The Nature of the Spark Is a Pivotal Element in the Design of a Miller–Urey Experiment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Sample Preparation and Derivatization
2.3. GC-MS Method
3. Results
3.1. Detected Compounds
3.2. Fragments Intensity Analysis
3.3. Limitations of Our Analytical Method
- Method and Run Time: The five-day duration of our experiment may have impacted the composition by altering the ratios of components. Different run times can lead to variations in product yields and product composition.
- Extraction Procedure: the use of chloroform, a non-polar solvent, for extraction may exclude or reduce the recovery of highly polar compounds.
- GC-MS Method: The wide range of compounds generated in our experiment posed a challenge for analysis. To ensure clarity and achieve robust results, we focused on non-polar compounds with m/z values between 50 and 550. This allowed us to report compounds with acceptable signal-to-noise ratios while ignoring peaks that did not meet our predefined standards. This occurred in situations where substances could not be separated by the column because their migration properties were too similar.
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Miller, S.L. A Production of Amino Acids Under Possible Primitive Earth Conditions. Science 1953, 117, 528–529. [Google Scholar] [CrossRef] [PubMed]
- Cleaves, H.J.; Chalmers, J.H.; Lazcano, A.; Miller, S.L.; Bada, J.L. A Reassessment of Prebiotic Organic Synthesis in Neutral Planetary Atmospheres. Space Life Sci. 2008, 38, 105–115. [Google Scholar] [CrossRef] [PubMed]
- Berner, R.A. The Phanerozoic Carbon Cycle: CO2 and O2; Oxford University Press: Oxford, UK, 2004. [Google Scholar]
- Walker, J.C.G.; Hays, P.B.; Kasting, J.F. A negative feedback mechanism for the long-term stabilization of Earth’s surface temperature. J. Geophys. Res. Ocean. 1981, 86, 9776–9782. [Google Scholar] [CrossRef]
- Krissansen-Totton, J.; Arney, G.N.; Catling, D.C. Constraining the climate and ocean pH of the early Earth with a geological carbon cycle model. Proc. Natl. Acad. Sci. USA 2018, 115, 4105–4110. [Google Scholar] [CrossRef] [PubMed]
- Russell, M.J.; Hall, A.J.; Martin, W. Serpentinization as a source of energy at the origin of life. Geobiology 2010, 8, 355–371. [Google Scholar] [CrossRef] [PubMed]
- Macleod, G.; McKeown, C.; Hall, A.J.; Russell, M.J. Hydrothermal and oceanic pH conditions of possible relevance to the origin of life. Space Life Sci. 1994, 24, 19–41. [Google Scholar] [CrossRef]
- Ohara, S.; Kakegawa, T.; Nakazawa, H. Pressure Effects on the Abiotic Polymerization of Glycine. Space Life Sci. 2007, 37, 215–223. [Google Scholar] [CrossRef]
- Furukawa, Y.; Otake, T.; Ishiguro, T.; Nakazawa, H.; Kakegawa, T. Abiotic Formation of Valine Peptides Under Conditions of High Temperature and High Pressure. Space Life Sci. 2012, 42, 519–531. [Google Scholar] [CrossRef]
- Schoonen, M.A.A.; Xu, Y. Nitrogen Reduction under Hydrothermal Vent Conditions: Implications for the Prebiotic Synthesis of C-H-O-N Compounds. Astrobiology 2001, 1, 133–142. [Google Scholar] [CrossRef]
- Smirnov, A.; Hausner, D.; Laffers, R.; Strongin, D.R.; Schoonen, M.A. Abiotic ammonium formation in the presence of Ni-Fe metals and alloys and its implications for the Hadean nitrogen cycle. Geochem. Trans. 2008, 9, 5. [Google Scholar] [CrossRef]
- Patel, B.H.; Percivalle, C.; Ritson, D.J.; Duffy, C.D.; Sutherland, J.D. Common origins of RNA, protein and lipid precursors in a cyanosulfidic protometabolism. Nat. Chem. 2015, 7, 301–307. [Google Scholar] [CrossRef]
- Miller, S.L. Production of Some Organic Compounds under Possible Primitive Earth Conditions. J. Am. Chem. Soc. 1955, 77, 2351–2361. [Google Scholar] [CrossRef]
- Oro, J. Synthesis of Organic Compounds by Electric Discharges; Springer: Berlin/Heidelberg, Germany, 1963; Volume 125, p. 490. Available online: https://link.springer.com/content/pdf/10.1038/197862a0.pdf (accessed on 2 March 2023).
