Atherosclerosis in Patients with Congenital Hemophilia: A Focus on Peripheral Artery Disease
Abstract
:1. Introduction
2. Subclinical Atherosclerosis
2.1. Subclinical Atherosclerosis in Carotid Arteries
Author, Year | Country | No. of Patients (Cases) | Mean/Median Age (Years) | HA | HB | Mild | Moderate | Severe | Control Group | IMT and/or FMD | Study Conclusions | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
No | Selection Criteria | |||||||||||
Bilora et al., 1999 [14] | Italy | 76 a | 58.2 | 64 | 0 | NR | NR | NR | 77 | No atherosclerosis risk factors | IMTc | Fewer plaques, less severe stenosis in cases than controls; Fewer plaques in cases with more severe disease. |
Sramek et al., 2001 [16] | Netherlands | 76 a | 48.8 | 52 | 7 | 34 | 5 | 20 | 142 | Healthymen | IMTc IMTf | IMTc in cases similar to controls; IMTf slightly lower in cases than controls. |
Bilora et al., 2001 [20] | Italy | 40 a | 48.3 | 25 | 0 | NR | NR | NR | 40 | Matched for age, sex, atherosclerosis risk factors | NA | Fewer plaques, less severe stenosis in cases than controls; Fewer plaques in cases with more severe disease. |
Bilora et al., 2006 [15] | Italy | 50 | 41.72 | 50 | 0 | 0 | 12 | 38 | 50 | Matched for age, sex; free of symptomatic atherosclerosis | IMTc IMTb IMTa IMTf | Significantly fewer plaques, less severe stenosis in cases than controls. |
Sartori et al., 2008 [17] | Italy | 40 | 39.5 b 49.5 c | 38 | 2 | 16 | 24 | 40 | Matched for age, sex, smoking habit, BMI, hypertension, diabetes mellitus and dyslipidemia | IMTc FMD | Similar mean IMTc; Significantly impaired mean FMD in cases than controls. | |
Zwiers et al., 2012 [19] | Netherlands | 69 | 52 | 51 | 18 | 34 | 8 | 27 | - | Local reference values from healthy individuals | IMTc | Mean IMTc within age-specific reference values; Significant difference in median IMT between hemophiliacs with/without previous MACE. |
Biere-Rafi et al., 2012 [18] | Netherlands | 98 51 obese 47 non-obese | 50 | 98 | 0 | 49 | 16 | 33 | 92 | Matched for age, sex, BMI; 42 obese 50 non-obese | IMTc IMTf FMD | IMTc, IMTf, FMD and prevalence of atherosclerotic plaques in hemophiliacs were similar to controls; IMTc increased in obese as compared with non-obese subjects. |
2.2. Subclinical Atherosclerosis in Arteries of the Upper Limbs
2.3. Subclinical Atherosclerosis of the Arteries of the Lower Limbs
3. Endothelial Dysfunction
3.1. Assessement of Reactive Hyperemia
3.2. Biomarkers of Endothelial Dysfunction
3.3. Clinically Overt Peripheral Atherosclerotic Artery Disease
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Berntorp, E.; Shapiro, A.D. Modern haemophilia care. Lancet 2012, 379, 1447–1456. [Google Scholar] [CrossRef]
- White, G.C., 2nd; Rosendaal, F.; Aledort, L.M.; Lusher, J.M.; Rothschild, C.; Ingerslev, J.; Factor, V.; Factor, I.X.S. Definitions in hemophilia. Recommendation of the scientific subcommittee on factor VIII and factor IX of the scientific and standardization committee of the International Society on Thrombosis and Haemostasis. Thromb. Haemost. 2001, 85, 560. [Google Scholar]
- Tuinenburg, A.; Mauser-Bunschoten, E.P.; Verhaar, M.C.; Biesma, D.H.; Schutgens, R.E. Cardiovascular disease in patients with hemophilia. J. Thromb. Haemost. 2009, 7, 247–254. [Google Scholar] [CrossRef]
