Genome-Wide Comparative Profiles of Triterpenoid Biosynthesis Genes in Ginseng and Pseudo Ginseng Medicinal Plants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Genome and Completeness Assessment
2.2. Clustering of Proteome
2.3. Cytochrome and Glycosyl Transferase/Hydrolyse Family Analysis
2.4. Docking Assessment
3. Results and Discussion
3.1. Comparative Genomes
3.2. Secondary Metabolite Biosynthesis
3.3. Cytochrome Profiles
3.4. Carbohydrate Enzymes Profiles
3.5. Ginsenoside Interactions with Genes in Ginsenosides Biosynthesis Pathway
4. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Raviña, E. The Evolution of Drug Discovery: From Traditional Medicines to Modern Drugs. ChemMedChem 2011, 6, 1746–1747. [Google Scholar]
- Alami, M.M.; Ouyang, Z.; Zhang, Y.; Shu, S.; Yang, G.; Mei, Z.; Wang, X. The Current Developments in Medicinal Plant Genomics Enabled the Diversification of Secondary Metabolites & rsquo; Biosynthesis. Int. J. Mol. Sci. 2022, 23, 15932. [Google Scholar] [CrossRef]
- Salmerón-Manzano, E.; Garrido-Cardenas, J.A.; Manzano-Agugliaro, F. Worldwide Research Trends on Medicinal Plants. Int. J. Environ. Res. Public Health 2020, 17, 3376. [Google Scholar] [CrossRef]
- Garrigues, S. Ueber das Panaquilon, einen neuen Pflanzenstoff. Justus Liebigs Ann. Der Chem. 1854, 90, 231–234. [Google Scholar] [CrossRef]
- Shibata, S.; Fujita, M.; Itokawa, H.; Tanaka, O.; Ishii, T. The structure of panaxadiol a sapogenin of ginseng. Tetrahedron Lett. 1962, 3, 419–422. [Google Scholar] [CrossRef]
- Shibata, S.; Tanaka, O.; Sôma, K.; Iida, Y.; Ando, T.; Nakamura, H. Studies on saponins and sapogenins of ginseng the structure of panaxatriol. Tetrahedron Lett. 1965, 6, 207–213. [Google Scholar] [CrossRef]
- Proctor, J.T.A.; Bailey, W.G. Ginseng: Industry, Botany, and Culture. In Horticultural Reviews; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2021; pp. 187–236. [Google Scholar]
- Mohanan, P.; Subramaniyam, S.; Mathiyalagan, R.; Yang, D.-C. Molecular signaling of ginsenosides Rb1, Rg1, and Rg3 and their mode of actions. J. Ginseng Res. 2018, 42, 123–132. [Google Scholar] [CrossRef]
- Piao, X.M.; Huo, Y.; Kang, J.P.; Mathiyalagan, R.; Zhang, H.; Yang, D.U.; Kim, M.; Yang, D.C.; Kang, S.C.; Wang, Y.P. Diversity of Ginsenoside Profiles Produced by Various Processing Technologies. Molecules 2020, 25, 4390. [Google Scholar] [CrossRef] [PubMed]
- Mathiyalagan, R.; Subramaniyam, S.; Kim, Y.J.; Kim, Y.-C.; Yang, D.C. Ginsenoside compound K-bearing glycol chitosan conjugates: Synthesis, physicochemical characterization, and in vitro biological studies. Carbohydr. Polym. 2014, 112, 359–366. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.-D.; Kim, Y.-J.; Baek, N.I.; Mathiyalagan, R.; Wang, C.; Jin, Y.; Xu, X.Y.; Yang, D.-C. Glycosyltransformation of ginsenoside Rh2 into two novel ginsenosides using recombinant glycosyltransferase from Lactobacillus rhamnosus and its in vitro applications. J. Ginseng Res. 2021, 45, 48–57. [Google Scholar] [CrossRef]
- Ahn, J.C.; Mathiyalagan, R.; Nahar, J.; Ramadhania, Z.M.; Kong, B.M.; Lee, D.W.; Choi, S.K.; Lee, C.S.; Boopathi, V.; Yang, D.U.; et al. Transcriptome expression profile of compound-K-enriched red ginseng extract (DDK-401) in Korean volunteers and its apoptotic properties. Front. Pharmacol. 2022, 13, 999192. [Google Scholar] [CrossRef]
