Growth Suppression of a Robust Bacterium Methylobacterium extorquens by Porous Materials with Oxygen Functional Groups
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Resorcinol–Formaldehyde Gel (RF) and Hydrothermally Treated RF Gel (RFH)
2.3. Characterization of the Porous Materials (RF, RFH, and WS)
2.4. Microbiological Culture Tests of M. extorquens
2.4.1. Preparation of Methanol-Mediated Salts (MMS) Agar Medium
2.4.2. Preparation of Stock Solution of M. extorquens
2.4.3. Culture Tests of M. extorquens with the Porous Materials
3. Results
3.1. Characterization of the Porous Materials
3.1.1. Elemental Analysis
3.1.2. Morphology
3.1.3. Textual Properties
3.1.4. Oxygen Functional Group
3.2. Culture Tests of M. extorquens
3.2.1. Culturing M. extorquens without the Porous Materials (Control Experiment)
3.2.2. Culturing M. extorquens with the Porous Materials
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Green, P.; Genus, I. Methylobacterium. In Bergy’s Manual of Systematic Bacteriology. Volume Two, the Proteobacteria. Part C, the Alpha-, Beta-, Delta-, and Epsilonproteobacteria, 2nd ed.; Brenner, D.J., Kreig, N.R., Staley, J.T., Eds.; Springer: New York, NY, USA, 2005; pp. 567–571. [Google Scholar]
- Corpe, W.A.; Rheem, S. Ecology of the methylotrophic bacteria on living leaf surfaces. FEMS Microbiol. Ecol. 1989, 5, 243–249. [Google Scholar] [CrossRef]
- Kutschera, U. Plant-associated methylobacteria as co-evolved phytosymbionts: A hypothesis. Plant Signal. Behav. 2007, 2, 74–78. [Google Scholar] [CrossRef]
- Abanda-Nkpwatt, D.; Müsch, M.; Tschiersch, J.; Boettner, M.; Schwab, W. Molecular interaction between Methylobacterium extorquens and seedlings: Growth promotion, methanol consumption, and localization of the methanol emission site. J. Exp. Bot. 2006, 57, 4025–4032. [Google Scholar] [CrossRef] [PubMed]
- Furuhara, K.; Koike, K. Characteristics and Antibiotics Susceptibility of Methylobacterium extorquens Isolated from Drinking Water and Air in the Hospital. Jpn. J. Environ. Infect. 1990, 5, 47–51. [Google Scholar]
- Suda, N.; Ohara, T.; Nakamura, K.; Konuma, M.; Yoshida, M.; Baba, H.; Kaku, M.; Sakurai, H. A case of bacteremia caused by Methylobacterium radiotolerans. J. Jpn. Soc. Clin. Microbiol. 2019, 29, 152–157. [Google Scholar]
- Kovaleva, J.; Degener, J.E.; Mei, H.C. Methylobacterium and Its Role in Health Care-Associated Infection. J. Clin.Microbiol. 2014, 52, 1317–1321. [Google Scholar] [CrossRef] [PubMed]
- Kato, Y.; Asahara, M.; Goto, K.; Kasai, H.; Yokota, A. Methylobacterium persicinum sp. nov., Methylobacterium komagatae sp. nov., Methylobacterium brachiatum sp. nov., Methylobacterium tardum sp. nov. and Methylobacterium gregans sp. nov., isolated from freshwater. Int. J. Syst. Evol. Microbiol. 2008, 58, 1134–1141. [Google Scholar] [CrossRef]
- Wicaksono, W.A.; Kusstatscher, P.; Erschen, S.; Reisenhofer-Graber, T.; Grube, M.; Cernava, T.; Berg, G. Antimicrobial-specific response from resistance gene carriers studied in a natural, highly diverse microbiome. Microbiome 2021, 9, 29. [Google Scholar] [CrossRef]
- Šmejkalová, H.; Erb, T.J.; Fuchs, G. Methanol Assimilation in Methylobacterium extorquens AM1: Demonstration of All Enzymes and TheirRegulation. PLoS ONE 2010, 5, e13001. [Google Scholar] [CrossRef]
- Oguma, K. UV LEDs for Water Treatment: Research Overview and Perspectives. IUVA News 2018, 20, 18–20. [Google Scholar]
- Oguma, K.; Kabazawa, K.; Kasuga, I.; Takizawa, S. Effects of UV Irradiation by Light Emitting Diodes on Heterotrophic Bacteria in Tap Water. Photochem. Photobiol. 2018, 94, 570–576. [Google Scholar] [CrossRef]
- Yoshida, S.; Hiradate, S.; Koitabashi, M.; Kamo, T.; Tsushima, S. Phyllosphere Methylobacterium bacteria contain UVA-absorbing compounds. J. Photochem. Photobiol. B 2017, 167, 168–175. [Google Scholar] [CrossRef]
