 g choline chloride, 7 mL IPF solution, 4 mL UAFW, 65–68 °C, 5 days |
EA-Form-4 | 0.70 g ethanolamine, 7 mL IPF solution, 4 mL formamide, 55–57 °C, 4 days |
EA-UAFW-4 | 0.70 g ethanolamine, 7 mL IPF solution, 4 mL UAFW, 55–57 °C, 4 days |
GL-Form-4 | 0.80 g glycerol, 7 mL IPF solution, 4 mL formamide, 65–68 °C, 4 days |
GL-UAFW-4 | 0.75 g glycerol, 7 mL IPF solution, 4 mL UAFW, 65–68 °C, 4 days |
Sample | Description |
---|---|
Reaction Set-1 | |
FE-Form | 0.200 g FeHPO3, 4mL formamide, pH = 8, 65–68 °C |
CA-Form | 0.200 g CaHPO3, 4 mL formamide, pH = 6.5, 65–68 °C, |
APA-Form | 0.200 g apatite (Ca5(PO4)3(F, Cl, OH), 4 mL formamide, pH = 8, 65–68 °C |
VIV-Form | 0.200 g vivianite (Fe3(PO4)2·8H2O), 4 mL formamide, pH = 8, 65–68 °C |
Reaction Set-2 | |
FE-UAFW | 0.200 g FeHPO3, 4 mL UAFW, pH = 6, 65–68 °C |
CA-UAFW | 0.200 g CaHPO3, 4 mL UAFW, pH = 5–6, 65–68 °C, |
APA-UAFW | 0.200 g apatite (Ca5(PO4)3(F, Cl, OH), 4 mL UAFW, pH = 5, 65–68 °C |
VIV-UAFW | 0.200 g vivianite (Fe3(PO4)2·8H2O), 4 mL UAFW, pH = 5, 65–68 °C |
Sample Name | Hypophosphite | Phosphite | Orthophosphate | In. condensed P | 5′-mono-PO3 | 5′-mono-PO4 | 2′-+ 3′-mono-PO3 | 2′-+ 3′-mono-PO4 | Dimer Species | 2′, 3′-cyc. Org. PO4 | Nucleoside Diphosphite | Total Org. PO4 | Total Org. PO3 | TC-O-P |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
a | b | c | d | e | f | g | h | i | j | p | ||||
Ad-Form-1 | 18 | 39 | 11 | 18 | 3 | ND | ND | ND | 8 | 3 | ND | 11 | 3 | 14 |
Ad-UAFW-1 | 8 | ND | 4.5 | ND | 28 | 1.5 | 19 | 6 | ND | 33 | ND | 40.5 | 47 | 87.5 |
Ad-UAFW-3 | 8 | ND | 3 | ND | 32 | 2 | 16 | 6 | ND | 33 | ND | 41 | 48 | 89 |
Ad-form-3 | 15 | 35 | 16 | 10 | 11 | 8 | ND | ND | ND | 5 | ND | 12 | 11 | 24 |
Cy-form-3 | 15 | 38 | 8 | ND | 8 | 2 | 3 | 2 | 8 | 16 | ND | 28 | 11 | 39 |
Cy-UAFW-3 | 10 | ND | 7 | ND | 30 | ND | 23 | ND | 7 | 23 | ND | 30 | 53 | 83 |
Cy-Form-1 | 13 | 44 | 13 | ND | 5 | 12 | 3 | 6 | ND | 2 | ND | 20 | 8 | 28 |
Cy-UAFW-2 | 18 | 6 | 1 | ND | 23 | 10 | 27 | ND | 2 | 13 | ND | 23 | 50 | 75 |
Ur-Form-2 | 20 | 26 | 7 | ND | 12 | 15 | 11 | 4 | 3 | 7 | ND | 29 | 23 | 52 |
Ur-UAFW-2 | 10 | ND | 2 | ND | 15 | 5 | 24 | 9 | 4 | 23 | 8 | 41 | 47 | 89 |
Ur-Form-3 | 9 | 37 | 2 | ND | 23 | 2 | 12 | ND | 6 | 9 | ND | 17 | 35 | 52 |
Ur-Form-1 | 19 | 19 | 2 | 0.5 | 19 | 11 | 14 | 9 | 1 | 6 | ND | 27 | 33 | 60 |
Sample Name | Hypophosphite | Phosphite | Orthophosphate | In. Condensed P | Organic-1-PO3 | Organic-1-PO4 | Organic-2-PO3 | Organic-2-PO4 | Organic Diphosphite | Organic Diphosphate | Total Org. PO4 | Total Org. PO3 | TC-O-P |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
a | b | c | d | k | l | m | n | o | q | ||||
CH-Form-5 | 14 | 23 | 3 | 4 | 23 | 32 | NA | NA | NA | NA | 32 | 23 | 55 |
CH-UAFW-5 | 8 | ND | 5.3 | 8 | 47 | 31.6 | ND | ND | ND | NA | 31.6 | 47 | 78.6 |
EA-Form-4 | 8 | 51 | 19 | 4 | 12 | 6 | NA | NA | NA | NA | 6 | 12 | 18 |
EA-UAFW-4 | 18 | ND | 3 | ND | 53 | 26 | NA | NA | NA | NA | 26 | 53 | 79 |
GL-Form-4 | 14 | 35 | 7 | ND | 14 | ND | 3 | ND | 5 | 22 | 22 | 22 | 45 |
GL-UAFW-5 | 16 | 28 | 6 | ND | 37 | ND | 5 | ND | ND | 8 | 8 | 42 | 50 |
Sample | Phosphate (%) | Phosphite (%) | Pyrophophite (%) | [M]T |
---|---|---|---|---|
Fe-Form | 47.17% | 52.83% | BDL | 0.05 |
VIV-UAFW | BDL | BDL | BDL | - |
FE-UAFW | 2.43% | 97.57% | BDL | 0.01 |
APA-UAFW | BDL | BDL | BDL | - |
CA-UAFW | 1.43% | 98.57% | BDL | 0.02 |
APA-Form | BDL | BDL | BDL | - |
VIV-Form | BDL | BDL | BDL | - |
CA-Form | 1.34% | 90.50% | 8.15% | 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gull, M.; Feng, T.; Smith, B.; Calcul, L.; Pasek, M.A. Prebiotic Syntheses of Organophosphorus Compounds from Reduced Source of Phosphorus in Non-Aqueous Solvents. Life 2023, 13, 2134. https://doi.org/10.3390/life13112134
Gull M, Feng T, Smith B, Calcul L, Pasek MA. Prebiotic Syntheses of Organophosphorus Compounds from Reduced Source of Phosphorus in Non-Aqueous Solvents. Life. 2023; 13(11):2134. https://doi.org/10.3390/life13112134
Chicago/Turabian StyleGull, Maheen, Tian Feng, Benjamin Smith, Laurent Calcul, and Matthew A. Pasek. 2023. "Prebiotic Syntheses of Organophosphorus Compounds from Reduced Source of Phosphorus in Non-Aqueous Solvents" Life 13, no. 11: 2134. https://doi.org/10.3390/life13112134
APA StyleGull, M., Feng, T., Smith, B., Calcul, L., & Pasek, M. A. (2023). Prebiotic Syntheses of Organophosphorus Compounds from Reduced Source of Phosphorus in Non-Aqueous Solvents. Life, 13(11), 2134. https://doi.org/10.3390/life13112134