- Wilding, J.; Zourikian, N.; Di Minno, M.; Khair, K.; Marquardt, N.; Benson, G.; Ozelo, M.; Hermans, C. Obesity in the global haemophilia population: Prevalence, implications and expert opinions for weight management. Obes. Rev. 2018, 19, 1569–1584. [Google Scholar] [CrossRef]
- Sharathkumar, A.A.; Soucie, J.M.; Trawinski, B.; Greist, A.; Shapiro, A.D. Prevalence and risk factors of cardiovascular disease (CVD) events among patients with haemophilia: Experience of a single haemophilia treatment centre in the United States (US). Haemophilia 2011, 17, 597–604. [Google Scholar] [CrossRef]
- Holme, P.A.; Combescure, C.; Tait, R.C.; Berntorp, E.; Rauchensteiner, S.; de Moerloose, P.; Group, A.W. Hypertension, haematuria and renal functioning in haemophilia—A cross-sectional study in Europe. Haemophilia 2016, 22, 248–255. [Google Scholar] [CrossRef]
- Badescu, M.C.; Badulescu, O.V.; Butnariu, L.I.; Bararu Bojan, I.; Vladeanu, M.C.; Dima, N.; Vlad, C.E.; Foia, L.G.; Ciocoiu, M.; Rezus, C. Cardiovascular Risk Factors in Patients with Congenital Hemophilia: A Focus on Hypertension. Diagnostics 2022, 12, 2937. [Google Scholar] [CrossRef]
- Biere-Rafi, S.; Zwiers, M.; Peters, M.; van der Meer, J.; Rosendaal, F.R.; Buller, H.R.; Kamphuisen, P.W. The effect of haemophilia and von Willebrand disease on arterial thrombosis: A systematic review. Neth. J. Med. 2010, 68, 207–214. [Google Scholar]
- Kulkarni, R.; Soucie, J.M.; Evatt, B.L.; the Hemophilia Surveillance System Project Investigators. Prevalence and risk factors for heart disease among males with hemophilia. Am. J. Hematol. 2005, 79, 36–42. [Google Scholar] [CrossRef]
- Aboyans, V.; Ricco, J.B.; Bartelink, M.E.L.; Bjorck, M.; Brodmann, M.; Cohnert, T.; Collet, J.P.; Czerny, M.; De Carlo, M.; Debus, S.; et al. 2017 ESC Guidelines on the Diagnosis and Treatment of Peripheral Arterial Diseases, in collaboration with the European Society for Vascular Surgery (ESVS): Document covering atherosclerotic disease of extracranial carotid and vertebral, mesenteric, renal, upper and lower extremity arteries Endorsed by: The European Stroke Organization (ESO)The Task Force for the Diagnosis and Treatment of Peripheral Arterial Diseases of the European Society of Cardiology (ESC) and of the European Society for Vascular Surgery (ESVS). Eur. Heart J. 2018, 39, 763–816. [Google Scholar] [CrossRef]
- Visseren, F.L.J.; Mach, F.; Smulders, Y.M.; Carballo, D.; Koskinas, K.C.; Back, M.; Benetos, A.; Biffi, A.; Boavida, J.M.; Capodanno, D.; et al. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur. Heart J. 2021, 42, 3227–3337. [Google Scholar] [CrossRef]
- Den Ruijter, H.M.; Peters, S.A.; Anderson, T.J.; Britton, A.R.; Dekker, J.M.; Eijkemans, M.J.; Engstrom, G.; Evans, G.W.; de Graaf, J.; Grobbee, D.E.; et al. Common carotid intima-media thickness measurements in cardiovascular risk prediction: A meta-analysis. JAMA 2012, 308, 796–803. [Google Scholar] [CrossRef]
- Kaul, S.; Alladi, S.; Mridula, R.K.; Bandaru, S.V.; Boddu, D.B.; Anjanikumar, D.; Umamashesh, M. Prevalence and risk factors of carotid intima-media thickness in asymptomatic individual subjects in a tertiary care center in India. Ann. Indian Acad. Neurol. 2015, 18, 430–434. [Google Scholar] [CrossRef]
