Cardiac Autonomic Balance Is Altered during the Acute Stress Response in Adolescent Major Depression—Effect of Sex
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Study Protocol
2.3. Depressive Symptoms Assessment
2.4. Go/NoGo Task
2.5. Evaluated Parameters
2.5.1. Cardiac Vagal Autonomic Modulation
- HF-HRV:
- BRS:
2.5.2. Cardiac Beta-Adrenergic Sympathetic Autonomic Modulation
- LVET:
- HF-SBPV:
2.5.3. Cardiac Autonomic Balance and Cardiac Autonomic Regulation
2.6. Statistical Analysis
3. Results
3.1. Basic Characteristics
3.2. Evaluated Parameters during Stress Protocol
3.2.1. Between-Group Comparison during Baseline Period
MDD Patients vs. Control Probands
MDD Boys vs. Control Boys
MDD Girls vs. Control Girls
3.2.2. Between-Group Comparison during Go/NoGo Task
MDD Patients vs. Control Probands
MDD Boys vs. Control Boys
MDD Girls vs. Control Girls
3.2.3. Between-Group Comparison during Recovery Period
MDD Patients vs. Control Probands
MDD Boys vs. Control Boys
MDD Girls vs. Control Girls
3.2.4. Comparison of the Individual Periods of the Protocol (Baseline vs. Go/NoGo Task vs. Recovery Period) within MDD and Control Groups
MDD Group
MDD Boys
MDD Girls
Control Group
Control Boys
Control Girls
3.3. Correlation Analysis between Total Score of CDI and Cardiac Composite Indices (CAB and CAR)
3.3.1. Correlation Analysis for Whole Group
3.3.2. Correlation Analysis for Boys
3.3.3. Correlation Analysis for Girls
4. Discussion
Limitations of Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
References
- Shorey, S.; Ng, E.D.; Wong, C.H.J. Global prevalence of depression and elevated depressive symptoms among adolescents: A systematic review and meta-analysis. Br. J. Clin. Psychol. 2022, 61, 287–305. [Google Scholar] [CrossRef] [PubMed]
- Koenig, J.; Thayer, J.F. Sex differences in healthy human heart rate variability: A meta-analysis. Neurosci. Biobehav. Rev. 2016, 64, 288–310. [Google Scholar] [CrossRef] [PubMed]
- Mestanikova, A.; Mestanik, M.; Ondrejka, I.; Hrtanek, I.; Cesnekova, D.; Jurko, A.; Visnovcova, Z.; Sekaninova, N.; Tonhajzerova, I. Complex cardiac vagal regulation to mental and physiological stress in adolescent major depression. J. Affect. Disord. 2019, 249, 234–241. [Google Scholar] [CrossRef] [PubMed]
- Tonhajzerova, I.; Visnovcova, Z.; Ondrejka, I.; Funakova, D.; Hrtanek, I.; Ferencova, N. Major depressive disorder at adolescent age is associated with impaired cardiovascular autonomic regulation and vasculature functioning. Int. J. Psychophysiol. 2022, 181, 14–22. [Google Scholar] [CrossRef] [PubMed]
- Blood, J.D.; Wu, J.; Chaplin, T.M.; Hommer, R.; Vazquez, L.; Rutherford, H.J.V.; Mayes, L.C.; Crowley, M.J. The variable heart: High frequency and very low frequency correlates of depressive symptoms in children and adolescents. J. Affect. Disord. 2015, 186, 119–126. [Google Scholar] [CrossRef]
- Park, S.; Lee, J.; Kim, J.; Suh, S.-I.; Lee, M.-S. Changes in heart rate variability in first-episode drug-naïve adolescents with major depressive disorder: A 12-week prospective study. J. Affect. Disord. 2018, 238, 250–255. [Google Scholar] [CrossRef]
- Berntson, G.G.; Cacioppo, J.T.; Quigley, K.S. Autonomic determinism: The modes of autonomic control, the doctrine of autonomic space, and the laws of autonomic constraint. Psychol. Rev. 1991, 98, 459–487. [Google Scholar] [CrossRef]
- Berntson, G.G.; Cacioppo, J.T.; Binkley, P.F.; Uchino, B.N.; Quickley, K.S.; Fieldstone, A. Autonomic cardiac control. III. Psychological stress and cardiac response in autonomic space as revealed by pharmacological blockades. Psychophysiology 1994, 31, 599–608. [Google Scholar] [CrossRef]
- Wiley, C.R.; Pourmand, V.; Thayer, J.F.; Williams, D.W.P. A Close Examination of the Use of Systolic Time Intervals in the Calculation of Impedance Derived Cardiac Autonomic Balance and Regulation. Front. Neurosci. 2021, 15, 625276. [Google Scholar] [CrossRef]
- Weissman, D.G.; Mendes, W.B. Correlation of sympathetic and parasympathetic nervous system activity during rest and acute stress tasks. Int. J. Psychophysiol. 2021, 162, 60–68. [Google Scholar] [CrossRef]
- Berntson, G.G.; Norman, G.J.; Hawkley, L.C.; Cacioppo, J.T. Cardiac autonomic balance versus cardiac regulatory capacity. Psychophysiology 2008, 45, 643–652. [Google Scholar] [CrossRef] [PubMed]