- Schlesinger, Q.; Miller, S.L. Prebiotic Synthesis in Atmospheres Containing CH4, CO, and CO2 II. Hydrogen Cyanide, Formaldehyde and Ammonia. J. Mol. Evol. 1983, 19, 383–390. [Google Scholar] [CrossRef]
- Miyakawa, S.; Yamanashi, H.; Kobayashi, K.; Cleaves, H.J.; Miller, S.L. Prebiotic synthesis from CO atmospheres: Implications for the origins of life. Proc. Natl. Acad. Sci. USA 2002, 99, 14628–14631. [Google Scholar] [CrossRef]
- Steinman, G.; Cole, M.N. Synthesis of biologically pertinent peptides under possible primordial conditions. Proc. Natl. Acad. Sci. USA 1967, 58, 735–742. [Google Scholar] [CrossRef] [PubMed]
- Sagan, C.B.N.K. Long-wavelength ultraviolet photoproduction of amino acids on the primitive Earth. Science 1971, 173, 417–420. [Google Scholar] [CrossRef] [PubMed]
- Utsumi, Y.; Takahashi, J.-I. Synthesis of Amino Acids from N2, H2O Vapor and CO2 Gas Mixture by Synchrotron Radiation Induced Photochemical Reactions at Atmospheric Pressure. Jpn. J. Appl. Phys. 1998, 37, L1268. [Google Scholar] [CrossRef]
- Takahashi, J.-I.; Hosokawa, T.; Masuda, H.; Kaneko, T.; Kobayashi, K.; Saito, T.; Utsumi, Y. Abiotic synthesis of amino acids by x-ray irradiation of simple inorganic gases. Appl. Phys. Lett. 1999, 74, 877–879. [Google Scholar] [CrossRef]
- Davis, D.D.; Smith, G.R.; Guillory, W.A. Infrared laser photolysis: A new tool for the study of prebiotic chemistry. Space Life Sci. 1980, 10, 237–245. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, K.; Kaneko, T.; Saito, T. Characterization of complex organic compounds formed in simulated planetary atmospheres by the action of high energy particles. Adv. Space Res. 1999, 24, 461–464. [Google Scholar] [CrossRef]
- Mohammadi, E.; Petera, L.; Saeidfirozeh, H.; Knížek, A.; Kubelík, P.; Dudžák, R.; Krůs, M.; Juha, L.; Civiš, S.; Coulon, R.; et al. Formic Acid, a Ubiquitous but Overlooked Component of the Early Earth Atmosphere. Chem. A Eur. J. 2020, 26, 12075–12080. [Google Scholar] [CrossRef] [PubMed]
- Schulz, H. Short history and present trends of Fischer–Tropsch synthesis. Appl. Catal. A Gen. 1999, 186, 3–12. [Google Scholar] [CrossRef]
- Ferus, M.; Pietrucci, F.; Saitta, A.M.; Knížek, A.; Kubelík, P.; Ivanek, O.; Shestivska, V.; Civiš, S. Formation of nucleobases in a Miller–Urey reducing atmosphere. Proc. Natl. Acad. Sci. USA 2017, 114, 4306–4311. [Google Scholar] [CrossRef] [PubMed]
- Criado-Reyes, J.; Bizzarri, B.M.; García-Ruiz, J.M.; Saladino, R.; Di Mauro, E. The role of borosilicate glass in Miller–Urey experiment. Sci. Rep. 2021, 11, 21009. [Google Scholar] [CrossRef] [PubMed]
- Wollrab, E.; Scherer, S.; Aubriet, F.; Carré, V.; Carlomagno, T.; Codutti, L.; Ott, A. Chemical Analysis of a ‘Miller-Type’ Complex Prebiotic Broth: Part I: Chemical Diversity, Oxygen and Nitrogen Based Polymers. Space Life Sci. 2015, 46, 149–169. [Google Scholar] [CrossRef]
- Zhang, S.; Makoś, M.; Jadrich, R.; Kraka, E.; Barros, K.; Nebgen, B.; Tretiak, S.; Isayev, O.; Lubbers, N.; Messerly, R.; et al. Exploring the frontiers of chemistry with a general reactive machine learning potential. ChemRxiv 2023. [Google Scholar] [CrossRef]
- Wang, L.-P.; Titov, A.; McGibbon, R.; Liu, F.; Pande, V.S.; Martínez, T.J. Discovering chemistry with an ab initio nanoreactor. Nat. Chem. 2014, 6, 1044–1048. [Google Scholar] [CrossRef]