- Bilora, F.; Dei Rossi, C.; Girolami, B.; Casonato, A.; Zanon, E.; Bertomoro, A.; Girolami, A. Do hemophilia A and von Willebrand disease protect against carotid atherosclerosis? A comparative study between coagulopathics and normal subjects by means of carotid echo-color Doppler scan. Clin. Appl. Thromb. Hemost. 1999, 5, 232–235. [Google Scholar] [CrossRef]
- Bilora, F.; Zanon, E.; Petrobelli, F.; Cavraro, M.; Prandoni, P.; Pagnan, A.; Girolami, A. Does hemophilia protect against atherosclerosis? A case-control study. Clin. Appl. Thromb. Hemost. 2006, 12, 193–198. [Google Scholar] [CrossRef]
- Sramek, A.; Reiber, J.H.; Gerrits, W.B.; Rosendaal, F.R. Decreased coagulability has no clinically relevant effect on atherogenesis: Observations in individuals with a hereditary bleeding tendency. Circulation 2001, 104, 762–767. [Google Scholar] [CrossRef]
- Sartori, M.T.; Bilora, F.; Zanon, E.; Varvarikis, C.; Saggiorato, G.; Campagnolo, E.; Pagnan, A.; Cella, G. Endothelial dysfunction in haemophilia patients. Haemophilia 2008, 14, 1055–1062. [Google Scholar] [CrossRef]
- Biere-Rafi, S.; Tuinenburg, A.; Haak, B.W.; Peters, M.; Huijgen, R.; De Groot, E.; Verhamme, P.; Peerlinck, K.; Visseren, F.L.; Kruip, M.J.; et al. Factor VIII deficiency does not protect against atherosclerosis. J. Thromb. Haemost. 2012, 10, 30–37. [Google Scholar] [CrossRef]
- Zwiers, M.; Lefrandt, J.D.; Mulder, D.J.; Smit, A.J.; Gans, R.O.; Vliegenthart, R.; Brands-Nijenhuis, A.V.; Kluin-Nelemans, J.C.; Meijer, K. Coronary artery calcification score and carotid intima-media thickness in patients with hemophilia. J. Thromb. Haemost. 2012, 10, 23–29. [Google Scholar] [CrossRef]
- Bilora, F.; Boccioletti, V.; Zanon, E.; Petrobelli, F.; Girolami, A. Hemophilia A, von Willebrand disease, and atherosclerosis of abdominal aorta and leg arteries: Factor VIII and von Willebrand factor defects appear to protect abdominal aorta and leg arteries from atherosclerosis. Clin. Appl. Thromb. Hemost. 2001, 7, 311–313. [Google Scholar] [CrossRef]
- Matsuzawa, Y.; Kwon, T.G.; Lennon, R.J.; Lerman, L.O.; Lerman, A. Prognostic Value of Flow-Mediated Vasodilation in Brachial Artery and Fingertip Artery for Cardiovascular Events: A Systematic Review and Meta-Analysis. J. Am. Heart Assoc. 2015, 4, 2270. [Google Scholar] [CrossRef]
- Akamatsu, D.; Sato, A.; Goto, H.; Watanabe, T.; Hashimoto, M.; Shimizu, T.; Sugawara, H.; Sato, H.; Nakano, Y.; Miura, T.; et al. Nitroglycerin-mediated vasodilatation of the brachial artery may predict long-term cardiovascular events irrespective of the presence of atherosclerotic disease. J. Atheroscler. Thromb. 2010, 17, 1266–1274. [Google Scholar] [CrossRef]
- Mucka, S.; Miodonska, M.; Jakubiak, G.K.; Starzak, M.; Cieslar, G.; Stanek, A. Endothelial Function Assessment by Flow-Mediated Dilation Method: A Valuable Tool in the Evaluation of the Cardiovascular System. Int. J. Environ. Res. Public Health 2022, 19, 11242. [Google Scholar] [CrossRef]
- Flammer, A.J.; Anderson, T.; Celermajer, D.S.; Creager, M.A.; Deanfield, J.; Ganz, P.; Hamburg, N.M.; Luscher, T.F.; Shechter, M.; Taddei, S.; et al. The assessment of endothelial function: From research into clinical practice. Circulation 2012, 126, 753–767. [Google Scholar] [CrossRef]
