Amphidinium spp. as a Source of Antimicrobial, Antifungal, and Anticancer Compounds
Abstract
:1. Introduction
2. Antifungal Activity
3. Anticancer Activity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Taylor, F.J.R.; Hoppenrath, M.; Saldarriaga, J.F. Dinoflagellate diversity and distribution. Biodivers. Conserv. 2008, 17, 407–418. [Google Scholar] [CrossRef]
- Elangovan, S.S.; Padmavati, G. Diversity and distribution of heterotrophic dinoflagellates from the coastal waters of Port Blair, South Andaman. Environ. Monit. Assess. 2017, 189, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Ignatiades, L. Mixotrophic and heterotrophic dinoflagellates in eutrophic coastal waters of the Aegean Sea (Eastern Mediterranean Sea). Bot. Mar. 2012, 55, 39–48. [Google Scholar] [CrossRef]
- Stauffer, B.A.; Gellene, A.G.; Rico, D.; Sur, C.; Caron, D.A. Grazing of the heterotrophic dinoflagellate Noctiluca scintillans on dinoflagellate and raphidophyte prey. Aquat. Microb. Ecol. 2018, 80, 193–207. [Google Scholar] [CrossRef]
- Sherr, E.B.; Sherr, B.F. Heterotrophic dinoflagellates: A significant component of microzooplankton biomass and major grazers of diatoms in the sea. Mar. Ecol. Prog. Ser. 2007, 352, 187–197. [Google Scholar] [CrossRef]
- Chambouvet, A.; Morin, P.; Marie, D.; Guillou, L. Control of toxic marine dinoflagellate blooms by serial parasitic killers. Science 2008, 322, 1254–1257. [Google Scholar] [CrossRef] [PubMed]
- Coats, D.W.; Heisler, J.J. Spatial and temporal occurrence of the parasitic dinoflagellate Duboscquella cachoni and its tintinnine host Eutintinnus pectinis in Chesapeake Bay. Mar. Biol. 1989, 101, 401–409. [Google Scholar] [CrossRef]
- Riding, J.B.; Fensome, R.A.; Soyer-Gobillard, M.-O.; Medlin, L.K. A review of the dinoflagellates and their evolution from fossils to modern. J. Mar. Sci. Eng. 2023, 11, 1. [Google Scholar] [CrossRef]
- Kong, X.Y.; Han, X.R.; Gao, M.; Su, R.G.; Wang, K.; Li, X.Z.; Lu, W. Antialgal and antilarval activities of bioactive compounds extracted from the marine dinoflagellate Amphidinium Cart. J. Ocean Univ. China 2016, 15, 1014–1020. [Google Scholar] [CrossRef]
- Galasso, C.; Nuzzo, G.; Brunet, C.; Ianora, A.; Sardo, A.; Fontana, A.; Sansone, C. The marine dinoflagellate Alexandrium minutum activates a mitophagic pathway in human lung cancer cells. Mar. Drugs 2018, 16, 502. [Google Scholar] [CrossRef]
- Lauritano, C.; Andersen, J.H.; Hansen, E.; Albrigtsen, M.; Escalera, L.; Esposito, F.; Helland, K.; Hanssen, K.O.; Romano, G.; Ianora, A. Bioactivity screening of microalgae for antioxidant, anti-inflammatory, anticancer, anti-diabetes, and antibacterial activities. Front. Mar. Sci. 2016, 3, 68. [Google Scholar] [CrossRef]
- Nuzzo, G.; Cutignano, A.; Sardo, A.; Fontana, A. Antifungal amphidinol 18 and its 7-sulfate derivative from the marine dinoflagellate Amphidinium carterae. J. Nat. Prod. 2014, 77, 1524–1527. [Google Scholar] [CrossRef] [PubMed]
- Cho, K.; Li, W.C.; Takeshita, S.; Seo, J.K.; Chung, Y.H.; Kim, D.; Oda, T. Evidence for the presence of cell-surface-bound and intracellular bactericidal toxins in the dinoflagellate Heterocapsa circularisquama. Aquat. Toxicol. 2017, 189, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Li, W.C.; Cho, K.; Yamasaki, Y.; Takeshita, S.; Hwang, K.; Kim, D.; Oda, T. Photo-induced antibacterial activity of a porphyrin derivative isolated from the harmful dinoflagellate Heterocapsa circularisquama. Aquat. Toxicol. 2018, 201, 119–128. [Google Scholar] [CrossRef]
- Hermawan, I.; Higa, M.; Hutabarat, P.U.B.; Fujiwara, T.; Akiyama, K.; Kanamoto, A.; Haruyama, T.; Kobayashi, N.; Higashi, M.; Suda, S.; et al. Kabirimine, a new cyclic imine from an Okinawan dinoflagellate. Mar. Drugs 2019, 17, 353. [Google Scholar] [CrossRef] [PubMed]
- Kraus, J.-L. Natural products as potential antiviral drugs: The specific case of marine biotoxins. Russ. J. Bioorganic Chem. 2021, 47, 1127–1132. [Google Scholar] [CrossRef] [PubMed]
