The Effects of 12-Week Traditional Thai Exercise (Ruesi Dadton) on Glycemic Control and Inflammatory Markers in Prediabetes: A Randomized Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Exercise Intervention
2.3. Blood Sample Analysis and Data Collection
2.4. Study Outcomes
2.5. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. The Effect of RD Exercise on FPG Levels
3.3. The Effect of RD Exercise on OGTT and HbA1C Levels
3.4. The Effect of RD Exercise on Circulating Inflammatory Markers
3.5. The Effect of RD Exercise on BMI
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schellenberg, E.S.; Dryden, D.M.; Vandermeer, B.; Ha, C.; Korownyk, C. Lifestyle interventions for patients with and at risk for type 2 diabetes: A systematic review and meta-analysis. Ann. Intern. Med. 2013, 159, 543–551. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Saeedi, P.; Karuranga, S.; Pinkepank, M.; Ogurtsova, K.; Duncan, B.B.; Stein, C.; Basit, A.; Chan, J.C.N.; Mbanya, J.C.; et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pract. 2022, 183, 109119. [Google Scholar] [CrossRef]
- Gaede, P.; Vedel, P.; Larsen, N.; Jensen, G.V.; Parving, H.H.; Pedersen, O. Multifactorial intervention and cardiovascular disease in patients with type 2 diabetes. N. Engl. J. Med. 2003, 348, 383–393. [Google Scholar] [CrossRef] [PubMed]
- Tunsuchart, K.; Lerttrakarnnon, P.; Srithanaviboonchai, K.; Likhitsathian, S.; Skulphan, S. Type 2 Diabetes Mellitus Related Distress in Thailand. Int. J. Environ. Res. Public Health 2020, 17, 2329. [Google Scholar] [CrossRef]
- Reutrakul, S.; Deerochanawong, C. Diabetes in Thailand: Status and Policy. Curr. Diabetes Rep. 2016, 16, 28. [Google Scholar] [CrossRef] [PubMed]
- Galicia-Garcia, U.; Benito-Vicente, A.; Jebari, S.; Larrea-Sebal, A.; Siddiqi, H.; Uribe, K.B.; Ostolaza, H.; Martín, C. Pathophysiology of Type 2 Diabetes Mellitus. Int. J. Mol. Sci. 2020, 21, 6275. [Google Scholar] [CrossRef]
- Lotfy, M.; Adeghate, J.; Kalasz, H.; Singh, J.; Adeghate, E. Chronic Complications of Diabetes Mellitus: A Mini Review. Curr. Diabetes Rev. 2017, 13, 3–10. [Google Scholar] [CrossRef]
- Cerf, M.E. Beta cell dysfunction and insulin resistance. Front. Endocrinol. 2013, 4, 37. [Google Scholar] [CrossRef]
- Piché, M.-E.; Tchernof, A.; Després, J.-P. Obesity Phenotypes, Diabetes, and Cardiovascular Diseases. Circ. Res. 2020, 126, 1477–1500. [Google Scholar] [CrossRef] [PubMed]
- Rohm, T.V.; Meier, D.T.; Olefsky, J.M.; Donath, M.Y. Inflammation in obesity, diabetes, and related disorders. Immunity 2022, 55, 31–55. [Google Scholar] [CrossRef]
- Wondmkun, Y.T. Obesity, Insulin Resistance, and Type 2 Diabetes: Associations and Therapeutic Implications. Diabetes Metab. Syndr. Obes. 2020, 13, 3611–3616. [Google Scholar] [CrossRef] [PubMed]
- Peiró, C.; Romacho, T.; Azcutia, V.; Villalobos, L.; Fernández, E.; Bolaños, J.P.; Moncada, S.; Sánchez-Ferrer, C.F. Inflammation, glucose, and vascular cell damage: The role of the pentose phosphate pathway. Cardiovasc. Diabetol. 2016, 15, 82. [Google Scholar] [CrossRef] [PubMed]
- Ellulu, M.S.; Samouda, H. Clinical and biological risk factors associated with inflammation in patients with type 2 diabetes mellitus. BMC Endocr. Disord. 2022, 22, 16. [Google Scholar] [CrossRef] [PubMed]
