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Abstract: Chronic kidney disease (CKD) emerges as a substantial contributor to various cardiovas-
cular disorders, including ischemic cardiomyopathy (ICM). However, the underlying molecular
mechanisms linking CKD and ICM remain elusive. Our study aims to unravel these connections by
integrating publicly available bulk and single-cell RNA sequencing (scRNA-seq) data. Expression
profiles from two ICM datasets obtained from heart tissue and one CKD with Peripheral Blood
Mononuclear Cell (CKD-PBMC) dataset were collected. We initiated by identifying shared differen-
tially expressed genes (DEGs) between ICM and CKD. Subsequent functional enrichment analysis
shed light on the mechanisms connecting CKD to ICM. Machine learning algorithms enabled the
identification of 13 candidate genes, including AGRN, COL16A1, COL1A2, FAP, FRZB, GPX3, ITIH5,
NFASC, PTN, SLC38A1, STARD7, THBS2, and VPS35. Their expression patterns in ICM were investi-
gated via scRNA-seq data analysis. Notably, most of them were enriched in fibroblasts. COL16A1,
COL1A2, PTN, and FAP were enriched in scar-formation fibroblasts, while GPX3 and THBS2 showed
enrichment in angiogenesis fibroblasts. A Gaussian naïve Bayes model was developed for diagnos-
ing CKD-related ICM, bolstered by SHapley Additive exPlanations interpretability and validated
internally and externally. In conclusion, our investigation unveils the extracellular matrix’s role in
CKD and ICM interplay, identifies 13 candidate genes, and showcases their expression patterns in
ICM. We also constructed a diagnostic model using 13 gene features and presented an innovative
approach for managing CKD-related ICM through serum-based diagnostic strategies.

Keywords: ischemic cardiomyopathy; chronic kidney disease; fibroblast; scRNA-seq; machine learning

1. Introduction

Chronic kidney disease (CKD) is a significant global health concern, impacting over
13.4% of the world’s population, and its prevalence continues to rise [1]. The development
of CKD involves an intricate interplay of factors like inflammation, oxidative stress, and
metabolic dysregulation, which not only contribute to progressive kidney function decline
but also increase the risk of other conditions, including ischemic cardiomyopathy (ICM) [2].
CKD is considered one of the strongest risk factors for developing cardiovascular disease,
to which coronary artery disease contributes the large part of adverse events [3]. Numerous
studies have revealed coronary artery narrowing and occlusion [4], along with a high
prevalence of myocardial ischemia and heart dysfunction in CKD patients [5,6]. However,
the precise molecular mechanisms connecting these two diseases are not fully revealed.

Studies have indicated that an abundance of internal and external mediators can
trigger systemic, chronic inflammatory state in CKD, which could potentially contribute to
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various cardiovascular diseases [6]. Additionally, studies have shown that CKD mimicked
accelerated aging [7], evidenced by the accumulation of senescent cells [8] and increased
levels of inflammatory markers of the senescence-associated phenotype [9]. The cellular
senescence could contribute to atherosclerosis [10], calcification and cardiac remodeling
following ischemic events [11]. All of these findings suggest the potential involvement of
secretory proteins in CKD-related ICM. In addition, due to the high incidence of coronary
artery disease in individuals with CKD [12] and the limitations of current imaging modali-
ties [13], it is crucial to identify those with a higher risk of myocardial ischemia based on
plasma biomarkers.

In this study, we used public datasets for reanalysis to identify commonly regulated
genes in ICM and CKD, aiming to unravel potential mechanisms underlying CKD-related
ICM. Through a machine-learning feature selection method, we identified 13 potential
candidate genes encoding secretory proteins. Subsequently, we investigated the expression
pattern of these candidate genes in ICM using single-cell RNA sequencing (scRNA-seq)
data. Finally, we constructed a diagnostic model based on candidate genes using machine-
learning algorithms and validated its performance internally and externally.