- Saitta, A.M.; Saija, F. Miller experiments in atomistic computer simulations. Proc. Natl. Acad. Sci. USA 2014, 111, 13768–13773. [Google Scholar] [CrossRef]
- Vincent, L.; Colón-Santos, S.; Cleaves, H.J.; Baum, D.A.; Maurer, S.E. The Prebiotic Kitchen: A Guide to Composing Prebiotic Soup Recipes to Test Origins of Life Hypotheses. Life 2021, 11, 1221. [Google Scholar] [CrossRef]
- Scherer, S.; Wollrab, E.; Codutti, L.; Carlomagno, T.; da Costa, S.G.; Volkmer, A.; Bronja, A.; Schmitz, O.J.; Ott, A. Chemical Analysis of a “Miller-Type“ Complex Prebiotic Broth Part II: Gas, Oil, Water and the Oil/Water-Interface. Space Life Sci. 2016, 47, 381–403. [Google Scholar] [CrossRef]
- Dyer, W.J.; Graham, B.E. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar]
- Eaborn, C. Silylation of organic compounds: A.E. Pierce, Pierce Chemical Company Rockford, Illinois, xii + 487 pages, $18.50y. J. Organomet. Chem. 1969, 16, 518. [Google Scholar] [CrossRef]
- Pavia, D.L.; Lampman, G.M.; Kriz, G.S.; Vyvyan, J.A. Introduction to Spectroscopy; Cengage Learning: Stamford, CT, USA, 2014. [Google Scholar]
- McLafferty, F.; Turecek, F. Interpretation of Mass Spectra; University Science Books: Sausalito, CA, USA, 1993. [Google Scholar]
- Silverstein, R.M.; Bassler, G.C. Spectrometric identification of organic compounds. J. Chem. Educ. 1962, 39, 546. [Google Scholar] [CrossRef]
- Hamming, E.M. Interpretation of Mass Spectra of Organic Compounds; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Gung, B. Mass Spectrometry: Fragmentation. Available online: https://chemistry.miamioh.edu/gung/CHM526/pdfs/Mass-fragmentation.pdf (accessed on 9 May 2023).
- Diekman, J.; Thomson, J.B.; Djerassi, C. Mass spectrometry in structural and stereochemical problems. CXLI. Electron-impact induced fragmentations and rearrangements of trimethylsilyl ethers, amines and sulfides. J. Org. Chem. 1967, 32, 3904–3919. [Google Scholar] [CrossRef]
- Thurnhofer, S.; Vetter, W. A Gas Chromatography/Electron Ionization−Mass Spectrometry−Selected Ion Monitoring Method for Determining the Fatty Acid Pattern in Food after Formation of Fatty Acid Methyl Esters. J. Agric. Food Chem. 2005, 53, 8896–8903. [Google Scholar] [CrossRef]
- Djerassi, C.; Fenselau, C. Mass Spectrometry in Structural and Stereochemical Problems. LXXXVI. The Hydrogen-Transfer Reactions in Butyl Propionate, Benzoate, and Phthalate. J. Am. Chem. Soc. 1965, 87, 5756–5762. [Google Scholar] [CrossRef]
- Vetter, F.; McLafferty, W.; Turecek, F.W. Interpretation of mass spectra. Fourth edition (1993). University Science Books, Mill Valley, California. J. Mass Spectrom. 1994, 23, 379. [Google Scholar] [CrossRef]
- Wheeler, T.F.; Heim, J.R.; LaTorre, M.R.; Janes, A.B. Mass Spectral Characterization of p-Nonylphenol Isomers Using High-Resolution Capillary GC--MS. J. Chromatogr. Sci. 1997, 35, 19–30. [Google Scholar] [CrossRef]
- Lai, Z.; Fiehn, O. Mass spectral fragmentation of trimethylsilylated small molecules. Mass Spectrom. Rev. 2016, 37, 245–257. [Google Scholar] [CrossRef]
- Azevedo, D.d.A. A preliminary investigation of the polar lipids in recent tropical sediments from aquatic environments at Campos dos Goytacazes, Brazil. J. Braz. Chem. Soc. 2003, 14, 97–106. [Google Scholar] [CrossRef]