- Thorand, B.; Löwel, H.; Schneider, A.; Kolb, H.; Meisinger, C.; Fröhlich, M.; Koenig, W. C-Reactive Protein as a Predictor for Incident Diabetes Mellitus among Middle-aged Men: Results from the MONICA Augsburg Cohort Study, 1984–1998. Arch. Intern. Med. 2003, 163, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Shrivastava, A.K.; Singh, H.V.; Raizada, A.; Singh, S.K. C-reactive protein, inflammation and coronary heart disease. Egypt. Heart J. 2015, 67, 89–97. [Google Scholar] [CrossRef]
- Stanimirovic, J.; Radovanovic, J.; Banjac, K.; Obradovic, M.; Essack, M.; Zafirovic, S.; Gluvic, Z.; Gojobori, T.; Isenovic, E.R. Role of C-Reactive Protein in Diabetic Inflammation. Mediat. Inflamm. 2022, 2022, 3706508. [Google Scholar] [CrossRef]
- Biazi, G.R.; Uemura, I.G.F.; Miksza, D.R.; Ferraz, L.S.; Diaz, B.F.; Bertolini, G.L.; de Souza, H.M. Interleukin 6 acutely increases gluconeogenesis and decreases the suppressive effect of insulin on cAMP-stimulated glycogenolysis in rat liver. Cell Biochem. Funct. 2023, 41, 609–618. [Google Scholar] [CrossRef]
- Esser, N.; Legrand-Poels, S.; Piette, J.; Scheen, A.J.; Paquot, N. Inflammation as a link between obesity, metabolic syndrome and type 2 diabetes. Diabetes Res. Clin. Pract. 2014, 105, 141–150. [Google Scholar] [CrossRef]
- Bastard, J.P.; Maachi, M.; Lagathu, C.; Kim, M.J.; Caron, M.; Vidal, H.; Capeau, J.; Feve, B. Recent advances in the relationship between obesity, inflammation, and insulin resistance. Eur. Cytokine Netw. 2006, 17, 4–12. [Google Scholar]
- Phosat, C.; Panprathip, P.; Chumpathat, N.; Prangthip, P.; Chantratita, N.; Soonthornworasiri, N.; Puduang, S.; Kwanbunjan, K. Elevated C-reactive protein, interleukin 6, tumor necrosis factor alpha and glycemic load associated with type 2 diabetes mellitus in rural Thais: A cross-sectional study. BMC Endocr. Disord. 2017, 17, 44. [Google Scholar] [CrossRef]
- Thewjitcharoen, Y.; Jones Elizabeth, A.; Butadej, S.; Nakasatien, S.; Chotwanvirat, P.; Wanothayaroj, E.; Krittiyawong, S.; Himathongkam, T.; Himathongkam, T. Performance of HbA1c versus oral glucose tolerance test (OGTT) as a screening tool to diagnose dysglycemic status in high-risk Thai patients. BMC Endocr. Disord. 2019, 19, 23. [Google Scholar] [CrossRef]
- Tabák, A.G.; Herder, C.; Rathmann, W.; Brunner, E.J.; Kivimäki, M. Prediabetes: A high-risk state for diabetes development. Lancet 2012, 379, 2279–2290. [Google Scholar] [CrossRef]
- Brannick, B.; Dagogo-Jack, S. Prediabetes and Cardiovascular Disease: Pathophysiology and Interventions for Prevention and Risk Reduction. Endocrinol. Metab. Clin. N. Am. 2018, 47, 33–50. [Google Scholar] [CrossRef]
- Huang, K.; Liang, Y.; Ma, Y.; Wu, J.; Luo, H.; Yi, B. The Variation and Correlation of Serum Adiponectin, Nesfatin-1, IL-6, and TNF-α Levels in Prediabetes. Front. Endocrinol. 2022, 13, 774272. [Google Scholar] [CrossRef] [PubMed]
- Kato, K.; Otsuka, T.; Saiki, Y.; Kobayashi, N.; Nakamura, T.; Kon, Y.; Kawada, T. Association Between Elevated C-Reactive Protein Levels and Prediabetes in Adults, Particularly Impaired Glucose Tolerance. Can. J. Diabetes 2019, 43, 40–45.e2. [Google Scholar] [CrossRef]
- Harrington, D.; Henson, J. Physical activity and exercise in the management of type 2 diabetes: Where to start? Pract. Diabetes 2021, 38, 35–40b. [Google Scholar] [CrossRef]