- Camacho, F.G.; Rodriguez, J.G.; Miron, A.S.; Garcia, M.C.C.; Belarbi, E.H.; Chisti, Y.; Grima, E.M. Biotechnological significance of toxic marine dinoflagellates. Biotechnol. Adv. 2007, 25, 176–194. [Google Scholar] [CrossRef]
- Aquino-Cruz, A.; Okolodkov, Y.B. Impact of increasing water temperature on growth, photosynthetic efficiency, nutrient consumption, and potential toxicity of Amphidinium cf. carterae and Coolia monotis (Dinoflagellata). Rev. De Biol. Mar. Y Oceanogr. 2016, 51, 565–580. [Google Scholar] [CrossRef]
- Pagliara, P.; Caroppo, C. Toxicity assessment of Amphidinium carterae, Coolia cfr. monotis and Ostreopsis cfr. ovata (Dinophyta) isolated from the northern Ionian Sea (Mediterranean Sea). Toxicon 2012, 60, 1203–1214. [Google Scholar] [CrossRef]
- Xiao, X.; Agustí, S.; Pan, Y.; Yu, Y.; Li, K.; Wu, J.; Duarte, C.M. Warming amplifies the frequency of harmful algal blooms with eutrophication in Chinese coastal waters. Environ. Sci. Technol. 2019, 53, 13031–13041. [Google Scholar] [CrossRef]
- Tang, E.P.Y. Why do dinoflagellates have lower growth rates? J. Phycol. 1996, 32, 80–84. [Google Scholar] [CrossRef]
- Kitaya, Y.; Xiao, L.; Masuda, A.; Ozawa, T.; Tsuda, M.; Omasa, K. Effects of temperature, photosynthetic photon flux density, photoperiod and O2 and CO2 concentrations on growth rates of the symbiotic dinoflagellate, Amphidinium sp. J. Appl. Phycol. 2008, 20, 737–742. [Google Scholar] [CrossRef]
- Fuentes-Grunewald, C.; Bayliss, C.; Fonlut, F.; Chapuli, E. Long-term dinoflagellate culture performance in a commercial photobioreactor: Amphidinium carterae case. Bioresour. Technol. 2016, 218, 533–540. [Google Scholar] [CrossRef] [PubMed]
- Molina-Miras, A.; Bueso-Sanchez, A.; Ceron-Garcia, M.D.; Sanchez-Miron, A.; Contreras-Gomez, A.; Garcia-Camacho, F. Effect of nitrogen, phosphorous, and light colimitation on amphidinol production and growth in the marine dinoflagellate microalga Amphidinium carterae. Toxins 2022, 14, 594. [Google Scholar] [CrossRef] [PubMed]
- Karpinski, T.M. Marine macrolides with antibacterial and/or antifungal activity. Mar. Drugs 2019, 17, 241. [Google Scholar] [CrossRef] [PubMed]
- Mancuso, G.; Midiri, A.; Gerace, E.; Biondo, C. Bacterial antibiotic resistance: The most critical pathogens. Pathogens 2021, 10, 1310. [Google Scholar] [CrossRef]
- Prestinaci, F.; Pezzotti, P.; Pantosti, A. Antimicrobial resistance: A global multifaceted phenomenon. Pathog. Glob. Health 2015, 109, 309–318. [Google Scholar] [CrossRef]
- Hoffman, P.S. Antibacterial discovery: 21st century challenges. Antibiotics 2020, 9, 213. [Google Scholar] [CrossRef]
- Kubota, T.; Iwai, T.; Sakai, K.; Gonoi, T.; Kobayashi, J. Amphidinins C-F, amphidinolide Q analogues from marine dinoflagellate Amphidinium sp. Org. Lett. 2014, 16, 5624–5627. [Google Scholar] [CrossRef]
- Barone, M.E.; Murphy, E.; Parkes, R.; Fleming, G.T.A.; Campanile, F.; Thomas, O.P.; Touzet, N. Antibacterial activity and amphidinol profiling of the marine dinoflagellate Amphidinium carterae (Subclade III). Int. J. Mol. Sci. 2021, 22, 12196. [Google Scholar] [CrossRef]
- Lomartire, S.; Goncalves, A.M.M. An overview on antimicrobial potential of edible terrestrial plants and marine macroalgae Rhodophyta and Chlorophyta extracts. Mar. Drugs 2023, 21, 163. [Google Scholar] [CrossRef] [PubMed]
- Shannon, E.; Abu-Ghannam, N. Antibacterial derivatives of marine algae: An overview of pharmacological mechanisms and applications. Mar. Drugs 2016, 14, 81. [Google Scholar] [CrossRef] [PubMed]
- Chassagne, F.; Samarakoon, T.; Porras, G.; Lyles, J.T.; Dettweiler, M.; Marquez, L.; Salam, A.M.; Shabih, S.; Farrokhi, D.R.; Quave, C.L. A systematic review of plants with antibacterial activities: A taxonomic and phylogenetic perspective. Front. Pharmacol. 2021, 11, 2069. [Google Scholar] [CrossRef] [PubMed]