- Saraf, A.; Park, J.-H.; Milton, D.K.; Larsson, L. Use of quadrupole GC-MS and ion trap GC-MS-MS for determining 3-hydroxy fatty acids in settled house dust: Relation to endotoxin activity. J. Environ. Monit. 1999, 1, 163–168. [Google Scholar] [CrossRef] [PubMed]
- Saraf, A.; Larsson, L. Use of gas chromatography/ion-trap tandem mass spectrometry for the determination of chemical markers of microorganisms in organic dust. J. Mass Spectrom. 1996, 31, 389–396. [Google Scholar] [CrossRef]
- Naz, S.; Ilyas, S.; Parveen, Z.; Javed, S. Chemical analysis of essential oils from turmeric (curcuma longa) rhizome through GC-MS. Asian J. Chem. 2010, 22, 3153–3158. [Google Scholar]
- Rontani, J.-F.; Aubert, C. Trimethylsilyl transfer during electron ionization mass spectral fragmentation of someω-hydroxycarboxylic andω-dicarboxylic acid trimethylsilyl derivatives and the effect of chain length. Rapid Commun. Mass Spectrom. 2004, 18, 1889–1895. [Google Scholar] [CrossRef]
- Diekman, J.; Thomson, J.B.; Djerassi, C. Mass spectrometry in structural and stereochemical problems. CLV. Electron impact induced fragmentations and rearrangements of some trimethylsilyl ethers of aliphatic glycols, and related compounds. J. Org. Chem. 1968, 33, 2271–2284. [Google Scholar] [CrossRef]
- Pietrogrande, M.C.; Bacco, D.; Mercuriali, M. GC–MS analysis of low-molecular-weight dicarboxylic acids in atmospheric aerosol: Comparison between silylation and esterification derivatization procedures. Anal. Bioanal. Chem. 2009, 396, 877–885. [Google Scholar] [CrossRef]
- Schummer, C.; Delhomme, O.; Appenzeller, B.M.; Wennig, R.; Millet, M. Comparison of MTBSTFA and BSTFA in derivatization reactions of polar compounds prior to GC/MS analysis. Talanta 2009, 77, 1473–1482. [Google Scholar] [CrossRef]
- Alt, A.; Janda, I.; Seidl, S.; Wurst, F.-M. Determination of Ethyl Glucuronide in Hair Samples. Alcohol Alcohol. 2000, 35, 313–314. [Google Scholar] [CrossRef]
- Harvey, D.J. Picolinyl esters for the structural determination of fatty acids by GC/MS. Mol. Biotechnol. 1998, 10, 251–260. [Google Scholar] [CrossRef]
- Mielniczuk, Z.; Mielniczuk, E.; Larsson, L. Gas chromatography-mass spectrometry methods for analysis of 2- and 3-hydroxylated fatty acids: Application for endotoxin measurement. J. Microbiol. Methods 1993, 17, 91–102. [Google Scholar] [CrossRef]
- Cao, X.-L. Letter to the Editor regarding “Comparison of two derivatization-based methods for solid-phase microextraction-gas chromatography-mass spectrometric determination of bisphenol A, bisphenol S, and biphenol migrated from food cans”. Anal. Bioanal. Chem. 2018, 411, 287–288. [Google Scholar] [CrossRef]
- Jurek, A.; Leitner, E. Analytical determination of bisphenol A (BPA) and bisphenol analogues in paper products by GC-MS/MS. Food Addit. Contam. Part A 2017, 34, 1225–1238. [Google Scholar] [CrossRef] [PubMed]
- Gelin, F.; Volkman, J.K.; De Leeuw, J.W.; Damsté, J.S.S. Mid-chain hydroxy long-chain fatty acids in microalgae from the genus Nannochloropsis. Phytochemistry 1997, 45, 641–646. [Google Scholar] [CrossRef]
- Parker, E.T.; Cleaves, H.J.; Dworkin, J.P.; Glavin, D.P.; Callahan, M.; Aubrey, A.; Lazcano, A.; Bada, J.L. Primordial synthesis of amines and amino acids in a 1958 Miller H 2 S-rich spark discharge experiment. Proc. Natl. Acad. Sci. USA 2011, 108, 5526–5531. [Google Scholar] [CrossRef] [PubMed]