- Richter, E.A.; Derave, W.; Wojtaszewski, J.F. Glucose, exercise and insulin: Emerging concepts. J. Physiol. 2001, 535 Pt 2, 313–322. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Sun, X.; Wang, C.; He, H. Effects of Exercise on Inflammatory Cytokines in Patients with Type 2 Diabetes: A Meta-analysis of Randomized Controlled Trials. Oxidative Med. Cell. Longev. 2020, 2020, 6660557. [Google Scholar] [CrossRef]
- Kadoglou, N.P.; Perrea, D.; Iliadis, F.; Angelopoulou, N.; Liapis, C.; Alevizos, M. Exercise Reduces Resistin and Inflammatory Cytokines in Patients With Type 2 Diabetes. Diabetes Care 2007, 30, 719–721. [Google Scholar] [CrossRef]
- Hayashino, Y.; Jackson, J.L.; Hirata, T.; Fukumori, N.; Nakamura, F.; Fukuhara, S.; Tsujii, S.; Ishii, H. Effects of exercise on C-reactive protein, inflammatory cytokine and adipokine in patients with type 2 diabetes: A meta-analysis of randomized controlled trials. Metabolism 2014, 63, 431–440. [Google Scholar] [CrossRef]
- Annibalini, G.; Lucertini, F.; Agostini, D.; Vallorani, L.; Gioacchini, A.; Barbieri, E.; Guescini, M.; Casadei, L.; Passalia, A.; Del Sal, M.; et al. Concurrent Aerobic and Resistance Training Has Anti-Inflammatory Effects and Increases Both Plasma and Leukocyte Levels of IGF-1 in Late Middle-Aged Type 2 Diabetic Patients. Oxidative Med. Cell. Longev. 2017, 2017, 3937842. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.-D.; You, L.-Z.; Huang, W.-Q.; Cao, H.; Wang, F.-J.; Tang, X.-Q.; Fang, Z.-H.; Shen, G.-M.; Guan, Y.-X. Effects of traditional Chinese exercises on blood glucose and hemoglobin A1c levels in patients with prediabetes: A systematic review and meta-analysis. J. Integr. Med. 2020, 18, 292–302. [Google Scholar] [CrossRef]
- Ding, M.; Wang, C.; Dong, X.; Yi, X. The Effects of Qigong on Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis. Evid. Based Complement. Altern. Med. 2018, 2018, 8182938. [Google Scholar]
- Chan, J.; Li, A.; Chan, C.; So, K.; Chen, J.; Ji, X.; Yuen, L.; Chung, K.; Ng, S. 1087 Qigong Exercise Improved Quality of Sleep and Reduced Interleukin-1 Beta and Interleukin-6 Among Persons with Depressive Symptoms and Sleep Disturbances: A Randomized Controlled Trial. Sleep 2017, 40 (Suppl. 1), A405. [Google Scholar] [CrossRef]
- Shu, C.; Feng, S.; Cui, Q.; Cheng, S.; Wang, Y. Impact of Tai Chi on CRP, TNF-alpha and IL-6 in inflammation: A systematic review and meta-analysis. Ann. Palliat. Med. 2021, 10, 7468–7478. [Google Scholar] [CrossRef] [PubMed]
- Noradechanunt, C.; Worsley, A.; Groeller, H. Thai Yoga improves physical function and well-being in older adults: A randomised controlled trial. J. Sci. Med. Sport 2017, 20, 494–501. [Google Scholar] [CrossRef]
- Khanthong, P.; Sriyakul, K.; Dechakhamphu, A.; Krajarng, A.; Kamalashiran, C.; Tungsukruthai, P. Traditional Thai exercise (Ruesi Dadton) for improving motor and cognitive functions in mild cognitive impairment: A randomized controlled trial. J. Exerc. Rehabil. 2021, 17, 331–338. [Google Scholar] [CrossRef]
- Ngowsiri, K.; Tanmahasamut, P.; Sukonthasab, S. Rusie Dutton traditional Thai exercise promotes health related physical fitness and quality of life in menopausal women. Complement. Ther. Clin. Pract. 2014, 20, 164–171. [Google Scholar] [CrossRef]
