Conservation Priorities and Demographic History of Saussurea involucrata in the Tianshan Mountains and Altai Mountains
Abstract
:1. Introduction
2. Materials and Methods
2.1. Population Collection and DNA Data Generation
2.2. Population Structure and Diversity
2.3. Divergence Time of Haplotypes
2.4. Isolation-by-Distance (IBD) and Isolation-by-Resistance (IBR) Analyses
2.5. Population Historical Developments
3. Results
3.1. Population Structure and Diversity
3.2. Genetic Divergence History
3.3. Isolation-by-Distance (IBD) and Isolation-by-Resistance (IBR) Analyses
4. Discussion
4.1. High Genetic Diversity
4.2. The Conserved Center of S. involucrata
4.3. Protection Recommendations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sun, J.; Ding, Z. Detrital zircon evidence for the ternary sources of the Chinese Loess Plateau. J. Asian Earth Sci. 2018, 155, 21–34. [Google Scholar] [CrossRef]
- Jiang, M.; Li, H.O. The effect of Qinghai–Tibet plateau uplift on the structure of crust and upper mantle beneath the Tianshan mountains in Xinjiang. Front. Earth Sci. 2006, 13, 401–407. [Google Scholar]
- Liu, J.; Wang, L. Genetic diversity and population structure of Lamiophlomis rotata (Lamiaceae), an endemic species of Qinghai–Tibet Plateau. Genetica 2006, 128, 385–394. [Google Scholar] [CrossRef]
- Li, L.; Abbott, R. Pliocene intraspecific divergence and Plio-Pleistocene range expansions within Picea likiangensis (Lijiang spruce), a dominant forest tree of the Qinghai–Tibet Plateau. Mol. Ecol. 2013, 22, 5237–5255. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Li, L. Distributional dynamics and interspecific gene flow in Picea likiangensis and, P. wilsonii triggered by climate change on the Qinghai–Tibet Plateau. J. Biogeogr. 2015, 42, 475–484. [Google Scholar]
- Quan, Q.; Chen, L. Genetic diversity and distribution patterns of host insects of caterpillar fungus Ophio-cordyceps sinensis in the Qinghai–Tibet Plateau. PLoS ONE 2014, 9, e92293. [Google Scholar] [CrossRef]
- Chen, S.; Xing, Y. Phylogeographic analysis reveals significant spatial genetic structure of Incarvillea sinensisas, a product of mountain building. BMC Plant Biol. 2012, 12, 58. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, M. Phylogeographic structure of a tethyan relict Capparis spinosa (Capparaceae) traces pleistocene geologic and climatic changes in the western Himalayas, Tianshan mountains, and adjacent desert regions. BioMed Res. Int. 2016, 2016, 5792708. [Google Scholar]
- Meng, H.; Gao, X. Plant phylogeography in arid Northwest China: Retrospectives and perspectives. J. Syst. Evol. 2015, 53, 33–46. [Google Scholar] [CrossRef]
- Meng, H.; Zhang, M. Diversification of plant species in arid Northwest China: Species-level phylogeographical history of Lagochilus Bunge ex Bentham (Lamiaceae). Mol. Phylogenet. Evol. 2013, 68, 398–409. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Z. Late Mesozoic- Cenozoic uplift sedimentary response, chronology and evolution of the eastern Tianshan Mountains. Acta Geol. Sin. 2004, 78, 319–331. [Google Scholar]
- Moritz, C. Strategies to protect biological diversity and the evolutionary processes that sustain it. Syst. Biol. 2002, 51, 238–254. [Google Scholar] [CrossRef] [PubMed]
- Su, Z.; Pan, B. Conservation genetics and geographic patterns of genetic variation of endangered shrub Ammopiptanthus (Fabaceae) in northwestern China. Conserv. Genet. 2016, 17, 485–496. [Google Scholar] [CrossRef]