2. Methods
2.1. Data Collection

For the current study, we utilized publicly available datasets of ICM and CKD.
GSE5406, GSE57345 were selected for ICM, which contain microarray data from cardiac
tissue samples obtained from individuals with ICM. In our study, we employed GSE5406
for conducting differential analysis and model construction, while GSE57345 served as the
dataset for external validation. The GSE37171 dataset, encompassing microarray data ac-
quired from peripheral blood mononuclear cell (PBMC) samples taken from CKD patients,
was also included in our analysis. We incorporated the GSE145154 dataset, which includes
scRNA-seq data from cardiac tissue samples of individuals with ICM, in order to explore
cellular heterogeneity and identify gene expression patterns in ICM. Table 1 provides the
details of the included dataset, while Figure 1 visualizes the workflow of the current study.

Table 1. Characteristics of GEO datasets.

GEO Accession Platform Origin
Sample

Species
Control Disease

GSE5406 GPL96 Heart 16 108 Homo
Sapiens

GSE37171 GPL570 PBMC 40 75 Homo
Sapiens

GSE57345 GPL11532 Heart 136 95 Homo
Sapiens

GSE145154 GPL20795 Heart 5 14 Homo
Sapiens

2.2. Differentially Expressed Genes (DEGs) Analysis

In this study, we employed the “limma” package [14] within the R software (https:
//www.r-project.org/) to identify Differentially Expressed Genes (DEGs) in datasets related
to ICM and CKD. DEGs in both the ICM and CKD datasets were filtered using stringent
criteria, specifically, an adjusted p-value ≤ 0.05 and an absolute value of log2 (fold change)
≥ 0.25. To identify commonly regulated genes in both ICM and CKD datasets, we focused
on genes that exhibited consistent upregulation or downregulation in both diseases. For
visualization, we employed the “ggplot2” [15] and “Complexheatmap” [16] packages
within the R software. The expression patterns of DEGs were presented through dot plots
and heatmaps, respectively, enabling a comprehensive visual analysis of their expression
levels and regulation changes.

https://www.r-project.org/
https://www.r-project.org/
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Figure 1. Flowchart of current study. ICM, ischemic cardiomyopathy. CKD, chronic kidney disease.
DEG, differentially expressed gene. SHAP, SHapley Additive exPlanations.

2.3. Functional Enrichment Analysis

To gain insight into the biological functions and underlying mechanisms of DEGs,
gene oncology (GO) term (http://geneontology.org/docs/gocitation-policy/) analysis was
conducted via the “clusterprofiler” [17] package of R. We utilized the “fgsea” package [18]
to conduct Gene Set Enrichment Analysis (GSEA) using KEGG pathway gene sets sourced
from the “msigdb” database.

2.4. Protein–Protein Interaction (PPI) Network Construction

To investigate the associations among common DEGs in the two diseases, we es-
tablished a protein–protein interaction (PPI) network based on data from the STRING
database (https://www.string-db.org) on the basis of physical interactions, coexpression,
and curated knowledge, with a confidence score of at least 0.4. We then visualized the
PPI network and calculated the node degree to show intra-network connectivity using
Cytoscape software (version 3.8.2).

2.5. Secretory Proteins Access

In this study, secretory proteins were obtained from the Human Protein Atlas database
(https://www.proteinatlas.org/). Specifically, a total of 3947 genes coding for secretory

http://geneontology.org/docs/gocitation-policy/
https://www.string-db.org
https://www.proteinatlas.org/
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proteins were downloaded from the protein class labeled as “SPOCTOPUS predicted
secreted proteins”.