- Smith, V.J.; Desbois, A.P.; Dyrynda, E.A. Conventional and unconventional antimicrobials from fish, marine invertebrates and micro-algae. Mar. Drugs 2010, 8, 1213–1262. [Google Scholar] [CrossRef] [PubMed]
- Desbois, A.P.; Smith, V.J. Antibacterial free fatty acids: Activities, mechanisms of action and biotechnological potential. Appl. Microbiol. Biotechnol. 2010, 85, 1629–1642. [Google Scholar] [CrossRef] [PubMed]
- Desbois, A.P.; Mearns-Spragg, A.; Smith, V.J. A fatty acid from the diatom Phaeodactylum tricornutum is antibacterial against diverse bacteria including multi-resistant Staphylococcus aureus (MRSA). Mar. Biotechnol. 2009, 11, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Bazes, A.; Silkina, A.; Douzenel, P.; Fay, F.; Kervarec, N.; Morin, D.; Berge, J.P.; Bourgougnon, N. Investigation of the antifouling constituents from the brown alga Sargassum muticum (Yendo) Fensholt. J. Appl. Phycol. 2009, 21, 395–403. [Google Scholar] [CrossRef]
- Silkina, A.; Bazes, A.; Mouget, J.L.; Bourgougnon, N. Comparative efficiency of macroalgal extracts and booster biocides as antifouling agents to control growth of three diatom species. Mar. Pollut. Bull. 2012, 64, 2039–2046. [Google Scholar] [CrossRef]
- Nash, S.M.B.; Quayle, P.A.; Schreiber, U.; Muller, J.F. The selection of a model microalgal species as biomaterial for a novel aquatic phytotoxicity assay. Aquat. Toxicol. 2005, 72, 315–326. [Google Scholar] [CrossRef]
- Van Wezel, A.P.; Van Vlaardingen, P. Environmental risk limits for antifouling substances. Aquat. Toxicol. 2004, 66, 427–444. [Google Scholar] [CrossRef]
- Dafforn, K.A.; Lewis, J.A.; Johnston, E.L. Antifouling strategies: History and regulation, ecological impacts and mitigation. Mar. Pollut. Bull. 2011, 62, 453–465. [Google Scholar] [CrossRef]
- Jaya, S.; Vipparti, H. Mixed fungal lung infection with Aspergillus fumigatus and Candida albicans in a immunocomprimised patient: Case report. J. Clin. Diagn. Res. 2014, 8, DD8–DD10. [Google Scholar] [CrossRef]
- Nagai, H.; Satake, M.; Murata, M.; Yasumoto, T. Screening of marine-phytoplankton for antifungal substances. In Proceedings of the 4th International Conference on Toxic Marine Phytoplankton, Lund, Sweden, 26–30 June 1989; pp. 385–390. [Google Scholar]
- Cutignano, A.; Nuzzo, G.; Sardo, A.; Fontana, A. The missing piece in biosynthesis of amphidinols: First evidence of glycolate as a starter unit in new polyketides from Amphidinium carterae. Mar. Drugs 2017, 15, 157. [Google Scholar] [CrossRef] [PubMed]
- Echigoya, R.; Rhodes, L.; Oshima, Y.; Satake, M. The structures of five new antifungal and hemolytic amphidinol analogs from Amphidinium carterae collected in New Zealand. Harmful Algae 2005, 4, 383–389. [Google Scholar] [CrossRef]
- Nagai, H.; Torigoe, K.; Satake, M.; Murata, M.; Yasumoto, T.; Hirota, H. Gambieric acids: Unprecedented potent antifungal substances isolated from cultures of a marine dinoflagellate Gambierdiscus toxicus. J. Am. Chem. Soc. 1992, 114, 1102–1103. [Google Scholar] [CrossRef]
- Morohashi, A.; Satake, M.; Nagai, H.; Oshima, Y.; Yasumoto, T. The absolute configuration of gambieric acids A-D, potent antifungal polyethers, isolated from the marine dinoflagellate Gambierdiscus toxicus. Tetrahedron 2000, 56, 8995–9001. [Google Scholar] [CrossRef]
- Morsy, N.; Matsuoka, S.; Houdai, T.; Matsumori, N.; Adachi, S.; Murata, M.; Iwashita, T.; Fujita, T. Isolation and structure elucidation of a new amphidinol with a truncated polyhydroxyl chain from Amphidinium klebsii. Tetrahedron 2005, 61, 8606–8610. [Google Scholar] [CrossRef]
- Satake, M.; Cornelio, K.; Hanashima, S.; Malabed, R.; Murata, M.; Matsumori, N.; Zhang, H.P.; Hayashi, F.; Mori, S.; Kim, J.S.; et al. Structures of the largest amphidinol homologues from the dinoflagellate Amphidinium carterae and structure-activity relationships. J. Nat. Prod. 2017, 80, 2883–2888. [Google Scholar] [CrossRef]