- Buranruk, O.; Grow, S.; Ladawan, S.; Makarawate, P.; Suwanich, T.; Leelayuwat, N. Thai Yoga as an Appropriate Alternative Physical Activity for Older Adults. J. Complement. Integr. Med. 2010, 7. [Google Scholar] [CrossRef]
- Liu, X.; Miller, Y.D.; Burton, N.W.; Chang, J.H.; Brown, W.J. Qi-gong mind-body therapy and diabetes control. A randomized controlled trial. Am. J. Prev. Med. 2011, 41, 152–158. [Google Scholar] [CrossRef]
- Sawangwong, P.; Sriyakul, K.; Pawa, K.K.; Phetkate, P.; Nootim, P.; Tungsukruthai, P. Selected Thai exercise (Ruesi Dadton) postures to affect glycemic level in people with prediabetes. J. Exerc. Physiol. 2022, 25, 84–103. [Google Scholar]
- Sharif, S.; Van der Graaf, Y.; Cramer, M.J.; Kapelle, L.J.; de Borst, G.J.; Visseren, F.L.J.; Westerink, J.; van Petersen, R.; Dinther, B.G.F.; Algra, A.; et al. Low-grade inflammation as a risk factor for cardiovascular events and all-cause mortality in patients with type 2 diabetes. Cardiovasc. Diabetol. 2021, 20, 220. [Google Scholar] [CrossRef]
- van Greevenbroek, M.M.; Schalkwijk, C.G.; Stehouwer, C.D. Obesity-associated low-grade inflammation in type 2 diabetes mellitus: Causes and consequences. Neth. J. Med. 2013, 71, 174–187. [Google Scholar] [PubMed]
- Tsalamandris, S.; Antonopoulos, A.S.; Oikonomou, E.; Papamikroulis, G.-A.; Vogiatzi, G.; Papaioannou, S.; Deftereos, S.; Tousoulis, D. The Role of Inflammation in Diabetes: Current Concepts and Future Perspectives. Eur. Cardiol. Rev. 2019, 14, 50–59. [Google Scholar] [CrossRef] [PubMed]
- Sampath Kumar, A.; Maiya, A.G.; Shastry, B.A.; Vaishali, K.; Ravishankar, N.; Hazari, A.; Gundmi, S.; Jadhav, R. Exercise and insulin resistance in type 2 diabetes mellitus: A systematic review and meta-analysis. Ann. Phys. Rehabil. Med. 2019, 62, 98–103. [Google Scholar] [CrossRef] [PubMed]
- Nery, C.; Moraes, S.R.A.; Novaes, K.A.; Bezerra, M.A.; Silveira, P.V.C.; Lemos, A. Effectiveness of resistance exercise compared to aerobic exercise without insulin therapy in patients with type 2 diabetes mellitus: A meta-analysis. Braz. J. Phys. Ther. 2017, 21, 400–415. [Google Scholar] [CrossRef]
- Kirwan, J.P.; Sacks, J.; Nieuwoudt, S. The essential role of exercise in the management of type 2 diabetes. Clevel. Clin. J. Med. 2017, 84 (Suppl. 1), S15–S21. [Google Scholar] [CrossRef]
- Wang, Y.; Li, H.; Yang, D.; Wang, M.; Han, Y.; Wang, H. Effects of aerobic exercises in prediabetes patients: A systematic review and meta-analysis. Front. Endocrinol. 2023, 14, 1227489. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Wang, S.; Wang, S.; Gu, Q.; Huang, Y.; Li, J.; Wang, R.; Liu, X. Effects of Yijinjing combined with resistance training on body fat distribution and hepatic lipids in middle-aged and older people with prediabetes mellitus: A randomized controlled trial. Exp. Gerontol. 2023, 179, 112250. [Google Scholar] [CrossRef]
- Mei, L.; Chen, Q.; Ge, L.; Zheng, G.; Chen, J. Systematic review of chinese traditional exercise baduanjin modulating the blood lipid metabolism. Evid. Based Complement. Alternat. Med. 2012, 2012, 282131. [Google Scholar] [CrossRef]
- Freire, M.D.; Alves, C. Therapeutic Chinese exercises (Qigong) in the treatment of type 2 diabetes mellitus: A systematic review. Diabetes Metab. Syndr. 2013, 7, 56–59. [Google Scholar] [CrossRef]