2.6. Feature Selection Based on Machine Learning

Machine learning methodologies were employed to discern potential candidate genes
associated with CKD-related ischemic cardiomyopathy (ICM). Specifically, we harnessed
the Least Absolute Shrinkage and Selection Operator (LASSO) algorithm, Boruta algo-
rithm and the Random Forest (RF) algorithm to perform the task of feature selection.
The LASSO algorithm stands out for its simplicity, quantitative feature importance, and
applicability to high-dimensional data. The Boruta algorithm is a feature selection tech-
nique that builds upon the RF algorithm, enhancing its capabilities. RF, on the other hand,
leverages ensemble learning principles by aggregating multiple decision trees to improve
prediction accuracy. In our study, the “glmnet” package [19], “Boruta” package [20] and
“randomForest” package [21] were utilized for this purpose. We utilized cross-validation
to determine the optimal regularization lambda for the LASSO algorithm. In the case of
the Boruta algorithm, we configured its parameters as follows: the significance level was
set to 0.05 (p Value = 0.05), the Monte Carlo adjustment was enabled (mcAdj = T), and a
maximum of 300 runs were conducted (maxRuns = 300). We maintained the default values
for all the other parameters. For the RF algorithm, we adhered to the default settings and
selected features with a Mean Decrease in Accuracy greater than 4. The overlapping genes
of three feature selection algorithms were selected for further analysis.

2.7. scRNA-Seq Data Analysis

In this study, we conducted an analysis of public scRNA-seq data from GSE145154
to investigate the candidate genes’ expression patterns in ICM. Firstly, we preprocessed
the data and the filtering criteria for scRNA-seq data as follows: cells should have more
than 200 but less than 10,000 detected RNA features in order to exclude low-quality or
excessively abundant cells, and the percentage of mitochondrial genes (pMT) in each cell
should be less than 5% to remove damaged or dying cells. Then, initial count matrix was
subjected to normalization and scaling using the “SCTransform” method [22]. Principal
component (PC) analysis was conducted using the Seurat package as a technique for
dimensional reduction, leveraging the variable genes. The determination of the appropriate
number of PCs involved the utilization of both an elbow plot and a quantitative approach.
The inflection point was carefully identified by the following criteria: (1) the individual
principal components contributed only 5% of the standard deviation; (2) their cumulative
effect accounted for 90% of the standard deviation; and (3) the point was pinpointed at
which the percent change in variation between consecutive principal components fell below
0.1%. Next, the batch effect was corrected using the harmony approach [23]. Subsequently,
the identified PCs were employed to construct a shared nearest neighbor graph, which
was then subjected to clustering using the Louvain method, adopting a resolution of
0.2. To further reduce dimensions, the uniform manifold approximation and projection
(UMAP) technique [24] was applied. To identify genes specific to particular cell clusters,
we employed the Seurat package and considered genes displaying significant differences
in activity between clusters, setting a threshold of Log2FC greater than 0.25 to pinpoint
these DEGs using the “FindAllMarker” function from the Seurat package [25]. For cell
type annotation, we manually curated the data, referring to established resources like
PanglaoDB [26] and CellMarker 2.0 [27]. For the annotation of subclusters of fibroblast, we
referred to previous literature [28].

2.8. Classifier Construction and Assessment Based on Machine Learning Algorithm

The ICM dataset GSE5406 was randomly split into a random 70–30 division, with
70% of the data used for training and the remaining 30% for model testing. To create
classifiers, we employed four machine learning algorithms, combining GaussianNB (Gaus-
sian Naive Bayes), XGBClassifier (eXtreme Gradient Boosting), RandomForestClassifier,
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and KNeighborsClassifier (K-Nearest Neighbors). We employed GridSearch [29], which
is a technique to systematically explore different hyper-parameter settings for our ma-
chine learning model. We then used the best-performing parameters for further analysis
(Supplementary Information, Table S1). For a comprehensive assessment of classifier per-
formance, a range of metrics, including the Brier Score, precision, recall, F1 score, and AUC
for the ROC curve, were employed. Subsequently, the classifier with the best performance
in the test set was chosen. Additionally, we utilized a calibration curve to gauge the align-
ment between predictions and observations. In order to comprehend and interpret the
gene features derived from the classifier model, the SHapley Additive exPlanations (SHAP)
method [30] was employed. This method allowed for an analysis of feature attribution,
enabling a better understanding of the results produced by the machine learning-based
classifier. The Jupyter notebook was used for analysis and results visualization. The dataset
GSE57345 was used for external validation of the model performance.