- Audoin, C.; Bonhomme, D.; Ivanisevic, J.; de la Cruz, M.; Cautain, B.; Monteiro, M.C.; Reyes, F.; Rios, L.; Perez, T.; Thomas, O.P. Balibalosides, an original family of glucosylated sesterterpenes produced by the mediterranean sponge Oscarella balibaloi. Mar. Drugs 2013, 11, 1477–1489. [Google Scholar] [CrossRef]
- De-Souza-Silva, C.M.; Guilhelmelli, F.; Zamith-Miranda, D.; de Oliveira, M.A.; Nosanchuk, J.D.; Silva-Pereira, I.; Albuquerque, P. Broth microdilution in vitro screening: An easy and fast method to detect new antifungal compounds. J. Vis. Exp. JoVE 2018, 132, e57127. [Google Scholar] [CrossRef]
- Zida, A.; Bamba, S.; Yacouba, A.; Ouedraogo-Traore, R.; Guiguemde, R.T. Anti-Candida albicans natural products, sources of new antifungal drugs: A review. J. De Mycol. Medicale 2017, 27, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Alves, A.; Cruz-Martins, N.; Rodrigues, C.F. Marine compounds with anti-Candida sp. activity: A promised “land” for new antifungals. J. Fungi 2022, 8, 669. [Google Scholar] [CrossRef] [PubMed]
- Anjum, K.; Kaleem, S.; Yi, W.; Zheng, G.; Lian, X.; Zhang, Z. Novel antimicrobial indolepyrazines A and B from the marine-associated Acinetobacter sp. ZZ1275. Mar. Drugs 2019, 17, 89. [Google Scholar] [CrossRef] [PubMed]
- Kaleem, S.; Qin, L.; Yi, W.; Lian, X.-Y.; Zhang, Z. Bioactive metabolites from the mariana trench sediment-derived fungus Penicillium sp. SY2107. Mar. Drugs 2020, 18, 258. [Google Scholar] [CrossRef] [PubMed]
- Tan, L.F.; Yap, V.L.; Rajagopal, M.; Wiart, C.; Selvaraja, M.; Leong, M.Y.; Tan, P.L. Plant as an alternative source of antifungals against Aspergillus infections: A review. Plants 2022, 11, 3009. [Google Scholar] [CrossRef] [PubMed]
- Pfaller, M.A.; Diekema, D.J. Wild-type MIC distributions and epidemiologic cutoff values for fluconazole and Candida: Time for new clinical breakpoints? Curr. Fungal Infect. Rep. 2010, 4, 168–174. [Google Scholar] [CrossRef]
- Arendrup, M.C. Update on antifungal resistance in Aspergillus and Candida. Clin. Microbiol. Infect. 2014, 20, 42–48. [Google Scholar] [CrossRef]
- Goncalves, S.S.; Souza, A.C.R.; Chowdhary, A.; Meis, J.F.; Colombo, A.L. Epidemiology and molecular mechanisms of antifungal resistance in Candida and Aspergillus. Mycoses 2016, 59, 198–219. [Google Scholar] [CrossRef]
- Hendrickson, J.A.; Hu, C.L.; Aitken, S.L.; Beyda, N. Antifungal resistance: A concerning trend for the present and future. Curr. Infect. Dis. Rep. 2019, 21, 47. [Google Scholar] [CrossRef]
- Hoffman, H.L.; Ernst, E.J.; Klepser, M.E. Novel triazole antifungal agents. Expert Opin. Investig. Drugs 2000, 9, 593–605. [Google Scholar] [CrossRef]
- Martinez, K.A.; Lauritano, C.; Druka, D.; Romano, G.; Grohmann, T.; Jaspars, M.; Martin, J.; Diaz, C.; Cautain, B.; de la Cruz, M.; et al. Amphidinol 22, a new cytotoxic and antifungal amphidinol from the dinoflagellate Amphidinium carterae. Mar. Drugs 2019, 17, 385. [Google Scholar] [CrossRef] [PubMed]
- Paul, G.K.; Matsumori, N.; Murata, M.; Tachibana, K. Isolation and chemical structure of amphidinol 2, a potent hemolytic compound from marine dinoflagellate Amphidinium klebsii. Tetrahedron Lett. 1995, 36, 6279–6282. [Google Scholar] [CrossRef]
- Murphy, E.; Barone, M.E.; Campanile, F.; Touzet, N.; Thomas, O.P. Amphidinol C, a major polyketide from an Irish strain of the dinoflagellate Amphidinium carterae. Phytochem. Lett. 2022, 51, 104–108. [Google Scholar] [CrossRef]
- Kobayashi, J.; Kubota, T. Bioactive macrolides and polyketides from marine dinoflagellates of the genus Amphidinium. J. Nat. Prod. 2007, 70, 451–460. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, J.; Shigemori, H.; Ishibashi, M.; Yamasu, T.; Hirota, H.; Sasaki, T. Amphidinolides G and H: New potent cytotoxic macrolides from the cultured symbiotic dinoflagellate Amphidinium sp. J. Org. Chem. 1991, 56, 5221–5224. [Google Scholar] [CrossRef]