- Pedersen, M.; Bruunsgaard, H.; Weis, N.; Hendel, H.W.; Andreassen, B.U.; Eldrup, E.; Dela, F.; Pedersen, B.K. Circulating levels of TNF-alpha and IL-6-relation to truncal fat mass and muscle mass in healthy elderly individuals and in patients with type-2 diabetes. Mech. Ageing Dev. 2003, 124, 495–502. [Google Scholar] [CrossRef] [PubMed]
- Kanmani, S.; Kwon, M.; Shin, M.K.; Kim, M.K. Association of C-Reactive Protein with Risk of Developing Type 2 Diabetes Mellitus, and Role of Obesity and Hypertension: A Large Population-Based Korean Cohort Study. Sci. Rep. 2019, 9, 4573. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.W.; Kim, C.S.; Kim, S.B.; Park, S.K.; Park, J.S.; Lee, S.K. C-reactive protein induces NF-kappaB activation through intracellular calcium and ROS in human mesangial cells. Nephron Exp. Nephrol. 2005, 101, e165–e172. [Google Scholar] [CrossRef]
- Patel, S.; Santani, D. Role of NF-kappa B in the pathogenesis of diabetes and its associated complications. Pharmacol. Rep. 2009, 61, 595–603. [Google Scholar] [CrossRef]
- Jadhav, R.A.; Maiya, G.A.; Hombali, A.; Umakanth, S.; Shivashankar, K.N. Effect of physical activity promotion on adiponectin, leptin and other inflammatory markers in prediabetes: A systematic review and meta-analysis of randomized controlled trials. Acta Diabetol. 2021, 58, 419–429. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, T. The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb. Perspect. Biol. 2009, 1, a001651. [Google Scholar] [CrossRef]
- Suryavanshi, S.V.; Kulkarni, Y.A. NF-κβ: A Potential Target in the Management of Vascular Complications of Diabetes. Front. Pharmacol. 2017, 8, 798. [Google Scholar] [CrossRef]
- Visser, M.; Bouter, L.M.; McQuillan, G.M.; Wener, M.H.; Harris, T.B. Elevated C-reactive protein levels in overweight and obese adults. Jama 1999, 282, 2131–2135. [Google Scholar] [CrossRef]
- Yang, Z.; Huang, K.; Yang, Y.; Xu, Q.; Guo, Q.; Wang, X. Efficacy of traditional Chinese exercise for obesity: A systematic review and meta-analysis. Front. Endocrinol. 2023, 14, 1028708. [Google Scholar] [CrossRef]
- Sudhakar, M.; Silambanan, S.; Chandran, A.S.; Prabhakaran, A.A.; Ramakrishnan, R. C-Reactive Protein (CRP) and Leptin Receptor in Obesity: Binding of Monomeric CRP to Leptin Receptor. Front. Immunol. 2018, 9, 1167. [Google Scholar] [CrossRef] [PubMed]
- de Assis, G.G.; Murawska-Ciałowicz, E. Exercise and Weight Management: The Role of Leptin-A Systematic Review and Update of Clinical Data from 2000–2022. J. Clin. Med. 2023, 12, 4490. [Google Scholar] [CrossRef]
- Stødle, I.V.; Debesay, J.; Pajalic, Z.; Lid, I.M.; Bergland, A. The experience of motivation and adherence to group-based exercise of Norwegians aged 80 and more: A qualitative study. Arch. Public Health 2019, 77, 26. [Google Scholar] [CrossRef] [PubMed]
- Rashed, A.A.; Saparuddin, F.; Rathi, D.G.; Nasir, N.N.M.; Lokman, E.F. Effects of Resistant Starch Interventions on Metabolic Biomarkers in Pre-Diabetes and Diabetes Adults. Front. Nutr. 2021, 8, 793414. [Google Scholar] [CrossRef] [PubMed]
Variables | RD (n = 31) | CON (n = 30) | p-Value |
---|---|---|---|
Sex a | 0.112 | ||
Male | 23 (74.2%) | 27 (90%) | |