- Sun, H.; Yang, M.; Fung, M.; Chan, S.; Jawi, M.; Anderson, T.; Poon, M.C.; Jackson, S. Adult males with haemophilia have a different macrovascular and microvascular endothelial function profile compared with healthy controls. Haemophilia 2017, 23, 777–783. [Google Scholar] [CrossRef]
- Bohmert, S.; Schubert, R.; Fichtlscherer, S.; Alesci, S.; Miesbach, W. Endothelial Function in Patients with Severe and Moderate Haemophilia A and B. Hamostaseologie 2019, 39, 195–202. [Google Scholar] [CrossRef]
- Sillen, M.; Declerck, P.J. A Narrative Review on Plasminogen Activator Inhibitor-1 and Its (Patho)Physiological Role: To Target or Not to Target? Int. J. Mol. Sci. 2021, 22, 2721. [Google Scholar] [CrossRef]
- Badran, M.; Gozal, D. PAI-1: A Major Player in the Vascular Dysfunction in Obstructive Sleep Apnea? Int. J. Mol. Sci. 2022, 23, 5516. [Google Scholar] [CrossRef]
- Soehnlein, O.; Libby, P. Targeting inflammation in atherosclerosis—From experimental insights to the clinic. Nat. Rev. Drug. Discov. 2021, 20, 589–610. [Google Scholar] [CrossRef]
- Toenges, R.; Wittenbrink, A.; Miesbach, W. Biomarkers and immunological parameters in haemophilia and rheumatoid arthritis patients: A comparative multiplexing laboratory study. Haemophilia 2021, 27, e119–e126. [Google Scholar] [CrossRef]
- Jankowska, K.I.; Sauna, Z.E.; Atreya, C.D. Role of microRNAs in Hemophilia and Thrombosis in Humans. Int. J. Mol. Sci. 2020, 21, 3598. [Google Scholar] [CrossRef]
- Siasos, G.; Bletsa, E.; Stampouloglou, P.K.; Oikonomou, E.; Tsigkou, V.; Paschou, S.A.; Vlasis, K.; Marinos, G.; Vavuranakis, M.; Stefanadis, C.; et al. MicroRNAs in cardiovascular disease. Hellenic. J. Cardiol. 2020, 61, 165–173. [Google Scholar] [CrossRef]
- Noone, S.; Schubert, R.; Fichtlscherer, S.; Hilberg, T.; Alesci, S.; Miesbach, W.; Klophaus, N.; Wehmeier, U.F. Endothelial dysfunction and atherosclerosis related miRNA-expression in patients with haemophilia. Haemophilia 2023, 29, 61–71. [Google Scholar] [CrossRef]
- Zimmermann, R.; Staritz, P.; Huth-Kuhne, A. Challenges in treating elderly patients with haemophilia: A focus on cardiology. Thromb. Res. 2014, 134 (Suppl. 1), S48–S52. [Google Scholar] [CrossRef]
- Malam, Y.; Tsui, J.; Sheikh, S.E.; Tuddenham, E.G.; Baker, D.M. Journal rubric. Haemophilic pseudotumour of the carotid artery. Vasc Med 2012, 17, 193–194. [Google Scholar] [CrossRef]
- Bowles, L. Carotid endarterectomy in 2 patients with hemophilia. Haemophilia 2012, 18 (Suppl. 3), 1–208. [Google Scholar]
- Yoon, C.W.; Park, H.K.; Rha, J.H. A case report and experience of endovascular treatment for a patient with hemophilia who had a hyperacute ischemic stroke. J. Stroke Cerebrovasc. Dis. 2020, 29, 104859. [Google Scholar] [CrossRef]
- Gerhardt, A.; Grotemeyer, D.; Sandmann, W.; Scharf, R.E.; Zotz, R.B. A hemophilia patient with C1 domain Arg2150His mutation developed a high titer inhibitor not inhibiting autologous Factor VIII after switching to third generation recombinant product. Blood 2005, 106, 4060. [Google Scholar] [CrossRef]
- Ferraris, V.A.; Boral, L.I.; Cohen, A.J.; Smyth, S.S.; White, G.C., II. Consensus review of the treatment of cardiovascular disease in people with hemophilia A and B. Cardiol. Rev. 2015, 23, 53–68. [Google Scholar] [CrossRef]