- Turse, C.; Leitner, J.; Firneis, M.; Schulze-Makuch, D. Simulations of Prebiotic Chemistry under Post-Impact Conditions on Titan. Life 2013, 3, 538–549. [Google Scholar] [CrossRef] [PubMed]
- Parker, E.T.; Zhou, M.; Burton, A.S.; Glavin, D.P.; Dworkin, J.P.; Krishnamurthy, R.; Fernández, F.M.; Bada, J.L. A Plausible Simultaneous Synthesis of Amino Acids and Simple Peptides on the Primordial Earth. Angew. Chem. 2014, 126, 8270–8274. [Google Scholar] [CrossRef]
- Reichardt, C. Solvents and Solvent Effects: An Introduction. Org. Process. Res. Dev. 2006, 11, 105–113. [Google Scholar] [CrossRef]
- Edsall, J.T.; Wyman, J. Electrostatics and the Biological Significance of the Properties of Matter. J. Am. Chem. Soc. 1958, 31, 123. [Google Scholar] [CrossRef]
- Bernstein, M.P.; Dworkin, J.P.; Sandford, S.A.; Allamandola, L.J. Ultraviolet irradiation of naphthalene in H2O ice: Implications for meteorites and biogenesis. Meteorit. Planet. Sci. 2001, 36, 351–358. [Google Scholar] [CrossRef]
- Monnard, P.-A.; Apel, C.L.; Kanavarioti, A.; Deamer, D.W. Influence of Ionic Inorganic Solutes on Self-Assembly and Polymerization Processes Related to Early Forms of Life: Implications for a Prebiotic Aqueous Medium. Astrobiology 2002, 2, 139–152. [Google Scholar] [CrossRef]
- Menor-Salván, C.; Ruiz-Bermejo, M.; Osuna-Esteban, S.; Muñoz-Caro, G.; Veintemillas-Verdaguer, S. Synthesis of Polycyclic Aromatic Hydrocarbons and Acetylene Polymers in Ice: A Prebiotic Scenario. Chem. Biodivers. 2008, 5, 2729–2739. [Google Scholar] [CrossRef]
- Ruiz-Mirazo, K.; Briones, C.; de la Escosura, A. Prebiotic Systems Chemistry: New Perspectives for the Origins of Life. Chem. Rev. 2013, 114, 285–366. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez, P.L. The Metabolism of Quinone-Containing Alkylating Agents: Free Radical Production And Measurement. Front. Biosci. 2000, 5, 629. [Google Scholar]
- Nair, U.; Bartsch, H.; Nair, J. Alert for an epidemic of oral cancer due to use of the betel quid substitutes gutkha and pan masala: A review of agents and causative mechanisms. Mutagenesis 2004, 19, 251–262. [Google Scholar] [CrossRef]
- Scalbert, A.; Johnson, I.T.; Saltmarsh, M. Polyphenols: Antioxidants and beyond. Am. J. Clin. Nutr. 2005, 81, 215S–217S. [Google Scholar] [CrossRef] [PubMed]
- Kiesewetter, M.K.; Shin, E.J.; Hedrick, J.L.; Waymouth, R.M. Organocatalysis: Opportunities and Challenges for Polymer Synthesis. Macromolecules 2010, 43, 2093–2107. [Google Scholar] [CrossRef]
- Mansy, S.S.; Szostak, J.W. Thermostability of model protocell membranes. Proc. Natl. Acad. Sci. USA 2008, 105, 13351–13355. [Google Scholar] [CrossRef]
- Oberholzer, T.; Albrizio, M.; Luisi, P.L. Polymerase chain reaction in liposomes. Chem. Biol. 1995, 2, 677–682. [Google Scholar] [CrossRef]
- McCollom, T.M.; Ritter, G.; Simoneit, B.R.T. Lipid Synthesis Under Hydrothermal Conditions by Fischer- Tropsch-Type Reactions. Space Life Sci. 1999, 29, 153–166. [Google Scholar] [CrossRef]
- Simoneit, B.R. Prebiotic organic synthesis under hydrothermal conditions: An overview. Adv. Space Res. 2004, 33, 88–94. [Google Scholar] [CrossRef]