2.9. Statistical Analysis

The R software and Jupyter notebook were employed for conducting statistical anal-
yses and data visualization. In order to gauge distinctions between the two groups, the
Wilcoxon rank-sum test was utilized.

3. Results
3.1. Identification of DEGs in ICM and CKD and Functional Enrichment Analysis

By conducting differential analysis in ICM and CKD datasets separately, we identified
264 DEGs with consistent regulation in two diseases. Among these DEGs, 108 genes
displayed upregulation, while 156 genes exhibited downregulation (Figure 2A). The protein–
protein (PPI) network was constructed based on STRING database and node degree was
calculated (Figure 2B). Subsequently, we performed a GO term enrichment analysis on
the commonly regulated genes in both diseases. The heatmap of common DEGs and top
enriched GO terms are illustrated in Figure 2C. Noticeably, the GO term enrichment analysis
highlighted biological processes associated with the construction of the extracellular matrix
(ECM), encompassing ECM organization, ECM assembly, and collagen fibril organization.
GSEA results unveiled that ECM related pathway was activated while Erythroblastic
Oncogene B (ERBB) and vascular endothelial growth factor (VEGF) signaling pathways
were downregulated in ICM (Figure 2D).

3.2. Identification of Candidate Genes for CKD-Related ICM

Considering that secretory proteins are involved in ECM composition and the poten-
tial implication of secretory proteins to CKD-related ICM, we intersected genes encoding
secretory proteins with common DEGs and obtained 61 genes (Figure 3A). The enrichment
analysis of these 61 genes informed that they were involved in extracellular matrix construc-
tion and mainly located in collagen-containing extracellular matrix (Figure 3B). In order to
identify candidate genes among the 61 candidate ones, we then combined LASSO, Boruta
and RF algorithms for feature filtering. The LASSO algorithm identified 14 DEGs with coef-
ficients exceeding one standard error as candidate genes. 25 DEGs were identified as the can-
didate genes of ICM by Boruta algorithm and genes with MeanDecreaseAccuracy > 4 from
RF model were extracted as candidate genes (Supplementary Information, Figures S1–S3).
Thirteen genes were screened out after the three intersected. The expression levels of these
13 genes in ICM and control group are shown in Figure 3C. We also showed the coexpres-
sion and physical interactions of the candidate genes using the GeneMANIA [31] online tool
(Figure 3D). The complete network is shown in Supplementary Information, Figure S4.
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Figure 2. Identification of commonly regulated genes between ICM and CKD. (A) Dotplot illustrating
the expression changes of DEGs in ICM and CKD. The x-axis represents the log2FC of DEGs in ICM,



Life 2023, 13, 2215 7 of 15

while the y-axis represents the log2FC of DEGs in CKD. Each dot on the plot corresponds to a
gene, with its position indicating the magnitude of its regulation in both ICM and CKD. (B) PPI
network of commonly regulated genes in the ICM and CKD, the size of node shows the degree of
intra-connectivity. (C) heatmap showing the expression pattern of commonly regulated genes in
ICM (left) and CKD (right) datasets. Biological process annotation of these genes is shown on the
right. (D) GSEA results in the context of gene sets from KEGG pathway database in ICM dataset
from GSE5406.

Figure 3. (A) Candidate genes selection. The commonly regulated genes between ICM and CKD
were intersected with secretory proteins first. Then, LASSO, Boruta and Random Forest algorithms
were used for filtering features. (B) Dotplot showing GO term enrichment annotations for commonly
regulated secretory protein-encoding genes. (C) Boxplot showing expression of candidate genes in
ICM and control group. (D) A network showing coexpression and physical interactions of candidate
genes using GeneMANIA.