- Wang, X.; Hou, X. Genetic diversity of the endemic and medicinally important plant Rheum officinale as revealed by inter-simpe sequence repeat (ISSR) markers. Int. J. Mol. Sci. 2012, 13, 3900–3915. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Yang, R. Genetic variation in Rheum palmatum and Rheum tanguticum (Polygonaceae), two medicinally and endemic species in China using ISSR markers. PLoS ONE 2012, 7, e51667. [Google Scholar] [CrossRef] [PubMed]
- Tabin, S.; Kamili, A. Genetic diversity and population structure of Rheum species in Kashmir Himalaya based on ISSR markers. Flora 2016, 223, 121–128. [Google Scholar] [CrossRef]
- Su, Z.; Zhang, M. Chloroplast phylogeography of Helianthemum songaricum (Cistaceae) from northwestern China: Implications for preservation of genetic diversity. Conserv. Genet. 2011, 12, 1525–1537. [Google Scholar] [CrossRef]
- Chen, J.; Wang, Y. New Saussurea (Asteraceae) species from Bogeda Mountain, eastern Tianshan, China, and inference of its evolutionary history and medical usage. PLoS ONE 2018, 13, e0199416. [Google Scholar] [CrossRef]
- Lv, Y.; Zhang, F. Diversity and antimicrobial activity of endophytic fungi associated with the alpine plant Saussurea involucrata. Biol. Pharm. Bull. 2010, 33, 1300–1306. [Google Scholar] [CrossRef]
- Chik, W.I.; Zhu, L. Saussurea involucrata: A review of the botany, phytochemistry, and ethnopharmacology of a rare traditional herbal medicine. J. Ethnopharmacol. 2015, 172, 44–60. [Google Scholar] [CrossRef]
- Kumar, J.; Pundir, M. Phytochemistry and pharmacology of Saussurea genus (Saussurea lappa, Saussurea costus, Saussurea obvallata, Saussurea involucrata). Mater. Today Proc. 2022, 56, 1173–1181. [Google Scholar] [CrossRef]
- Zhang, Q.; He, L. Systems Pharmacology–Based Dissection of Anti-Cancer Mechanism of Traditional Chinese Herb Saussurea involucrata. Front. Pharmacol. 2021, 12, 678203. [Google Scholar] [CrossRef]
- Byambaragchaa, M.; Kh, A. Anticancer potential of an ethanol extract of Saussurea involucrata against hepatic cancer cells in vitro. Asian Pac. J. Cancer Prev. 2014, 15, 7527–7532. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Chen, Y. Sustainable utilization of traditional Chinese medicine resources: Systematic evaluation on different production modes. Evid. Based Complement. Alternat. Med. 2015, 2015, 218901. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.; Yang, W. High genetic diversity in an endangered medicinal plant, Saussurea involucrata (Saussurea, Asteraceae), in western Tianshan Mountains, China. Conserv. Genet. 2017, 18, 1435–1447. [Google Scholar] [CrossRef]
- Doyle, J.; Doyle, J. A phylogeny of the chloroplast gene rbcL in the Leguminosae: Taxonomic correlations and insights into the evolution of nodulation. Am. J. Bot. 1997, 84, 541–554. [Google Scholar] [CrossRef]
- Shaw, J.; Lickey, E.B. Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: The tortoise and the hare III. J. Bot. 2007, 94, 275–288. [Google Scholar] [CrossRef] [PubMed]
- Librado, P.; Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 2009, 25, 1451–1452. [Google Scholar] [CrossRef] [PubMed]
- Wu, J. Phylogenetic Geography of Vitex trifolia along the Coast of China. Master’s Thesis, Shandong University, Jinan, China, 2022. [Google Scholar]
- Yamane, K.; Yano, K. Pattern and rate of indel evolution inferred from whole chloroplast intergenic regions in sugarcane, maize, and rice. DNA Res. 2006, 13, 197–204. [Google Scholar] [CrossRef]
- Hijmans, R.; Williams, E. Geosphere: Spherical Trigonometry; R package version 1.5-10. 2019. Available online: https://CRAN.R-project.org/package=geosphere/ (accessed on 8 November 2023).