Female | 8 (25.8%) | 3 (10%) | |
Age (years) | 49.31 ± 13.01 | 51.16 ± 11.92 | 0.804 |
BMI (kg/m2) | 26.06 ± 2.50 | 26.77 ± 2.72 | 0.218 |
FPG (mg/dL) | 110.00 ± 6.89 | 106.63 ± 6.34 | 0.052 |
OGTT (mg/dL) | 169.81 ± 18.69 | 165.13 ± 23.26 | 0.390 |
HbA1C (%) | 5.68 ± 0.33 | 5.69 ± 0.39 | 0.892 |
CRP (mg/L) | 2.38 ± 0.91 | 2.09 ± 1.07 | 0.260 |
IL-6 (pg/mL) | 2.36 ± 0.77 | 2.24 ± 0.71 | 0.503 |
Group | FPG (mg/dL) | F-Value | a p-Value | |||
---|---|---|---|---|---|---|
Baseline | Week-4 | Week-8 | Week-12 | |||
RD (n = 31) | 110.00 ± 6.89 | 98.45 ± 9.26 | 97.58 ± 9.34 | 91.10 ± 7.97 | 61.531 | <0.001 ** |
CON (n = 30) | 106.63 ± 6.34 | 99.73 ± 11.82 | 104.70 ± 10.69 | 109.20 ± 9.17 | 11.457 | <0.001 ** |
b p-value | 0.052 | 0.638 | 0.007 ** | <0.001 ** |
Randomized Groups | RD (n = 31) | CON (n = 30) | p-Value |
---|---|---|---|
OGTT (mg/dL) | |||
Pre | 169.81 ± 18.69 | 165.13 ± 23.36 | 0.390 |
Post | 136.10 ± 28.57 | 180.00 ± 34.44 | <0.001 ## |
p-value %. mean change | 0.002 ** ↓ 19.85% | 0.001 ** ↑ 9.01% | |
HbA1C (%) | |||
Pre | 5.68 ± 0.33 | 5.69 ± 0.39 | 0.892 |
Post | 5.45 ± 0.38 | 5.76 ± 0.42 | 0.004 ## |
p-value %. mean change | <0.001 ** ↓ 4.05% | 0.004 ** ↑ 0.07% |
Randomized Groups | RD (n = 31) | CON (n = 30) | p-Value |
---|---|---|---|
CRP (mg/L) | |||
Pre | 2.38 ± 0.91 | 2.09 ± 1.07 | 0.260 |
Post | 1.68 ± 1.11 | 2.25 ± 0.99 | 0.040 # |
p-value % mean change | <0.002 ** ↓ 29.41% | 0.504 ↑ 7.66% | |
IL-6 (pg/mL) | |||
Pre | 2.36 ± 0.77 | 2.24 ± 0.71 | 0.503 |
Post | 1.74 ± 0.56 | 3.67 ± 2.39 | <0.001 ## |
p-value % mean change | <0.001 ** ↓ 26.27% | 0.002 ** ↑ 63.84% |
Randomized Groups | RD (n = 31) | CON (n = 30) | p-Value |
---|---|---|---|
BMI (kg/m2) | |||
Pre | 26.06 ± 2.50 | 26.77 ± 2.72 | 0.218 |
Post | 25.51 ± 2.93 | 27.70 ± 2.78 | 0.004 ## |
p-value %. mean change | 0.020 * ↓ 2.11% | <0.001 ** ↑ 3.47% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sawangwong, P.; Tungsukruthai, S.; Nootim, P.; Sriyakul, K.; Phetkate, P.; Pawa, K.K.; Tungsukruthai, P. The Effects of 12-Week Traditional Thai Exercise (Ruesi Dadton) on Glycemic Control and Inflammatory Markers in Prediabetes: A Randomized Controlled Trial. Life 2023, 13, 2166. https://doi.org/10.3390/life13112166
Sawangwong P, Tungsukruthai S, Nootim P, Sriyakul K, Phetkate P, Pawa KK, Tungsukruthai P. The Effects of 12-Week Traditional Thai Exercise (Ruesi Dadton) on Glycemic Control and Inflammatory Markers in Prediabetes: A Randomized Controlled Trial. Life. 2023; 13(11):2166. https://doi.org/10.3390/life13112166
Chicago/Turabian StyleSawangwong, Pornchai, Sucharat Tungsukruthai, Preecha Nootim, Kusuma Sriyakul, Pratya Phetkate, Kammal Kumar Pawa, and Parunkul Tungsukruthai. 2023. "The Effects of 12-Week Traditional Thai Exercise (Ruesi Dadton) on Glycemic Control and Inflammatory Markers in Prediabetes: A Randomized Controlled Trial" Life 13, no. 11: 2166. https://doi.org/10.3390/life13112166
APA StyleSawangwong, P., Tungsukruthai, S., Nootim, P., Sriyakul, K., Phetkate, P., Pawa, K. K., & Tungsukruthai, P. (2023). The Effects of 12-Week Traditional Thai Exercise (Ruesi Dadton) on Glycemic Control and Inflammatory Markers in Prediabetes: A Randomized Controlled Trial. Life, 13(11), 2166. https://doi.org/10.3390/life13112166