Life 2023, 13, 2215 8 of 15

3.3. scRNA-Sequencing Analysis of ICM

To further identify the expression pattern of candidate genes in ICM, we reanalyzed
public dataset GSE145154 from the heart tissue of ICM and donor samples. We used UMAP
to decrease the dimensionality of the scRNA expression data. The UMAP plot displayed
a significant overlap of all samples, indicating successful integration and representation
of cell populations from both the donor and ICM groups (Figure 4A). The top markers
of each cluster are shown in Figure 4B. Through manual annotation, we identified eight
distinct cell types (Figure 4C). We found most of the candidate genes were highly expressed
within the fibroblast population (Figure 4D). Considering the substantial enrichment of
candidate genes within fibroblasts, which play a pivotal role in ECM construction [32], we
further classified fibroblasts into subclusters (Figure 4E). A previous study indicated that
post-myocardial infarction secreted CCL2 (chemokine (C-C motif) ligand 2) and developed
a proinflammatory phenotype [33]. Additionally, fibroblasts are known to stimulate en-
dothelial cells (ECs) by secreting VEGF (Vascular endothelial growth factor), promoting
angiogenesis and revascularization [34]. Additionally, encoding COLA1 (Collagen Type I
Alpha 1 Chain) and LOXL1 (Lysyl Oxidase Like 1) in fibroblast characterized composition
of extracellular matrix for scar formation [28]. Based on the expression of specific genes, we
classified the fibroblasts into 3 subclusters (CCL2 for pro-inflammation, VEGFD (Vascular
Endothelial Growth Factor D) for angiogenesis, and COLA1 and LOXL1 for scar formation)
(Figure 4F,G). A larger portion of cells belonged to the scar-formation fibroblast subcluster,
while the angiogenesis fibroblast subcluster represented a smaller fraction (Figure 4H). We
then found AGRN (Agrin), COL16A1 (Collagen Type XVI Alpha 1 Chain), COL1A2, FAP
(Fibroblast Activation Protein Alpha), FRZB (Frizzled Related Protein), PTN (Pleiotrophin),
and VPS35 (VPS53 Subunit of GARP Complex) are mainly expressed in scar-formation
fibroblasts, while GPX3 (Glutathione Peroxidase 3) and THBS2 (Thrombospondin 2) were
mainly enriched in angiogenesis fibroblasts (Figure 4I).

3.4. Construction and Validation of a Diagnostic Model for CKD-Related ICM Using Machine
Learning Algorithms

To facilitate the diagnosis of ICM patients in CKD, we constructed a diagnostic model
based on a panel of 13 candidate genes. Four machine-learning algorithm-based classifiers
were tested. The well-tuned ensemble models displayed impressive performance in the
train set, but they struggled to generalize effectively to the test set (Supplementary Informa-
tion, Figure S5). However, the GausssianNB classifier showed the lowest Brier loss and the
highest discrimination performance (AUC: 0.98484) (Figure 5A,B). After internal validation
using the five-fold cross-validation method in the test cohort, the model yielded an AUC
of 0.96 (95% confidence interval 0.89–1.00) in the test cohort (Figure 5C). We then showed
the interpretation of the GaussianNB model using the SHAP method. For each prediction,
a positive SHAP value indicates an increase in the predisposition to ICM and vice versa
(Figure 5D). A waterfall plot shows the local interpretability of the model (Figure 5E). For
external validation, we extracted data from GSE57345 and found consistent expression pat-
tern of candidate genes (Figure 5F) and outstanding performance of the current diagnostic
model in the external dataset (AUC = 0.95 ± 0.03) (Figure 5G).
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Figure 4. (A) UMAP embedding of scRNA-seq data from human heart. (B) Heat map displays
markers for each cluster. (C) Annotated UMAP plot for human heart. (D). Bubble plot showing
candidate genes expression in each type of cell. (E) UMAP embedding of fibroblast subclusters.
(F) Feature plots depict the expression of the CCL2, VEGFD, COLA1, and LOXL1 within a UMAP
plot. (G) Annotated UMAP plot for fibroblasts. (H) Proportional distribution of cell types in
different group. (I) Bubble plot showcases the expression patterns of candidate genes across diverse
fibroblast subclusters.
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Figure 5. Classifier construction, validation and visualization. (A) Statistical parameters of
four classification algorithms in train cohort. (B) The calibration curve of four classifiers.
(C) ROC plot of GaussianNB algorithm-based classifier in test cohort after 5-fold cross-validation.
(D) Importance plot of GaussianNB algorithm-based classifier. (E) The waterfall plot shows
an example explanation on an individual case. (F) Boxplot showing expression of candidate
genes in ICM and control group from GSE57345 dataset. (G) External 5-fold cross-validation of
GaussianNB model in GSE57345.
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4. Discussion