- Kobayashi, J.; Tsuda, M. Amphidinolides, bioactive macrolides from symbiotic marine dinoflagellates. Nat. Prod. Rep. 2004, 21, 77–93. [Google Scholar] [CrossRef] [PubMed]
- Tsuda, M.; Akakabe, M.; Minamida, M.; Kumagai, K.; Tsuda, M.; Konishi, Y.; Tominaga, A.; Fukushi, E.; Kawabata, J. Structure and stereochemistry of amphidinolide N congeners from marine dinoflagellate Amphidinium species. Chem. Pharm. Bull. 2021, 69, 141–149. [Google Scholar] [CrossRef]
- Bauer, I.; Maranda, L.; Young, K.A.; Shimizu, Y. Isolation and structure of caribenolide-I, a highly potent antitumor macrolide from a culturedfree-swimming caribbean dinoflagellate, Amphidinium sp. S1-36-5. J. Org. Chem. 1995, 60, 1084–1086. [Google Scholar] [CrossRef]
- Tsuda, M.; Endo, T.; Kobayashi, J.i. Amphidinolide U, novel 20-membered macrolide from marine dinoflagellate Amphidinium sp. Tetrahedron 1999, 55, 14565–14570. [Google Scholar] [CrossRef]
- Kobayashi, J.i.; Kubota, T.; Endo, T.; Tsuda, M. Amphidinolides T2, T3, and T4, new 19-membered macrolides from the dinoflagellate Amphidinium sp. and the biosynthesis of amphidinolide T1. J. Org. Chem. 2001, 66, 134–142. [Google Scholar] [CrossRef]
- Lu, L.; Zhang, W.; Nam, S.; Horne, D.A.; Jove, R.; Carter, R.G. Amphidinolide B: Total synthesis, structural investigation, and biological evaluation. J. Org. Chem. 2013, 78, 2213–2247. [Google Scholar] [CrossRef] [PubMed]
- Furstner, A.; Bouchez, L.C.; Morency, L.; Funel, J.A.; Liepins, V.; Poree, F.H.; Gilmour, R.; Laurich, D.; Beaufils, F.; Tamiya, M. Total syntheses of amphidinolides B1, B4, G1, H1 and structure revision of amphidinolide H2. Chem. A Eur. J. 2009, 15, 3983–4010. [Google Scholar] [CrossRef] [PubMed]
- Nuzzo, G.; Gomes, B.D.; Gallo, C.; Amodeo, P.; Sansone, C.; Pessoa, O.D.L.; Manzo, E.; Vitale, R.M.; Ianora, A.; Santos, E.A.; et al. Potent cytotoxic analogs of amphidinolides from the atlantic octocoral Stragulum bicolor. Mar. Drugs 2019, 17, 58. [Google Scholar] [CrossRef] [PubMed]
- Oguchi, K.; Tsuda, M.; Iwamoto, R.; Okamoto, Y.; Kobayashi, J.; Fukushi, E.; Kawabata, J.; Ozawa, T.; Masuda, A.; Kitaya, Y.; et al. Iriomoteolide-3a, a cytotoxic 15-membered macrolide from a marine dinoflagellate Amphidinium species. J. Org. Chem. 2008, 73, 1567–1570. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.C.; Zhao, D.; Guo, Y.W.; Wu, H.M.; Lin, L.P.; Wang, Z.H.; Ding, J.; Lin, Y.S. Lingshuiol, a novel polyhydroxyl compound with strongly cytotoxic activity from the marine dinoflagellate Amphidinium sp. Bioorganic Med. Chem. Lett. 2004, 14, 3117–3120. [Google Scholar] [CrossRef]
- Kumagai, K.; Minamida, M.; Akakabe, M.; Tsuda, M.; Konishi, Y.; Tominaga, A.; Tsuda, M.; Fukushi, E.; Kawabata, J. Amphirionin-2, a novel linear polyketide with potent cytotoxic activity from a marine dinoflagellate Amphidinium species. Bioorganic Med. Chem. Lett. 2015, 25, 635–638. [Google Scholar] [CrossRef] [PubMed]
- Akakabe, M.; Kumagai, K.; Tsuda, M.; Konishi, Y.; Tominaga, A.; Tsuda, M.; Fukushi, E.; Kawabata, J. Iriomoteolide-13a, a cytotoxic 22-membered macrolide from a marine dinoflagellate Amphidinium species. Tetrahedron 2014, 70, 2962–2965. [Google Scholar] [CrossRef]
- Kumagai, K.; Tsuda, M.; Fukushi, E.; Kawabata, J.; Masuda, A.; Tsuda, M. Iriomoteolides-9a and 11a: Two new odd-numbered macrolides from the marine dinoflagellate Amphidinium species. J. Nat. Med. 2017, 71, 506–512. [Google Scholar] [CrossRef]
- Akakabe, M.; Kumagai, K.; Tsuda, M.; Konishi, Y.; Tominaga, A.; Kaneno, D.; Fukushi, E.; Kawabata, J.; Masuda, A.; Tsuda, M. Iriomoteolides-10a and 12a, cytotoxic macrolides from marine dinoflagellate Amphidinium species. Chem. Pharm. Bull. 2016, 64, 1019–1023. [Google Scholar] [CrossRef]