- Martin, N.; Douliez, J. Fatty Acid Vesicles and Coacervates as Model Prebiotic Protocells. ChemSystemsChem 2021, 3, e2100024. [Google Scholar] [CrossRef]
- Barton, D.G.; Shtein, M.; Wilson, R.D.; Soled, S.L.; Iglesia, E. Structure and Electronic Properties of Solid Acids Based on Tungsten Oxide Nanostructures. J. Phys. Chem. B 1999, 103, 630–640. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, T.; Li, H.; Liu, B.; Yang, L. Tungsten-based photocatalysts with UV–Vis–NIR photocatalytic capacity: Progress and opportunity. Tungsten 2019, 1, 247–257. [Google Scholar] [CrossRef]
- Sasselov, D.D.; Grotzinger, J.P.; Sutherland, J.D. The origin of life as a planetary phenomenon. Sci. Adv. 2020, 6, eaax3419. [Google Scholar] [CrossRef] [PubMed]
- Kadoya, S.; Catling, D.C.; Nicklas, R.W.; Puchtel, I.S.; Anbar, A.D. Mantle data imply a decline of oxidizable volcanic gases could have triggered the Great Oxidation. Nat. Commun. 2020, 11, 2774. [Google Scholar] [CrossRef]
- Lehmer, O.R.; Catling, D.C.; Buick, R.; Brownlee, D.E.; Newport, S. Atmospheric CO 2 levels from 2.7 billion years ago inferred from micrometeorite oxidation. Sci. Adv. 2020, 6, eaay4644. [Google Scholar] [CrossRef]
- Wogan, N.F.; Catling, D.C.; Zahnle, K.J.; Claire, M.W. Rapid timescale for an oxic transition during the Great Oxidation Event and the instability of low atmospheric O2. Proc. Natl. Acad. Sci. USA 2022, 119, e2205618119. [Google Scholar] [CrossRef] [PubMed]
- Green, N.J.; Xu, J.; Sutherland, J.D. Illuminating Life’s Origins: UV Photochemistry in Abiotic Synthesis of Biomolecules. J. Am. Chem. Soc. 2021, 143, 7219–7236. [Google Scholar] [CrossRef] [PubMed]
Experiment # 1 | Temperature 2 (°C) | NH3 3 (gr/L) | Initial Pressure 4 (bar) | Spark Generator | Product Weight (mg) |
---|---|---|---|---|---|
Sample 1 | +80 | 5.83 | 1.0 | FB-1 | 3.0 |
Sample 2 | +100 | 5.83 | 1.0 | FB-1 | 15.6 |
Sample 3 | +120 | 5.83 | 1.0 | FB-1 | 1.0 |
Sample 4 | +100 | 0.11 | 1.0 | FB-1 | 1.6 |
Sample 5 | +100 | 11.66 | 1.0 | FB-1 | 5.2 |
Sample 6 | +100 | 5.83 | 0.7 | FB-1 | 4.0 |
Sample 7 | +100 | 5.83 | 1.0 | FB-2 | 5.1 |
Sample 8 | +100 | 5.83 | 1.0 | CA-1 | 9.3 |
Compound Name | S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 |
---|---|---|---|---|---|---|---|---|
Alkanes C12-C44 | + | + | + | + | + | + | + | + |
Aromatics | + | + | + | + | + | + | + | + |
PAHs | + | + | + | |||||
Carbamat | + | + | + | + | + | + | + | + |
Ethanimidic acid | + | + | + | + | + | + | + | |
Guanine | + | + | + | + | + | + | + | |
Aliphatic Amines | + | + | + | + | + | + | + | + |
Pyridinol | + | + | + | + | + | + | ||
Fatty acids | + | + | + | + | + | + | + | + |
m-Phenylenediamine | + | + | + | + | + | |||
Cyanophenol | + | + | + | + | + | |||
Benzamide | + | + | + | + | + | |||
Dimethylphenol | + | + | + | + | ||||
Phenol | + | + | + | + | + | |||
Urea | + | + | + | + | ||||
Oxalic acid | + | + | + | |||||
Methoxyphenol | + | + | + | |||||
Pyrazine-2-carboxamide | + | + | + | |||||
1,4-Benzoquinone | + | + | + | + | + | + | + | |
4-Pyrimidinecarboxaldehyde | + | + | + | |||||
Benzyl alcohol | + | + | + | |||||
Fatty alcohols | + | + | + | + | + | + | ||
Butadyne | + | + | + | |||||
Methylbenzamide | + | + | + | |||||
Ethyl-acridone | + | + | + | |||||
Glycolic acid | + | + | + | |||||