- Theodoropoulos, K.C.; Vakalopoulou, S.; Oikonomou, M.; Stavropoulos, G.; Ziakas, A.; Kanonidis, I.; Kassimis, G. How to Manage a Patient with Haemophilia and ACS Requiring PCI: A Battle between Bleeding and Thrombosis. Medicina 2021, 57, 352. [Google Scholar] [CrossRef]
- Staritz, P.; de Moerloose, P.; Schutgens, R.; Dolan, G.; Group, A.W. Applicability of the European Society of Cardiology guidelines on management of acute coronary syndromes to people with haemophilia—An assessment by the ADVANCE Working Group. Haemophilia 2013, 19, 833–840. [Google Scholar] [CrossRef]
- Fogarty, P.F.; Olin, J.W.; Kessler, C.M.; Konkle, B.A.; Aledort, L.M. An algorithmic approach to peripheral artery disease in hemophilia: Extrapolation of management principles from noncoagulopathic patients. Blood Coagul. Fibrinolysis 2012, 23, 23–29. [Google Scholar] [CrossRef]
- Antithrombotic Trialists, C.; Baigent, C.; Blackwell, L.; Collins, R.; Emberson, J.; Godwin, J.; Peto, R.; Buring, J.; Hennekens, C.; Kearney, P.; et al. Aspirin in the primary and secondary prevention of vascular disease: Collaborative meta-analysis of individual participant data from randomised trials. Lancet 2009, 373, 1849–1860. [Google Scholar] [CrossRef]
- Berger, J.S.; Krantz, M.J.; Kittelson, J.M.; Hiatt, W.R. Aspirin for the prevention of cardiovascular events in patients with peripheral artery disease: A meta-analysis of randomized trials. JAMA 2009, 301, 1909–1919. [Google Scholar] [CrossRef]
- Bedenis, R.; Lethaby, A.; Maxwell, H.; Acosta, S.; Prins, M.H. Antiplatelet agents for preventing thrombosis after peripheral arterial bypass surgery. Cochrane Database Syst. Rev. 2015, 2015, CD000535. [Google Scholar] [CrossRef]
- McKevitt, F.M.; Randall, M.S.; Cleveland, T.J.; Gaines, P.A.; Tan, K.T.; Venables, G.S. The benefits of combined anti-platelet treatment in carotid artery stenting. Eur. J. Vasc. Endovasc. Surg. 2005, 29, 522–527. [Google Scholar] [CrossRef]
- Schutgens, R.E.; Tuinenburg, A.; Fischer, K.; Mauser-Bunschoten, E.P. Anticoagulation therapy in haemophilia. Managing the unknown. Hamostaseologie 2013, 33, 299–304. [Google Scholar] [CrossRef]
- Martin, K.; Key, N.S. How I treat patients with inherited bleeding disorders who need anticoagulant therapy. Blood 2016, 128, 178–184. [Google Scholar] [CrossRef]
- Girolami, A.; Randi, M.L.; Ruzzon, E.; Zanon, E.; Girolami, B. Myocardial infarction, other arterial thrombosis and invasive coronary procedures, in hemaophilia B: A critical evaluation of reported cases. J. Thromb. Thrombolysis 2005, 20, 43–46. [Google Scholar] [CrossRef]
- Girolami, A.; Ruzzon, E.; Fabris, F.; Varvarikis, C.; Sartori, R.; Girolami, B. Myocardial infarction and other arterial occlusions in hemophilia a patients. A cardiological evaluation of all 42 cases reported in the literature. Acta Haematol. 2006, 116, 120–125. [Google Scholar] [CrossRef]
- Fogarty, P.F.; Mancuso, M.E.; Kasthuri, R.; Bidlingmaier, C.; Chitlur, M.; Gomez, K.; Holme, P.A.; James, P.; Kruse-Jarres, R.; Mahlangu, J.; et al. Presentation and management of acute coronary syndromes among adult persons with haemophilia: Results of an international, retrospective, 10-year survey. Haemophilia 2015, 21, 589–597. [Google Scholar] [CrossRef]