Currently, CKD is increasingly imposing burdens on global health, and its related
cardiovascular diseases have become the leading risk of mortality and morbidity [3]. CKD-
related ICM often presents as asymptomatic or with atypical symptoms, posing a challenge
for accurate diagnosis and risk stratification. Additionally, the underlying mechanisms
linking CKD and ICM remain not fully understood. By using comprehensive bioinformatic
analyses, our study investigated pathogenic genes linking CKD and ICM. In both CKD and
ICM patients, the genes regulating ECM formation are enriched, and secretory proteins play
important roles in it. Using machine learning algorithms, we identified 13 candidate genes
linking the two diseases, including AGRN, COL16A1, COL1A2, FAP, FRZB, GPX3, ITIH5
(Inter-Alpha-Trypsin Inhibitor Heavy Chain 5), NFASC (Neurofascin), PTN, SLC38A1
(Solute Carrier Family 38 Member 1), STARD7 (StAR-related lipid transfer domain protein
7), THBS2, and VPS35. By integrating scRNA-seq data analysis, we found that the candidate
genes were predominantly expressed by fibroblasts. Through an in-depth analysis focusing
on fibroblast subclusters, we found that the ICM group exhibited a higher proportion of
cells dedicated to scar formation and a lower proportion for angiogenesis. Within scar-
formation subclusters, specific genes such as COL16A1, COL1A2, PTN, and FAP were
found to be remarkably enriched. Conversely, within angiogenesis-related subclusters,
genes like GPX3 and THBS2 displayed substantial enrichment. Considering the challenge
of diagnosing and managing CKD-related ICM, we constructed a GaussianNB algorithm-
based diagnostic model to identified patients with risk of myocardial ischemia with CKD.
Furthermore, we made the model interpretable by using the SHAP method and validating
its outstanding performance in the external dataset.

In the context of ICM, therapeutic angiogenesis has been shown to revascularize
ischemic heart tissue, reducing the progression of tissue infarction and ischemia [35]. Fi-
broblast is a dynamic cell type and it has been reported to participate in angiogenesis by
secreting VEGF [34] and angiopoietin 1 [36]. In our study, we showed a lower level of
angiogenesis fibroblasts in ICM group. Additionally, GPX3, which was downregulated
in ICM group, was mainly enriched in this subcluster of fibroblasts. GPX3 serves as an
extracellular glutathione peroxidase and has implications for various diseases. The loss
of GPX3 resulted in kidney fibrosis through reactive oxygen species generation and p38
mitogen-activated protein kinase activation [37]. Genetic variance of GPX3 is associated
with severity of coronary artery disease [38], and a previous study showed that, in the con-
text of CKD, GPX3 deficiency could lead to the activation of platelet and result in coronary
artery occlusion, left ventricular dysfunction [39]. Furthermore, a recent study presented a
statistical model for predicting heart dysfunction of ICM based on GPX3 level. A single-cell
analysis also reported the potential involvement of GPX3 in cardiac fibroblast differen-
tiation under pressure overload [40]. Furthermore, the role of glutathione peroxidase in
the interaction of fibroblast and endothelial cells was investigated since GPX1, another
glutathione peroxidase, was reported to participate in maintaining endothelial progenitor
cell function and angiogenesis [41]. The role of GPX3 in fibroblasts and CKD-related ICM
warrants further investigation. THBS2 participates in ECM assembly and inhibition of
angiogenesis [42]. A study has shown miR-29a-3p/THBS2 axis is involved in pulmonary
artery hypertension-induced cardiac fibrosis [43]. Our study showed THBS2 significantly
increased in ICM and it mainly enriched in angiogenesis fibroblast, which is consistent with
previous findings. Scar formation is the main function of activated fibroblasts in cardiac
remodeling [28], FAP is a prolyl-specific serine protease, and the latest work suggested
that it could be a prognostic marker for ischemic injury of heart and its inhibition could
promote cardiac repair by stabilizing B-type natriuretic peptide [44]. Our work showed
FAP significantly increased in ICM and it is mainly expressed in scar-formation fibroblast.
Its role in CKD-related ICM warrants further investigation. PTN has been reported to hold
therapeutic promise in ICM owing to its capacity to enhance neovasculature formation [45],
but its high expression was also reported to develop peritoneal fibrosis in chlorhexidine
gluconate-induced peritoneal fibrosis mice [46]. In the current study, PTN was increased in
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ICM group, especially in scar-formation fibroblasts, while its specific function is still not
fully understood.