- Wang, I. Topographic path analysis for modelling dispersal and functional connectivity: Calculating topographic distances using the topoDistance r package. Methods Ecol. Evol. 2020, 11, 265–272. [Google Scholar] [CrossRef]
- Rozas, J.; Sánchez, D. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 2003, 19, 2496–2497. [Google Scholar] [CrossRef]
- Rogers, A.R.; Harpending, H. Population growth makes waves in the distribution of pairwise genetic differences. Mol. Biol. Evol. 1992, 9, 552–569. [Google Scholar] [CrossRef]
- Zhang, Y.B.; Ma, K.P. Geographic distribution patterns and status assessment of threatened plants in China. Biodivers. Conserv. 2008, 17, 1783–1798. [Google Scholar] [CrossRef]
- Liu, L.; Chen, W. Molecular phylogeography and paleodistribution modeling of the boreal tree species Ulmus lamellosa (T. Wang et SL Chang) (Ulmaceae) in China. Tree Genet. Genom. 2017, 13, 11. [Google Scholar] [CrossRef]
- Dai, P. Study on Reproductive Ecology of Saussurea involucrate. Master’s Thesis, Xinjiang Agricultural University, Urumqi, China, 2008. [Google Scholar]
- Semwal, P.; Painuli, S. Genetic Diversity of Scanty Available Himalayan Saussurea obvallata (DC.) Edgew. Iran. J. Sci. Technol. Trans. A Sci. 2020, 44, 587–594. [Google Scholar] [CrossRef]
- Wang, J.; Dai, W. Assessment of Genetic Diversity and Genetic Structure of Saussurea medusa (Asteraceae), a “Sky Island” Plant in the Qinghai–Tibet Plateau, Using SRAP Markers. Plants 2023, 12, 2463. [Google Scholar] [CrossRef]
- Xie, K.; Zhang, M. The effect of Quaternary climatic oscillations on Ribes meyeri (Saxifragaceae) in northwestern China. Biochem. Syst. Ecol. 2013, 50, 39–47. [Google Scholar] [CrossRef]
- Hu, X.; Zheng, P. Population genetic diversity and structure analysis of wild apricot (Prunus armeniaca L.) revealed by SSR markers in the Tien-Shan mountains of China. Pak. J. Bot. 2018, 50, 609–615. [Google Scholar]
- Li, Y.; Song, F. Phylogeography suggest the Yili Valley being the glacial refuge of the genus Ixiolirion (Amaryllidaceae) in China. Syst. Biodivers. 2019, 17, 385–401. [Google Scholar] [CrossRef]
- Hewitt, G. The genetic legacy of the Quaternary ice ages. Nature 2000, 405, 907–913. [Google Scholar] [CrossRef]
- Wen, Q.; Shi, Y. The quaternary climo-environment changes in Chaiwopu basin of Xinjiang region. Chin. Geogr. Sci. 1993, 3, 147–158. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, M. Identifying a contact zone between two phylogeographic lineages of Clematis sibirica (Ranunculeae) in the Tianshan and Altai Mountains. J. Syst. Evol. 2012, 50, 295–304. [Google Scholar] [CrossRef]
- Glorie, S.; De Grave, J. Exhuming the Meso–Cenozoic Kyrgyz Tianshan and Siberian Altai-Sayan: A review based on low-temperature thermochronology. Geosci. Front. 2016, 7, 155–170. [Google Scholar] [CrossRef]
- Miao, Y.; Herrmann, M. What controlled Mid–Late Miocene long-term aridification in Central Asia?—Global cooling or Tibetan Plateau uplift: A review. Earth-Sci. Rev. 2012, 112, 155–172. [Google Scholar] [CrossRef]
- Wang, R.; Yang, Z. Plio-Pleistocene climatic change drives allopatric speciation and population divergence within the Scrophularia incisa complex (Scrophulariaceae) of desert and steppe subshrubs in Northwest China. Front. Plant Sci. 2022, 13, 985372. [Google Scholar] [CrossRef]
- Li, Z.; Chen, J. Response of a desert shrub to past geological and climatic change: A phylogeographic study of Reaumuria soongarica (Tamaricaceae) in western China. J. Syst. Evol. 2012, 50, 351–361. [Google Scholar] [CrossRef]
- Lin, N.; Deng, T. Phylogeography of Parasyncalathium souliei (Asteraceae) and its potential application in delimiting phylogeoregions in the Qinghai–Tibet Plateau (QTP)-Hengduan Mountains (HDM) Hotspot. Front. Genet. 2018, 9, 171. [Google Scholar] [CrossRef] [PubMed]