- Kumagai, K.; Tsuda, M.; Fukushi, E.; Kawabata, J. Iriomoteolides-4A and -5A, hydrophilic macrolides from marine dinoflagellate Amphidinium species. Heterocycles 2013, 87, 2615–2623. [Google Scholar] [CrossRef]
- Kubota, T.; Tsuda, M.; Kobayashi, J. Amphidinolide V, novel 14-membered macrolide from marine dinoflagellate Amphidinium sp. Tetrahedron Lett. 2000, 41, 713–716. [Google Scholar] [CrossRef]
- Tsuda, M.; Makihara, R.; Tsuda, M.; Suzuki, T. Iriomoteolides-14a and 14b, new cytotoxic 15-membered macrolides from marine dinoflagellate Amphidinium species. Chem. Pharm. Bull. 2020, 68, 864–867. [Google Scholar] [CrossRef] [PubMed]
- Samarakoon, K.; Ko, J.; Shah, M.; Lee, H.; Kang, M.; O-Nam, K.; Lee, J.; Jeon, Y. In vitro studies of anti-inflammatory and anticancer activities of organic solvent extracts from cultured marine microalgae. Algae 2013, 28, 111–119. [Google Scholar] [CrossRef]
- Patridge, E.; Gareiss, P.; Kinch, M.S.; Hoyer, D. An analysis of FDA-approved drugs: Natural products and their derivatives. Drug Discov. Today 2016, 21, 204–207. [Google Scholar] [CrossRef] [PubMed]
- Yuliana, N.D.; Khatib, A.; Choi, Y.H.; Verpoorte, R. Metabolomics for bioactivity assessment of natural products. Phytother. Res. 2011, 25, 157–169. [Google Scholar] [CrossRef] [PubMed]
- Blunt, J.W.; Copp, B.R.; Hu, W.P.; Munro, M.H.; Northcote, P.T.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2009, 26, 170–244. [Google Scholar] [CrossRef] [PubMed]
- Jiménez, C. Marine natural products in medicinal chemistry. ACS Med. Chem. Lett. 2018, 9, 959–961. [Google Scholar] [CrossRef]
- Gallardo-Rodriguez, J.; Sanchez-Miron, A.; Garcia-Camacho, F.; Lopez-Rosales, L.; Chisti, Y.; Molina-Grima, E. Bioactives from microalgal dinoflagellates. Biotechnol. Adv. 2012, 30, 1673–1684. [Google Scholar] [CrossRef]
- Andrade, K.A.M.; Lauritano, C.; Romano, G.; Ianora, A. Marine microalgae with anti-cancer properties. Mar. Drugs 2018, 16, 165. [Google Scholar] [CrossRef]
- Novoveská, L.; Nielsen, S.L.; Eroldoğan, O.T.; Haznedaroglu, B.Z.; Rinkevich, B.; Fazi, S.; Robbens, J.; Vasquez, M.; Einarsson, H. Overview and challenges of large-scale cultivation of photosynthetic microalgae and cyanobacteria. Mar. Drugs 2023, 21, 445. [Google Scholar] [CrossRef]
- Santin, A.; Balzano, S.; Russo, M.T.; Palma Esposito, F.; Ferrante, M.I.; Blasio, M.; Cavalletti, E.; Sardo, A. Microalgae-based PUFAs for food and feed: Current applications, future possibilities, and constraints. J. Mar. Sci. Eng. 2022, 10, 844. [Google Scholar] [CrossRef]
- Molina-Miras, A.; Lopez-Rosales, L.; Sanchez-Miron, A.; Ceron-Garcia, M.C.; Seoane-Parra, S.; Garcia-Camacho, F.; Molina-Grima, E. Long-term culture of the marine dinoflagellate microalga Amphidinium carterae in an indoor LED-lighted raceway photobioreactor: Production of carotenoids and fatty acids. Bioresour. Technol. 2018, 265, 257–267. [Google Scholar] [CrossRef]
- Molina-Miras, A.; Morales-Amador, A.; de Vera, C.R.; López-Rosales, L.; Sánchez-Mirón, A.; Souto, M.L.; Fernández, J.J.; Norte, M.; García-Camacho, F.; Molina-Grima, E. A pilot-scale bioprocess to produce amphidinols from the marine microalga Amphidinium carterae: Isolation of a novel analogue. Algal Res. Biomass Biofuels Bioprod. 2018, 31, 87–98. [Google Scholar] [CrossRef]
Compound or Extract | Type | Species | Properties | Target Microbs | Activity | Reference |
---|---|---|---|---|---|---|
Amphidinin C | Polyketide | Amphidinium sp. (2012-7-4A strain) | Antibacterial | S. aureus | MIC: 32 µg/mL | [29] |
Amphidinin C | Polyketide | Amphidinium sp. (2012-7-4A strain) | Antibacterial | B. subtilis | MIC: 32 µg/mL | [29] |
Amphidinin E | Polyketide | Amphidinium sp. (2012-7-4A strain) | Antibacterial | S. aureus | MIC: 32 µg/mL | [29] |
Amphidinin E | Polyketide | Amphidinium sp. (2012-7-4A strain) | Antibacterial | B. subtilis | MIC: 32 µg/mL | [29] |
Amphidinolide Q | Polyketide | Amphidinium sp. (2012-7-4A strain) | Antibacterial | E. coli | MIC: 32 µg/mL | [29] |