There is a high prevalence of silent myocardial ischemia owing to diabetic or uremic
neuropathy, especially in end-stage renal disease patients [47]. A myocardial fatty acid
imaging study showed severely impaired myocardial ischemia among hemodialysis pa-
tients [48]. In addition, as kidney disease progresses, distinguishing between ICM and
the symptoms of uraemia and anaemia becomes increasingly difficult since fatigue and
dyspnoea are atypical and common in both conditions [12]. A previous study showed
the value of tissue Doppler echocardiography [49] and magnetic resonance imaging in the
estimation of heart function and prognosis of CKD [50]. Given the limitations posed by
the echocardiography operator’s skills and the imaging quality, there is a requirement to
discover additional conventional serum biomarkers for the diagnosis and risk stratifica-
tion of CKD patients with ICM. Our study constructed a reliable diagnostic model based
on 13 candidate genes encoding secretory proteins and machine learning algorithm. We
utilized the SHAP method for model interpretation as well. The external validation of the
current diagnostic model in another dataset performed well. The use of the current model
should also be tested in clinical samples from CKD patients. In addition, we found the
Naïve Bayes-based classifier showed stable and great performance while those ensemble
methods did not. This could be attributed to the conditions suitable for Naive Bayes
and limited data size. We suggest that future research should evaluate more up-to-date
classification algorithms, including recurrent neural network in larger database. Bridging
the gap between basic science and clinical practice is challenging, but with the assist of
some advanced molecular phenotyping technologies [51,52], we anticipate that our model
will find clinical applicability in predicting CKD-related ICM and risk stratification.

We acknowledge that the primary analyses in our study were conducted in silico,
which represents a limitation of our research. While in silico analyses provide valuable
initial insights, further in vivo and in vitro experiments are necessary to delve deeper into
and validate our findings.

5. Conclusions

Our research unveiled the crucial pathways associated with the ECM that underlie the
relationship between CKD and ICM. By combining scRNA-seq data, we further discovered
the candidate genes mainly enriched in fibroblasts. It was found that COL16A1, COL1A2,
PTN, and FAP were remarkably enriched in scar-formation fibroblasts while GPX3 and
THBS2 displayed substantial enrichment within angiogenesis-related subclusters. We also
showed an increased level of scar-formation fibroblasts in our study. These specific gene
expression and cardiac fibroblast composition patterns suggested an inclination towards
cardiac fibrosis. Furthermore, we successfully constructed a diagnostic model based on a
machine-learning algorithm for ICM, which was validated internally and externally. This
offers novel insights into potential serum-based diagnostic and management strategies of
CKD with ICM.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/life13112215/s1, Figure S1. Boxplot showing the importance of
selected genes by Boruta algorithm; Figure S2. The RF algorithm presenting the MeanDecreaseAc-
curacy of genes in ICM and 13 biomarkers with the score more than 4.0 were selected; Figure S3.
Feature genes screening in the LASSO algorithm with 14 candidate hub genes selected; Figure S4.
Relationship of candidate genes; Figure S5. Results of tuning process and performance based on
GridsearchCV on train (left) and test (right) set. Table S1. Hyper-parameters set for each classifier.