- Botelho, A.F.M.; Pierezan, F.; Soto-Blanco, B.; Melo, M.M. A review of cardiac glycosides: Structure, toxicokinetics, clinical signs, diagnosis and antineoplastic potential. Toxicon 2019, 158, 63–68. [Google Scholar] [CrossRef]
- Wang, Z.-H.; Wang, X.-F.; Lu, T.; Li, M.-R.; Jiang, P.; Zhao, J.; Liu, S.-T.; Fu, X.-Q.; Wendel, J.F.; Van de Peer, Y.; et al. Reshuffling of the ancestral core-eudicot genome shaped chromatin topology and epigenetic modification in Panax. Nat. Commun. 2022, 13, 1902. [Google Scholar] [CrossRef] [PubMed]
- Quan, L.-H.; Min, J.-W.; Sathiyamoorthy, S.; Yang, D.-U.; Kim, Y.-J.; Yang, D.-C. Biotransformation of ginsenosides Re and Rg1 into ginsenosides Rg2 and Rh1 by recombinant β-glucosidase. Biotechnol. Lett. 2012, 34, 913–917. [Google Scholar] [CrossRef] [PubMed]
- Subramaniyam, S.; Mathiyalagan, R.; Jun Gyo, I.; Bum-Soo, L.; Sungyoung, L.; Deok Chun, Y. Transcriptome profiling and insilico analysis of Gynostemma pentaphyllum using a next generation sequencer. Plant Cell Rep. 2011, 30, 2075–2083. [Google Scholar] [CrossRef]
- Su, C.; Li, N.; Ren, R.; Wang, Y.; Su, X.; Lu, F.; Zong, R.; Yang, L.; Ma, X. Progress in the Medicinal Value, Bioactive Compounds, and Pharmacological Activities of Gynostemma pentaphyllum. Molecules 2021, 26, 6249. [Google Scholar] [CrossRef]
- Sathiyamoorthy, S.; In, J.-G.; Lee, O.R.; Lee, B.-S.; Devi, S.R.; Yang, D.-C. In silico gene expression analysis in Codonopsis lanceolata root. Mol. Biol. Rep. 2011, 38, 3541–3549. [Google Scholar] [CrossRef] [PubMed]
- Yu, G.-E.; Shin, Y.; Subramaniyam, S.; Kang, S.-H.; Lee, S.-M.; Cho, C.; Lee, S.-S.; Kim, C.-K. Machine learning, transcriptome, and genotyping chip analyses provide insights into SNP markers identifying flower color in Platycodon grandiflorus. Sci. Rep. 2021, 11, 8019. [Google Scholar] [CrossRef]
- Zhang, S.; Chai, X.; Hou, G.; Zhao, F.; Meng, Q. Platycodon grandiflorum (Jacq.) A. DC.: A review of phytochemistry, pharmacology, toxicology and traditional use. Phytomedicine 2022, 106, 154422. [Google Scholar] [CrossRef]
- Rowan-Nash Aislinn, D.; Korry Benjamin, J.; Mylonakis, E.; Belenky, P. Cross-Domain and Viral Interactions in the Microbiome. Microbiol. Mol. Biol. Rev. 2019, 83, e00044-18. [Google Scholar] [CrossRef] [PubMed]
- Galanie, S.; Thodey, K.; Trenchard, I.J.; Filsinger Interrante, M.; Smolke, C.D. Complete biosynthesis of opioids in yeast. Science 2015, 349, 1095–1100. [Google Scholar] [CrossRef] [PubMed]
- Jang, W.; Kang, J.-N.; Jo, I.-H.; Lee, S.-M.; Park, G.-H.; Kim, C.-K. The chromosome-level genome assembly of lance asiabell (Codonopsis lanceolata), a medicinal and vegetable plant of the Campanulaceae family. Front. Genet. 2023, 14, 1100819. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Chen, S.; Chen, W.; Zhang, P.; Su, Z.; Zhang, L.; Xu, M.; Guo, L. A Chromosome-Level Reference Genome of Chinese Balloon Flower (Platycodon grandiflorus). Front. Genet. 2022, 13, 869784. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhao, Y.; Kou, Y.; Chen, X.; Yang, J.; Zhang, H.; Zhao, Z.; Zhao, Y.; Zhao, G.; Li, Z. Diploid chromosome-level reference genome and population genomic analyses provide insights into Gypenoside biosynthesis and demographic evolution of Gynostemma pentaphyllum (Cucurbitaceae). Hortic. Res. 2022, 10, uhac231. [Google Scholar] [CrossRef]