Biphenyldiol | + | + | + | |||||
Biphenylene derivative | + | + | ||||||
ethylene glycol | + | + | + | + | + | + | ||
PEG strands | + | + | + | |||||
Amino-O-cresol | + | + |
Experiment # | Fragments m/z in Order of Abundance (Left to Right Decreased) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Sample 1 | 73 | 117 | 75 | 132 | 313 | 129 | 57 | 221 | 43 | 145 |
Sample 2 | 117 | 73 | 75 | 132 | 313 | 129 | 57 | 43 | 145 | 71 |
Sample 3 | 117 | 73 | 75 | 132 | 313 | 129 | 57 | 43 | 145 | 71 |
Sample 4 | 73 | 221 | 75 | 117 | 222 | 263 | 57 | 43 | 147 | 132 |
Sample 5 | 73 | 165 | 75 | 147 | 180 | 117 | 221 | 330 | 175 | 45 |
Sample 6 | 165 | 73 | 180 | 75 | 166 | 149 | 175 | 117 | 147 | 43 |
Sample 7 | 117 | 73 | 341 | 75 | 132 | 129 | 145 | 57 | 43 | 55 |
Sample 8 | 73 | 165 | 147 | 75 | 117 | 180 | 43 | 45 | 149 | 166 |
Molecular Ion (m/z) | Predicted Fragment Structure | Literature and Common Compounds | Relevant Studies from a Fragment | References |
---|---|---|---|---|
43 | SHs 1 | - | [35] | |
45 | Ketons, FAcs 2, Fals 3 | α β cleavage | [36,37,38] | |
55 | Ketones, FAcs | - | [35,39] | |
57 | SHs | - | [35] | |
71 | SHs | - | [35] | |
71 | Esthers | α cleavage | [35] | |
71 | FAcs | - | [39] | |
73 | Ethers, Aldehydes | Trimethylsilyl cation | [40] | |
74 | FAcs, Esthers | McLafferty rearrangement | [41] | |
75 | Ethers | α-fission | [42] | |
85 | Ketones, SHs | - | [35,38,39,43,44] | |
117 | FAcs, Fals, Ethers | - | [45] | |
129 | FAcs, Sterols, FAls | - | [40,46] | |
131 | FAcs | - | [47,48] | |
132 | FAcs | McLafferty rearrangement | [45,49,50] | |
145 | FAcs | - | [40,50] | |
147 | FAcs, FAls, PEG 4, ethers, dCAs 5 | - | [45,51,52] | |
149 | - | FAcs, FAls, PEG, ethers, dCAs | Hydrogenation of m/z = 147 | [45,51,52,53] |
165 | Phenols | - | [45,54,55] | |
166 | Phenols | Hydrogenated m/z 165 | [45,54,55] | |
175 | - | FAcs | Cleavage of the C3–C4 linkage | [47,56] |
180 | - | bisphenols | 165, 180, 236, 242 for AA derivatized BPS | [45,54,55,57,58] |
221 | - | contamination | AMDIS | - |
222 | - | contamination | AMDIS | - |
263 | - | contamination | AMDIS | - |
313 | FAcs | AMDIS | [59] | |
330 | - | AMDIS | - | |
341 | FAcs, FAls | [59] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ravanbodshirazi, S.; Boutfol, T.; Safaridehkohneh, N.; Finkler, M.; Mohammadi-Kambs, M.; Ott, A. The Nature of the Spark Is a Pivotal Element in the Design of a Miller–Urey Experiment. Life 2023, 13, 2201. https://doi.org/10.3390/life13112201
Ravanbodshirazi S, Boutfol T, Safaridehkohneh N, Finkler M, Mohammadi-Kambs M, Ott A. The Nature of the Spark Is a Pivotal Element in the Design of a Miller–Urey Experiment. Life. 2023; 13(11):2201. https://doi.org/10.3390/life13112201
Chicago/Turabian StyleRavanbodshirazi, Sina, Timothée Boutfol, Neda Safaridehkohneh, Marc Finkler, Mina Mohammadi-Kambs, and Albrecht Ott. 2023. "The Nature of the Spark Is a Pivotal Element in the Design of a Miller–Urey Experiment" Life 13, no. 11: 2201. https://doi.org/10.3390/life13112201
APA StyleRavanbodshirazi, S., Boutfol, T., Safaridehkohneh, N., Finkler, M., Mohammadi-Kambs, M., & Ott, A. (2023). The Nature of the Spark Is a Pivotal Element in the Design of a Miller–Urey Experiment. Life, 13(11), 2201. https://doi.org/10.3390/life13112201