- Girolami, A.; Sambado, L.; Lombardi, A.M. The impact of blood coagulability on atherosclerosis and cardiovascular disease: A rebuttal. J. Thromb. Haemost. 2013, 11, 213–214. [Google Scholar] [CrossRef]
- Marchesini, E.; Morfini, M.; Valentino, L. Recent Advances in the Treatment of Hemophilia: A Review. Biologics 2021, 15, 221–235. [Google Scholar] [CrossRef]
- Miesbach, W.; Klamroth, R.; Oldenburg, J.; Tiede, A. Gene Therapy for Hemophilia-Opportunities and Risks. Dtsch. Arztebl. Int. 2022, 119, 887–894. [Google Scholar] [CrossRef]
- Tuinenburg, A.; Rutten, A.; Kavousi, M.; Leebeek, F.W.; Ypma, P.F.; Laros-van Gorkom, B.A.; Nijziel, M.R.; Kamphuisen, P.W.; Mauser-Bunschoten, E.P.; Roosendaal, G.; et al. Coronary artery calcification in hemophilia A: No evidence for a protective effect of factor VIII deficiency on atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2012, 32, 799–804. [Google Scholar] [CrossRef]
- Wang, J.D.; Chan, W.C.; Fu, Y.C.; Tong, K.M.; Chang, S.T.; Hwang, W.L.; Lin, C.H.; Tsan, Y.T. Prevalence and risk factors of atherothrombotic events among 1054 hemophilia patients: A population-based analysis. Thromb. Res. 2015, 135, 502–507. [Google Scholar] [CrossRef]
- Makris, M.; Van Veen, J.J. Reduced cardiovascular mortality in hemophilia despite normal atherosclerotic load. J. Thromb. Haemost. 2012, 10, 20–22. [Google Scholar] [CrossRef]
- Nissen, S.E.; Nicholls, S.J.; Sipahi, I.; Libby, P.; Raichlen, J.S.; Ballantyne, C.M.; Davignon, J.; Erbel, R.; Fruchart, J.C.; Tardif, J.C.; et al. Effect of very high-intensity statin therapy on regression of coronary atherosclerosis: The ASTEROID trial. JAMA 2006, 295, 1556–1565. [Google Scholar] [CrossRef]
- Shin, E.S.; Garcia-Garcia, H.M.; Okamura, T.; Serruys, P.W. Effect of statins on coronary bifurcation atherosclerosis: An intravascular ultrasound virtual histology study. Int. J. Cardiovasc. Imaging 2012, 28, 1643–1652. [Google Scholar] [CrossRef]
- Mosnier, L.O.; Zlokovic, B.V.; Griffin, J.H. The cytoprotective protein C pathway. Blood 2007, 109, 3161–3172. [Google Scholar] [CrossRef]
- van Bladel, E.R.; Tuinenburg, A.; Roest, M.; de Groot, P.G.; Schutgens, R.E. Factor VIII concentrate infusion in patients with haemophilia results in decreased von Willebrand factor and ADAMTS-13 activity. Haemophilia 2014, 20, 92–98. [Google Scholar] [CrossRef]
- Shapiro, S.; Benson, G.; Evans, G.; Harrison, C.; Mangles, S.; Makris, M. Cardiovascular disease in hereditary haemophilia: The challenges of longevity. Br. J. Haematol. 2022, 197, 397–406. [Google Scholar] [CrossRef]
- Kamphuisen, P.W.; ten Cate, H. Cardiovascular risk in patients with hemophilia. Blood 2014, 123, 1297–1301. [Google Scholar] [CrossRef]
- Kadoglou, N.P.; Moustardas, P.; Katsimpoulas, M.; Kapelouzou, A.; Kostomitsopoulos, N.; Schafer, K.; Kostakis, A.; Liapis, C.D. The beneficial effects of a direct thrombin inhibitor, dabigatran etexilate, on the development and stability of atherosclerotic lesions in apolipoprotein E-deficient mice: Dabigatran etexilate and atherosclerosis. Cardiovasc. Drugs Ther. 2012, 26, 367–374. [Google Scholar] [CrossRef]