- Yano, T.; Kubota, H.; Hanai, J.; Hitomi, J.; Tokuda, H. Stress tolerance of Methylobacterium biofilms in bathrooms. Microbes Environ. 2013, 28, 87–95. [Google Scholar] [CrossRef]
- Yano, T.; Miyahara, Y.; Yokohata, R.; Hanai, J.; Matsuo, S.; Hiratsuka, E.; Okano, T.; Kubota, H. Analyses and Regulation of Biofilms in Actual Environments. J. Environ. Biotechnol. 2015, 14, 125–129. [Google Scholar]
- Pekala, R.W. Organic aerogels from the polycondensation of resorcinol with formaldehyde. J. Mater. Sci. 1989, 24, 3221–3227. [Google Scholar] [CrossRef]
- Ogino, I.; Sakai, K.; Mukai, S.R. Marked Increase in Hydrophobicity of Monolithic Carbon Cryogels via HCl Aging of Precursor Resorcinol–Formaldehyde Hydrogels: Application to 1-Butanol Recovery from Dilute Aqueous Solutions. J. Phys. Chem. C 2014, 118, 6866–6872. [Google Scholar] [CrossRef]
- Narischat, N.; Takeguchi, T.; Tsuchiya, T.; Mori, T.; Ogino, I.; Mukai, S.R.; Ueda, W. Effect of Activation Degree of Resorcinol–Formaldehyde Carbon Gels on Carbon monoxide Tolerance of Platinum–Ruthenium Polymer Electrolyte Fuel Cell Anode Catalyst. J. Phys. Chem. C 2014, 118, 23003–23010. [Google Scholar] [CrossRef]
- Tsuchiya, T.; Mori, T.; Iwamura, S.; Ogino, I.; Mukai, S.R. Binderfree synthesis of high-surface-area carbon electrodes via CO2 activation of resorcinol–formaldehyde carbon xerogel disks: Analysis of activation process. Carbon 2014, 76, 240–249. [Google Scholar] [CrossRef]
- Nagaishi, S.; Iwamura, S.; Ishii, T.; Mukai, S.R. Clarification of the Effects of Oxygen Containing Functional Groups on the Pore Filling Behavior of Discharge Deposits in Lithium-air Battery Cathodes Using Surface-modified Carbon Gels. J. Phys. Chem. C 2023, 127, 2246–2257. [Google Scholar] [CrossRef]
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
- Ishimaru, H.; Umezawa, T.; Yoshikawa, T.; Koyama, Y.; Fumoto, E.; Sato, S.; Nakasaka, Y.; Masuda, T. Antifungal activity of simply fractionated organosolv lignin against Trametes versicolor. J. Biotechnol. 2023, 364, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Murakami, K.; Satoh, Y.; Ogino, I.; Mukai, S.R. Synthesis of a Monolithic Carbon-Based Acid Catalyst with a Honeycomb Structure for Flow Reaction Systems. Ind. Eng. Chem. Res. 2013, 52, 15372–15376. [Google Scholar] [CrossRef]
Element | Percentage in Weight/% | ||
---|---|---|---|
RF | RFH | WS | |
oxygen | 38.3 | 32.4 | 55.2 |
silicone | 0 | 0 | 34.4 |
carbon | 61.6 | 67.6 | 3.2 |
other elements | 0.1 | 0 | 7.2 1 |
Sample ID | SBET/m2 g−1 a | VH2O,0.15/cm3(STP) g−1 b | Γ/nm−2 c |
---|---|---|---|
RF | 240 | 50 | 5.2 |
RFH | 260 | 30 | 3.2 |
WS | 120 | 29 | 6.2 |
Type of Porous Material | Properties of the Oxygen Functional Group a | Colony-Forming Units in the Cultured Solution/CFU mL−1 b |
---|---|---|
RF | phenolic group (Γ = 5.2 nm−2) | <1.0 × 103 |
RFH | phenolic group (Γ = 3.2 nm−2) | 6.8 × 107 |
WS | silanol group (Γ = 6.2 nm−2) | 2.7 × 105 |
Blank | - | 1.6 × 108 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mori, T.; Ogawa, Y.; Endo, I.; Matsushima, K.; Noda, J. Growth Suppression of a Robust Bacterium Methylobacterium extorquens by Porous Materials with Oxygen Functional Groups. Life 2023, 13, 2185. https://doi.org/10.3390/life13112185
Mori T, Ogawa Y, Endo I, Matsushima K, Noda J. Growth Suppression of a Robust Bacterium Methylobacterium extorquens by Porous Materials with Oxygen Functional Groups. Life. 2023; 13(11):2185. https://doi.org/10.3390/life13112185
Chicago/Turabian StyleMori, Takeshi, Yuta Ogawa, Izuki Endo, Keiichiro Matsushima, and Jun Noda. 2023. "Growth Suppression of a Robust Bacterium Methylobacterium extorquens by Porous Materials with Oxygen Functional Groups" Life 13, no. 11: 2185. https://doi.org/10.3390/life13112185
APA StyleMori, T., Ogawa, Y., Endo, I., Matsushima, K., & Noda, J. (2023). Growth Suppression of a Robust Bacterium Methylobacterium extorquens by Porous Materials with Oxygen Functional Groups. Life, 13(11), 2185. https://doi.org/10.3390/life13112185