- Hewitt, G.M. Genetic consequences of climatic oscillations in the Quaternary. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2004, 359, 183–195. [Google Scholar] [CrossRef]
- Wang, G.; He, X. Phylogeography of the Qinghai–Tibet Plateau endemic alpine herb Pomatosace filicula (Primulaceae). J. Syst. Evol. 2014, 52, 289–302. [Google Scholar] [CrossRef]
- Zhang, D.; Fengquan, L. Eco-environmental effects of the Qinghai–Tibet Plateau uplift during the Quaternary in China. Environ. Geol. 2000, 39, 1352–1358. [Google Scholar] [CrossRef]
- Zheng, B.; Xu, Q. The relationship between climate change and Quaternary glacial cycles on the Qinghai–Tibetan Plateau: Review and speculation. Quatern. Int. 2002, 98, 93–101. [Google Scholar] [CrossRef]
- Freeland, J.R.; Kirk, H.; Petersen, S.D. Molecular Ecology, 2nd ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2011; pp. 93–96. [Google Scholar]
- Li, G.; Yue, L. Phylogeography of Cyananthus delavayi (Campanulaceae) in Hengduan Mountains inferred from variation in nuclear and chloroplast DNA sequences. J. Syst. Evol. 2012, 50, 305–315. [Google Scholar] [CrossRef]
- Shi, Y.; Cui, Z. The Quaternary Glaciations and Environmental Variations in China; Hebei Science and Technology Press: Shijiazhuang, China, 2006; pp. 173–179. [Google Scholar]
- Xu, X.; Kleidon, A. Late Quaternary glaciation in the Tianshan and implications for palaeoclimatic change: A review. Boreas 2010, 39, 215–232. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, M. Genetic structure of the Delphinium naviculare species group tracks Pleistocene climatic oscillations in the Tianshan Mountains, arid Central Asia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2012, 353, 93–103. [Google Scholar] [CrossRef]
- Wan, D.; Feng, J. The Quaternary evolutionary history, potential distribution dynamics, and conservation implications for a Qinghai–Tibet Plateau endemic herbaceous perennial, Anisodus tanguticus (Solanaceae). Ecol. Evol. 2016, 6, 1977–1995. [Google Scholar] [CrossRef]
- Ferriol, M.; Pico, B. Molecular diversity of a germplasm collection of squash (Cucurbita moschata) determined by SRAP and AFLP markers. Crop. Sci. 2004, 44, 653–664. [Google Scholar] [CrossRef]
- Zhang, D.; Chen, S. Patterns of genetic variation in Swertia przewalskii, an endangered endemic species of the Qinghai–Tibet Plateau. Biochem. Genet. 2007, 45, 33–50. [Google Scholar] [CrossRef]
- Poudel, R.C. Genetic diversity, demographical history and conservation aspects of the endangered yew tree Taxus contorta (syn. Taxus fuana) in Pakistan. Tree Genet. Genom. 2014, 10, 653–665. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, L.; Lu, T.; Wang, X.; Wang, J.; Shi, W. Conservation Priorities and Demographic History of Saussurea involucrata in the Tianshan Mountains and Altai Mountains. Life 2023, 13, 2209. https://doi.org/10.3390/life13112209
Hu L, Lu T, Wang X, Wang J, Shi W. Conservation Priorities and Demographic History of Saussurea involucrata in the Tianshan Mountains and Altai Mountains. Life. 2023; 13(11):2209. https://doi.org/10.3390/life13112209
Chicago/Turabian StyleHu, Lin, Ting Lu, Xiyong Wang, Jiancheng Wang, and Wei Shi. 2023. "Conservation Priorities and Demographic History of Saussurea involucrata in the Tianshan Mountains and Altai Mountains" Life 13, no. 11: 2209. https://doi.org/10.3390/life13112209
APA StyleHu, L., Lu, T., Wang, X., Wang, J., & Shi, W. (2023). Conservation Priorities and Demographic History of Saussurea involucrata in the Tianshan Mountains and Altai Mountains. Life, 13(11), 2209. https://doi.org/10.3390/life13112209