- Manni, M.; Berkeley, M.R.; Seppey, M.; Zdobnov, E.M. BUSCO: Assessing Genomic Data Quality and Beyond. Curr. Protoc. 2021, 1, e323. [Google Scholar] [CrossRef] [PubMed]
- Tran, T.N.; Son, J.-S.; Awais, M.; Ko, J.-H.; Yang, D.C.; Jung, S.-K. β-Glucosidase and Its Application in Bioconversion of Ginsenosides in Panax ginseng. Bioengineering 2023, 10, 484. [Google Scholar] [CrossRef] [PubMed]
- Caspi, R.; Billington, R.; Keseler, I.M.; Kothari, A.; Krummenacker, M.; Midford, P.E.; Ong, W.K.; Paley, S.; Subhraveti, P.; Karp, P.D. The MetaCyc database of metabolic pathways and enzymes—A 2019 update. Nucleic Acids Res 2020, 48, D445–D453. [Google Scholar] [CrossRef]
- Kim, D.; Jung, M.; Ha, I.J.; Lee, M.Y.; Lee, S.-G.; Shin, Y.; Subramaniyam, S.; Oh, J. Transcriptional Profiles of Secondary Metabolite Biosynthesis Genes and Cytochromes in the Leaves of Four Papaver Species. Data 2018, 3, 55. [Google Scholar] [CrossRef]
- Gricman, Ł.; Vogel, C.; Pleiss, J. Identification of universal selectivity-determining positions in cytochrome P450 monooxygenases by systematic sequence-based literature mining. Proteins 2015, 83, 1593–1603. [Google Scholar] [CrossRef] [PubMed]
- Katoh, K.; Misawa, K.; Kuma, K.i.; Miyata, T. MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002, 30, 3059–3066. [Google Scholar] [CrossRef]
- Talavera, G.; Castresana, J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst. Biol. 2007, 56, 564–577. [Google Scholar] [CrossRef]
- Minh, B.Q.; Schmidt, H.A.; Chernomor, O.; Schrempf, D.; Woodhams, M.D.; von Haeseler, A.; Lanfear, R. IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Mol. Biol. Evol. 2020, 37, 1530–1534. [Google Scholar] [CrossRef]
- Hunter, A.D. ACD/ChemSketch 1.0 (Freeware); ACD/ChemSketch 2.0 and Its Tautomers, Dictionary, and 3D Plug-Ins; ACD/HNMR 2.0; ACD/CNMR 2.0; ACS Publications: Washington, DC, USA, 1997. [Google Scholar]
- O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel: An open chemical toolbox. J. Cheminform. 2011, 3, 1–14. [Google Scholar] [CrossRef]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef]
- Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The protein data bank. Nucleic Acids Res. 2000, 28, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Ming, R.; Xu, S.; Wang, J.; Yao, S.; Li, L.; Huang, R.; Tan, Y. Chromosome-level genome assembly of Gynostemma pentaphyllum provides insights into gypenoside biosynthesis. DNA Res. 2021, 28, dsab018. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Xu, P.; Wang, J.; Yi, X.; Jiao, Y. Identification of errors in draft genome assemblies at single-nucleotide resolution for quality assessment and improvement. Nat. Commun. 2023, 14, 6556. [Google Scholar] [CrossRef] [PubMed]