Amphidinolide Q | Polyketide | Amphidinium sp. (2012-7-4A strain) | Antibacterial | S. aureus | MIC: 32 µg/mL | [29] |
Amphidinolide Q | Polyketide | Amphidinium sp. (2012-7-4A strain) | Antibacterial | B. subtilis | MIC: 16 µg/mL | [29] |
Amphidinol AM-A | Polyketide | A. carterae (LACW11 strain) | Antibacterial | S. aureus | MIC: 16 µg/mL | [30] |
Amphidinol AM-A | Polyketide | A. carterae (LACW11 strain) | Antibacterial | E. faecium | MIC: 64 µg/mL | [30] |
Amphidinol dehydroAM-A | Polyketide | A. carterae (LACW11 strain) | Antibacterial | S. aureus | MIC: 16 µg/mL | [30] |
Amphidinol dehydroAM-A | Polyketide | A. carterae (LACW11 strain) | Antibacterial | E. faecium | MIC: 128 µg/mL | [30] |
Methanol extract 1 | NA | A. carterae (LACW11 strain) | Antibacterial | S. aureus | MIC: 64 µg/mL | [30] |
Methanol extract 1 | NA | A. carterae (LACW11 strain) | Antibacterial | E. faecium | MIC: 256 µg/mL | [30] |
C16–22 fatty acids 2 | Fatty acids | A. carterae | Antialgal | S. costatum | EC50 at 72 h: 12.9 μg/mL | [9] |
C16–22 fatty acids 2 | Fatty acids | A. carterae | Antilarval | A. amphitrite | LC50 at 24 h: 15.1 μg/mL | [9] |
Compound | Species | Target Fungus | Activity | Reference |
---|---|---|---|---|
Amphidinol 22 | Amphidinium carterae | Aspergillus fumigatus | MIC: 64 µg/mL; 100% growth inhibition at 560 µg/mL | [62] |
Amphidinol 21 | Amphidinium carterae | Aspergillus niger | MEC: <15 μg/disk | [49] |
Amphidinol 20 | Amphidinium carterae | Aspergillus niger | MEC: <15 μg/disk | [49] |
Amphidinols 18 | Amphidinium carterae | Candida albicans | MIC: 9 µg/mL | [12] |
Amphidinol 13 | Amphidinium carterae | Aspergillus niger | growth inhibition: 132.0 mg/disk | [45] |
Amphidinol 12 | Amphidinium carterae | Aspergillus niger | growth inhibition: >100 mg/disk | [45] |
Amphidinol 11 | Amphidinium carterae | Aspergillus niger | growth inhibition: 256.6 mg/disk | [45] |
Amphidinol 10 | Amphidinium carterae | Aspergillus niger | growth inhibition: 154.0 mg/disk | [45] |
Amphidinol 9 | Amphidinium carterae | Aspergillus niger | growth inhibition: 32.9 mg/disk | [45] |
Amphidinol 7 | Amphidinium klebsii | Aspergillus niger | MEC: 10 mg/disk | [48] |
Amphidinol 4 | Amphidinium carterae | Aspergillus niger | growth inhibition: 58.2 mg/disk | [45] |
Amphidinol 2,6 | Amphidinium klebsii | Aspergillus niger | growth inhibition: 6 µg/disk | [63] |
Amphidinol 2 | Amphidinium carterae | Aspergillus niger | growth inhibition: 44.3 mg/disk | [45] |
Amphidinol C | Amphidinium carterae | Aspergillus fumigatus, Candida albicans | minimum fungicidal concentration: 8 µg/mL (A. fumigatus); 16 µg/mL (C. albicans) | [63,64] |
Amphidinol A | Amphidinium carterae | Candida albicans | MIC: 19 µg/mL | [44,45] |
Compound or Extract | Species | Target Cancer Cells | IC50 | Reference |
---|---|---|---|---|
Isocaribenolide-I | Amphidinium sp. (strain KCA09053) | Human cervix adenocarcinoma cells | 0.02 ng/mL | [68] |
Chlorohydrin 2 | Amphidinium sp. (strain KCA09053) | Human cervix adenocarcinoma cells | 0.06 ng/mL | [68] |
Amphidinolide N | Amphidinium sp. (strain KCA09053) | Human cervix adenocarcinoma cells | 0.01 ng/mL | [68] |
Amphidinolide B | Amphidinium sp. | Murine leukemia (L1210) | 0.14 ng/mL | [67] |
Amphidinolide H | Amphidinium sp. | Murine leukemia (L1210) | 0.48 ng/mL | [66] |
Amphidinolide H | Amphidinium sp. | Human epidermoid carcinoma | 0.52 ng/mL | [66] |
Amphidinolide N (Caribenolide I) | Amphidinium operculatum | Human colon cell lines | 1 ng/mL | [69] |
Amphidinolide H3 | Amphidinium sp. | Murine leukemia (L1210) | 2 ng/mL | [67] |
Amphidinolide B | Amphidinium sp. | Human epidermoid carcinoma (KB) | 4.2 ng/mL | [67] |
Amphidinolide G | Amphidinium sp. | Murine leukemia (L1210) | 5.4 ng/mL | [66] |
Amphidinolide G | Amphidinium sp. | Human epidermoid carcinoma | 5.9 ng/mL | [66] |