- van Gorp, R.H.; Dijkgraaf, I.; Broker, V.; Bauwens, M.; Leenders, P.; Jennen, D.; Dweck, M.R.; Bucerius, J.; Briede, J.J.; van Ryn, J.; et al. Off-target effects of oral anticoagulants—Vascular effects of vitamin K antagonist and non-vitamin K antagonist oral anticoagulant dabigatran etexilate. J. Thromb. Haemost. 2021, 19, 1348–1363. [Google Scholar] [CrossRef]
- Borissoff, J.I.; Otten, J.J.; Heeneman, S.; Leenders, P.; van Oerle, R.; Soehnlein, O.; Loubele, S.T.; Hamulyak, K.; Hackeng, T.M.; Daemen, M.J.; et al. Genetic and pharmacological modifications of thrombin formation in apolipoprotein e-deficient mice determine atherosclerosis severity and atherothrombosis onset in a neutrophil-dependent manner. PLoS ONE 2013, 8, e55784. [Google Scholar] [CrossRef]
- Bea, F.; Kreuzer, J.; Preusch, M.; Schaab, S.; Isermann, B.; Rosenfeld, M.E.; Katus, H.; Blessing, E. Melagatran reduces advanced atherosclerotic lesion size and may promote plaque stability in apolipoprotein E-deficient mice. Arterioscler. Thromb. Vasc. Biol. 2006, 26, 2787–2792. [Google Scholar] [CrossRef]
- Khallou-Laschet, J.; Caligiuri, G.; Tupin, E.; Gaston, A.T.; Poirier, B.; Groyer, E.; Urbain, D.; Maisnier-Patin, S.; Sarkar, R.; Kaveri, S.V.; et al. Role of the intrinsic coagulation pathway in atherogenesis assessed in hemophilic apolipoprotein E knockout mice. Arterioscler. Thromb. Vasc. Biol. 2005, 25, e123–e126. [Google Scholar] [CrossRef]
- Hop, H.; Potze, J.H.; van den Berg-Faaij, S.; Borra, R.J.H.; Zheng, K.H.; Nederveen, A.J.; Meijer, K.; Kamphuisen, P.W. Carotid plaque composition in persons with hemophilia: An explorative study with multi-contrast MRI. Thromb. Res. 2021, 197, 138–140. [Google Scholar] [CrossRef]
- Zavodni, A.E.; Wasserman, B.A.; McClelland, R.L.; Gomes, A.S.; Folsom, A.R.; Polak, J.F.; Lima, J.A.; Bluemke, D.A. Carotid artery plaque morphology and composition in relation to incident cardiovascular events: The Multi-Ethnic Study of Atherosclerosis (MESA). Radiology 2014, 271, 381–389. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Badescu, M.C.; Badulescu, O.V.; Costache, A.D.; Mitu, O.; Lupu, V.V.; Dmour, B.-A.; Lupu, A.; Foia, L.G.; Costache, I.-I.; Rezus, C. Atherosclerosis in Patients with Congenital Hemophilia: A Focus on Peripheral Artery Disease. Life 2023, 13, 2221. https://doi.org/10.3390/life13112221
Badescu MC, Badulescu OV, Costache AD, Mitu O, Lupu VV, Dmour B-A, Lupu A, Foia LG, Costache I-I, Rezus C. Atherosclerosis in Patients with Congenital Hemophilia: A Focus on Peripheral Artery Disease. Life. 2023; 13(11):2221. https://doi.org/10.3390/life13112221
Chicago/Turabian StyleBadescu, Minerva Codruta, Oana Viola Badulescu, Alexandru Dan Costache, Ovidiu Mitu, Vasile Valeriu Lupu, Bianca-Ana Dmour, Ancuta Lupu, Liliana Georgeta Foia, Irina-Iuliana Costache, and Ciprian Rezus. 2023. "Atherosclerosis in Patients with Congenital Hemophilia: A Focus on Peripheral Artery Disease" Life 13, no. 11: 2221. https://doi.org/10.3390/life13112221
APA StyleBadescu, M. C., Badulescu, O. V., Costache, A. D., Mitu, O., Lupu, V. V., Dmour, B. -A., Lupu, A., Foia, L. G., Costache, I. -I., & Rezus, C. (2023). Atherosclerosis in Patients with Congenital Hemophilia: A Focus on Peripheral Artery Disease. Life, 13(11), 2221. https://doi.org/10.3390/life13112221