Author Contributions: Conception and design: L.Y. and Y.C.; Administrative support: W.H.; Collec-
tion and assembly of data: L.Y.; Data analysis and interpretation: L.Y.; Manuscript writing: L.Y., Y.C.
and W.H. All authors have read and agreed to the published version of the manuscript.

https://www.mdpi.com/article/10.3390/life13112215/s1
https://www.mdpi.com/article/10.3390/life13112215/s1


Life 2023, 13, 2215 13 of 15

Funding: This work was supported by the National Natural Science Foundation of China (82270061),
CQMU Program for Youth Innovation in Future Medicine (W0071), and Chongqing Natural Science
Foundation (cstc2021jcyj-msxmX0474).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The public datasets were downloaded and analyzed in this study,
which can be found in GEO data repository and included the accession numbers as follows: GSE5406,
GSE37171, GSE57345, GSE145154.

Acknowledgments: The authors thank Linghao Yang for his computer programming support.

Conflicts of Interest: The authors declare that they have no competing interests.

References
1. Hill, N.R.; Fatoba, S.T.; Oke, J.L.; Hirst, J.A.; O’Callaghan, C.A.; Lasserson, D.S.; Hobbs, F.D. Global Prevalence of Chronic Kidney

Disease-A Systematic Review and Meta-Analysis. PLoS ONE 2016, 11, e0158765. [CrossRef]
2. Schuett, K.; Marx, N.; Lehrke, M. The cardio-kidney patient: Epidemiology, clinical characteristics and therapy. Circ. Res. 2023,

132, 902–914. [CrossRef] [PubMed]
3. Sarnak, M.J.; Amann, K.; Bangalore, S.; Cavalcante, J.L.; Charytan, D.M.; Craig, J.C.; Gill, J.S.; Hlatky, M.A.; Jardine, A.G.;

Landmesser, U. Chronic kidney disease and coronary artery disease: JACC state-of-the-art review. J. Am. Coll. Cardiol. 2019, 74,
1823–1838. [CrossRef] [PubMed]

4. Hage, F.G.; Venkataraman, R.; Zoghbi, G.J.; Perry, G.J.; DeMattos, A.M.; Iskandrian, A.E. The scope of coronary heart disease in
patients with chronic kidney disease. J. Am. Coll. Cardiol. 2009, 53, 2129–2140. [CrossRef]

5. Chinnappa, S.; White, E.; Lewis, N.; Baldo, O.; Tu, Y.-K.; Glorieux, G.; Vanholder, R.; El Nahas, M.; Mooney, A. Early and
asymptomatic cardiac dysfunction in chronic kidney disease. Nephrol. Dial. Transplant. 2018, 33, 450–458. [CrossRef]

6. Cai, Q.; K Mukku, V.; Ahmad, M. Coronary artery disease in patients with chronic kidney disease: A clinical update. Curr. Cardiol. Rev.
2013, 9, 331–339. [CrossRef]

7. Jankowski, J.; Floege, J.; Fliser, D.; Böhm, M.; Marx, N. Cardiovascular disease in chronic kidney disease: Pathophysiological
insights and therapeutic options. Circulation 2021, 143, 1157–1172. [CrossRef] [PubMed]

8. Sturmlechner, I.; Durik, M.; Sieben, C.J.; Baker, D.J.; Van Deursen, J.M. Cellular senescence in renal ageing and disease.
Nat. Rev. Nephrol. 2017, 13, 77–89. [CrossRef]

9. Jia, T.; Olauson, H.; Lindberg, K.; Amin, R.; Edvardsson, K.; Lindholm, B.; Andersson, G.; Wernerson, A.; Sabbagh, Y.; Schiavi, S.
A novel model of adenine-induced tubulointerstitial nephropathy in mice. BMC Nephrol. 2013, 14, 116. [CrossRef]
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