Amphidinolide H3 | Amphidinium sp. | Human epidermoid carcinoma (KB) | 22 ng/mL | [67] |
Iriomoteolide-3a | Amphidinium sp. (strain HYA024) | Human B lymphocyte DG-75 | 80 ng/mL | [75] |
Lingshuiol | Amphidinium sp. | Human lung carcinoma (A549) | 0.28 μg/mL | [76] |
Lingshuiol | Amphidinium sp. | Promyelotic leukemia (HL-60) | 0.31 μg/mL | [76] |
90% aqueous methanol extract | Amphidinium operculatum | Human colon cell lines | 0.35 μg/mL | [69] |
Amphirionin-2 | Amphidinium sp. (strain KCA09051) | Human colon carcinoma Caco-2 | 0.1 μg/mL | [77] |
Iriomoteolide-13a | Amphidinium sp. (strain KCA09053) | Human cervix adenocarcinoma HeLa cells | 0.5 μg/mL | [78] |
Amphirionin-2 | Amphidinium sp. (strain KCA09051) | Human lung adenocarcinoma A549 | 0.6 μg/mL | [77] |
Iriomoteolides-11a | Amphidinium sp. (strain KCA09052) | Human cervix adenocarcinoma (HeLa) | 0.7 μg/mL | [79] |
Iriomoteolide-10a | Amphidinium sp. (strain KCA09053) | Human cervix adenocarcinoma (HeLa) | 0.7 μg/mL | [80] |
Iriomoteolide-4a | Amphidinium sp. (strain HYA024) | Human B lymphocyte DG-75 | 0.8 μg/mL | [81] |
Iriomoteolide-5a | Amphidinium sp. (strain HYA024) | Human B lymphocyte DG-75 | 1.0 μg/mL | [81] |
Iriomoteolide-10a | Amphidinium sp. (strain KCA09053) | Human B lymphocyte DG-75 | 0.9 μg/mL | [80] |
Iriomoteolide-10a | Amphidinium sp. (strain KCA09053) | Murine hepatocellular carcinoma MH134 | 1.9 μg/mL | [80] |
Amphidinolide V | Amphidinium sp. | Murine leukemia (L1210) | 3.2 µg/mL | [82] |
Amphidinolide V | Amphidinium sp. | Epidermoid carcinoma (KB) | 7 μg/mL | [82] |
Iriomoteolide-15a | Amphidinium sp. (strain KCA09052) | Human cervix adenocarcinoma (HeLa) | 4 μg/mL | [83] |
Iriomoteolide-14a | Amphidinium sp. (strain KCA09052) | Human cervix adenocarcinoma (HeLa) | 4 μg/mL | [83] |
Iriomoteolides-9a | Amphidinium sp. (strain KCA09052) | Human cervix adenocarcinoma (HeLa) | 5.6 μg/mL | [79] |
Amphidinolide T3 | Amphidinium sp. (strain Y71) | Murine leukemia (L1210) | 7 μg/mL | [71] |
Amphidinolide T2 | Amphidinium sp. (strain Y71) | Murine leukemia (L1210) | 10 μg/mL | [71] |
Amphidinolide T4 | Amphidinium sp. (strain Y71) | Murine leukemia (L1210) | 11 μg/mL | [71] |
Amphidinolide U | Amphidinium sp. | Murine leukemia (L1210) | 12 μg/mL | [70] |
Amphidinol 22 | Amphidinium carterae | Hepatocyte carcinoma HepG2 | 11 μg/mL | [62] |
Amphidinol 22 | Amphidinium carterae | Human lung carcinoma (A549) | 13 μg/mL | [62] |
Amphidinol 22 | Amphidinium carterae | Pancreas carcinoma (MiaPaca) | 14.9 μg/mL | [62] |
Amphidinolide T1 | Amphidinium sp. (strain Y71) | Murine leukemia (L1210) | 18 μg/mL | [71] |
Irimoteolide-12a | Amphidinium sp. (strain KCA09053) | Human B lymphocyte DG-75 | 18 μg/mL | [80] |
Amphidinol 22 | Amphidinium carterae | Human skin melanoma (A2058) | 27 μg/mL | [62] |
Amphidinol 22 | Amphidinium carterae | Breast adenocarcinoma (MCF7) | 27.5 μg/mL | [62] |
Chloroform extract | Amphidinium carterae | Promyelotic leukemia (HL-60) | 50 μg/mL | [84] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orefice, I.; Balzano, S.; Romano, G.; Sardo, A. Amphidinium spp. as a Source of Antimicrobial, Antifungal, and Anticancer Compounds. Life 2023, 13, 2164. https://doi.org/10.3390/life13112164
Orefice I, Balzano S, Romano G, Sardo A. Amphidinium spp. as a Source of Antimicrobial, Antifungal, and Anticancer Compounds. Life. 2023; 13(11):2164. https://doi.org/10.3390/life13112164
Chicago/Turabian StyleOrefice, Ida, Sergio Balzano, Giovanna Romano, and Angela Sardo. 2023. "Amphidinium spp. as a Source of Antimicrobial, Antifungal, and Anticancer Compounds" Life 13, no. 11: 2164. https://doi.org/10.3390/life13112164
APA StyleOrefice, I., Balzano, S., Romano, G., & Sardo, A. (2023). Amphidinium spp. as a Source of Antimicrobial, Antifungal, and Anticancer Compounds. Life, 13(11), 2164. https://doi.org/10.3390/life13112164