- Gaudêncio, S.P.; Bayram, E.; Lukić Bilela, L.; Cueto, M.; Díaz-Marrero, A.R.; Haznedaroglu, B.Z.; Jimenez, C.; Mandalakis, M.; Pereira, F.; Reyes, F.; et al. Advanced Methods for Natural Products Discovery: Bioactivity Screening, Dereplication, Metabolomics Profiling, Genomic Sequencing, Databases and Informatic Tools, and Structure Elucidation. Mar. Drugs 2023, 21, 308. [Google Scholar] [CrossRef]
- Hua, X.; Song, W.; Wang, K.; Yin, X.; Hao, C.; Duan, B.; Xu, Z.; Su, T.; Xue, Z. Effective prediction of biosynthetic pathway genes involved in bioactive polyphyllins in Paris polyphylla. Commun. Biol. 2022, 5, 50. [Google Scholar] [CrossRef]
- Ma, A.; Qi, X. Mining plant metabolomes: Methods, applications, and perspectives. Plant Commun. 2021, 2, 100238. [Google Scholar] [CrossRef] [PubMed]
- Naika, M.B.N.; Sathyanarayanan, N.; Sajeevan, R.S.; Bhattacharyya, T.; Ghosh, P.; Iyer, M.S.; Jarjapu, M.; Joshi, A.G.; Harini, K.; Shafi, K.M.; et al. Exploring the medicinally important secondary metabolites landscape through the lens of transcriptome data in fenugreek (Trigonella foenum graecum L.). Sci. Rep. 2022, 12, 13534. [Google Scholar] [CrossRef]
- Devi, B.S.R.; Kim, Y.-J.; Sathiyamoorthy, S.; Khorolragchaa, A.; Gayathri, S.; Parvin, S.; Yang, D.-U.; Selvi, S.K.; Lee, O.R.; Lee, S.; et al. Classification and characterization of putative cytochrome P450 genes from Panax ginseng C. A. Meyer. Biochemistry 2011, 76, 1347–1359. [Google Scholar] [CrossRef]
- Subramaniyam, S.; Mathiyalagan, R.; Natarajan, S.; Kim, Y.-J.; Jang, M.-G.; Park, J.-H.; Yang, D.C. Transcript expression profiling for adventitious roots of Panax ginseng Meyer. Gene 2014, 546, 89–96. [Google Scholar] [CrossRef]
- Hou, M.; Wang, R.; Zhao, S.; Wang, Z. Ginsenosides in Panax genus and their biosynthesis. Acta Pharm. Sin. B 2021, 11, 1813–1834. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Xie, Y.; Dai, Z.; Liang, Y.; Zhu, C.; Su, C.; Song, L.; Wang, K.; Li, J.; Wei, X. Gypenoside biotransformation into ginsenoside F2 by endophytic Aspergillus niger from Gynostemma pentaphyllum. Nat. Prod. Res. 2023, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Zhou, K.; Zhang, Y.; Zhou, Y.; Xu, M.; Yu, S. Production of Gypenoside XVII from Ginsenoside Rb1 by Enzymatic Transformation and Their Anti-Inflammatory Activity In Vitro and In Vivo. Molecules 2023, 28, 7001. [Google Scholar] [CrossRef]
- Han, J.Y.; Kim, H.J.; Kwon, Y.S.; Choi, Y.E. The Cyt P450 enzyme CYP716A47 catalyzes the formation of protopanaxadiol from dammarenediol-II during ginsenoside biosynthesis in Panax ginseng. Plant Cell Physiol. 2011, 52, 2062–2073. [Google Scholar] [CrossRef]
- Han, J.Y.; Hwang, H.S.; Choi, S.W.; Kim, H.J.; Choi, Y.E. Cytochrome P450 CYP716A53v2 catalyzes the formation of protopanaxatriol from protopanaxadiol during ginsenoside biosynthesis in Panax ginseng. Plant Cell Physiol. 2012, 53, 1535–1545. [Google Scholar] [CrossRef]
- Han, J.Y.; Kim, M.J.; Ban, Y.W.; Hwang, H.S.; Choi, Y.E. The involvement of β-amyrin 28-oxidase (CYP716A52v2) in oleanane-type ginsenoside biosynthesis in Panax ginseng. Plant Cell Physiol. 2013, 54, 2034–2046. [Google Scholar] [CrossRef]
- Chu, L.L.; Montecillo, J.A.V.; Bae, H. Recent Advances in the Metabolic Engineering of Yeasts for Ginsenoside Biosynthesis. Front. Bioeng. Biotechnol. 2020, 8, 139. [Google Scholar] [CrossRef] [PubMed]
- Christensen, L.P. Chapter 1 Ginsenosides: Chemistry, Biosynthesis, Analysis, and Potential Health Effects. In Advances in Food and Nutrition Research; Academic Press: Cambridge, MA, USA, 2008; pp. 1–99. [Google Scholar]
S.No | Uniprot ID | Gene | Protein_Name |
---|---|---|---|
1 | I7C6E8 | CYP716A52v2 | Beta-amyrin 28-monooxygenase |
2 | Q2MJ20 | CYP716A12 | Beta-amyrin 28-monooxygenase |
3 | I1TEM3 | CYP716AL1 | Cytochrome P450 |
4 | F1T282 | CYP716A15 | Beta-amyrin 28-monooxygenase |
5 | F1T283 | CYP716A17 | Beta-amyrin 28-monooxygenase |
6 | H2DH16 | CYP716A47 | Dammarenediol 12-hydroxylase |
7 | I7CT85 | CYP716A53v2 | Protopanaxadiol 6-hydroxylase |
8 | A0A0A7HB61 | UGT71A27 | UDP-glycosyltransferase 71A27 |
9 | A0A0K0PVM5 | UGTPg101 | UDP-glycosyltransferase 101 |
10 | A0A0K0PVW1 | UGTPg100 | UDP-glycosyltransferase 100 |
11 | A0A0A6ZFR4 | UGT74AE2 | UDP-glucosyltransferase 74AE2 |
12 | A0A0A6ZFY4 | UGT94Q2 | UDP-glucosyltransferase 29 |
Target Enzyme | Compound | Binding Energy (kcal/mol) | H-Bond Interactions | Other Interactions | No. of H-Bond |
---|---|---|---|---|---|
CYP716A12 | Ginsenoside F3 | −10.3 | CYS426; ARG424; GLU128; ASP281 | LYS282; ALA208; ILE211; PHE463; ILE288 | 4 |
CYP716A52 | Panaxadione | −10.9 | GLY291; SER122 | TRP111 | 2 |
CYP716A53 | Floral ginsenoside C | −10.7 | GLY349; SER347; SER123; PHE351; THR283; ALA279; CYS416; PRO408 | TRP105 | 8 |
CYP716A15 | Protopanaxatriol | −11.5 | TRP110 | SER121; GLY286; ARG425 | 1 |
CYP716AL1 | Panaxadione | −10.7 | ASP111 | ASN114; TRP109 | 1 |
CYP716A47 | Ginsenoside F3 | −9.6 | ARG126 | GLY365; PRO426; VAL366; LEU294; CYS434; PHE124 | 1 |
CYP716A17 | Ginsenoside Rh9 | −10.7 | ARG425 | GLY421; ILE289; MET464; TRP110 | 1 |
Target Enzyme | Compound | Binding Energy (kcal/mol) | H-Bond Interactions | Other Interactions | No. of H-Bond |
---|---|---|---|---|---|
UGTPg100 | Ginsenoside Rg5 | −10.4 | LYS435; LYS447; ALA351; GLY374; LEU350; HIS352 | - | |
UGTPg101 | Floral ginsenoside E | −10.7 | GLU411; SER187; GLN387; TYR384; HIS362; SER278 | GLY277; GLU386 | 6 |
UGT74AE2 | Ginsenoside Rg2 | −9.2 | GLN42; ASP62 | TYR139; LEU186; PHE368 | 2 |
UGT71A27 | Ginsenoside Rg3 | −11.1 | ASN366; GLU386; TYR279; SER278 | 4 | |
UGT94Q2 | Ginsenoside Rg | −10 | THR170; LEU358; ASN178 | PHE185; PHE117 | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, J. Genome-Wide Comparative Profiles of Triterpenoid Biosynthesis Genes in Ginseng and Pseudo Ginseng Medicinal Plants. Life 2023, 13, 2227. https://doi.org/10.3390/life13112227
Lu J. Genome-Wide Comparative Profiles of Triterpenoid Biosynthesis Genes in Ginseng and Pseudo Ginseng Medicinal Plants. Life. 2023; 13(11):2227. https://doi.org/10.3390/life13112227
Chicago/Turabian StyleLu, Jing. 2023. "Genome-Wide Comparative Profiles of Triterpenoid Biosynthesis Genes in Ginseng and Pseudo Ginseng Medicinal Plants" Life 13, no. 11: 2227. https://doi.org/10.3390/life13112227
APA StyleLu, J. (2023). Genome-Wide Comparative Profiles of Triterpenoid Biosynthesis Genes in Ginseng and Pseudo Ginseng Medicinal Plants. Life, 13(11), 2227. https://doi.org/10.3390/life13112227