- Bylsma, L.M.; Yaroslavsky, I.; Rottenberg, J.; Jennings, J.R.; George, C.J.; Kiss, E.; Kapornai, K.; Halas, K.; Dochnal, R.; Lefkovics, E.; et al. Juvenile onset depression alters cardiac autonomic balance in response to psychological and physical challenges. Biol. Psychol. 2015, 110, 167–174. [Google Scholar] [CrossRef] [PubMed]
- Brush, C.J.; Olson, R.L.; Ehmann, P.J.; Bocchine, A.J.; Bates, M.E.; Buckman, J.F.; Leyro, T.M.; Alderman, B.L. Lower resting cardiac autonomic balance in young adults with current major depression. Psychophysiology 2019, 56, e13385. [Google Scholar] [CrossRef] [PubMed]
- Laborde, S.; Mosley, E.; Mertgen, A. Vagal Tank Theory: The Three Rs of Cardiac Vagal Control Functioning—Resting, Reactivity, and Recovery. Front. Neurosci. 2018, 12, 458. [Google Scholar] [CrossRef] [PubMed]
- Bamert, M.; Inauen, J. Physiological stress reactivity and recovery: Some laboratory results transfer to daily life. Front. Psychol. 2022, 13, 943065. [Google Scholar] [CrossRef] [PubMed]
- Simmonds, D.J.; Pekar, J.J.; Mostofsky, S.H. Meta-analysis of Go/No-go tasks demonstrating that fMRI activation associated with response inhibition is task-dependent. Neuropsychologia 2008, 46, 224–232. [Google Scholar] [CrossRef] [PubMed]
- Mestanikova, A.; Ondrejka, I.; Mestanik, M.; Hrtanek, I.; Snircova, E.; Tonhajzerova, I. Go/NoGo continuous performance task in the psychophysiological research. Cogn. Remediat. J. 2015, 4, 19–29. [Google Scholar] [CrossRef]
- Spangler, D.P.; Dunn, E.J.; Aldao, A.; Feeling, N.R.; Free, M.L.; Gillie, B.L.; Vasey, M.W.; Williams, D.W.P.; Koenig, J.; Thayer, J.F. Gender Matters: Nonlinear Relationships Between Heart Rate Variability and Depression and Positive Affect. Front. Neurosci. 2021, 15, 612566. [Google Scholar] [CrossRef]
- Taylor, S.E.; Klein, L.C.; Lewis, B.P.; Gruenewald, T.L.; Gurung, R.A.R.; Updegraff, J.A. Biobehavioral responses to stress in females: Tend-and-befriend, not fight-or-flight. Psychol. Rev. 2000, 107, 411–429. [Google Scholar] [CrossRef]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (DSM–5), 5th ed.; American Psychiatric Association: Arlington, VA, USA, 2013. [Google Scholar]
- WHO Adolescent-Health. 2016. Available online: https://www.who.int/ (accessed on 2 November 2023).
- Cole, T.J.; Lobstein, T. Extended international (IOTF) body mass index cut-offs for thinness, overweight and obesity. Pediatr. Obes. 2012, 7, 284–294. [Google Scholar] [CrossRef]
- Kovacs, M. Manual for the Children’s Depression Inventory; Multi-Health Systems: North Tonawanda, NY, USA, 1992. [Google Scholar]
- Barkley, R.A. Behavioral inhibition, sustained attention, and executive functions: Constructing a unifying theory of ADHD. Psychol. Bull. 1997, 121, 65–94. [Google Scholar] [CrossRef] [PubMed]
- Halperin, J.M.; Wolf, L.E.; Greenblatt, E.R.; Young, G. Subtype analysis of commission errors on the continuous performance test in children. Dev. Neuropsychol. 1991, 7, 207–217. [Google Scholar] [CrossRef]
- Tarvainen, M.P.; Ranta-aho, P.O.; Karjalainen, P.A. An advanced detrending method with application to HRV analysis. IEEE Trans. Biomed. Eng. 2002, 49, 172–175. [Google Scholar] [CrossRef] [PubMed]
- Mestanik, M.; Mestanikova, A.; Langer, P.; Grendar, M.; Jurko, A.; Sekaninova, N.; Visnovcova, N.; Tonhajzerova, I. Respiratory sinus arrhythmia—Testing the method of choice for evaluation of cardiovagal regulation. Respir. Physiol. Neurobiol. 2019, 259, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Thayer, J.F.; Sollers, J.J.; Ruiz-Padial, E.; Vila, J. Estimating respiratory frequency from autoregressive spectral analysis of heart period. IEEE Eng. Med. Biol. Mag. 2002, 21, 41–45. [Google Scholar] [CrossRef] [PubMed]
- Laborde, S.; Mosley, E.; Thayer, J.F. Heart Rate Variability and Cardiac Vagal Tone in Psychophysiological Research—Recommendations for Experiment Planning, Data Analysis, and Data Reporting. Front. Psychol. 2017, 8, 213. [Google Scholar] [CrossRef] [PubMed]
- Shaffer, F.; Ginsberg, J.P. An Overview of Heart Rate Variability Metrics and Norms. Front. Public Health 2017, 5, 258. [Google Scholar] [CrossRef] [PubMed]
- Task Force of the European Society of Cardiology; The North American Society of Pacing Electrophysiology. Heart rate variability: Standards of measurement, physiological interpretation and clinical use. Circulation 1996, 93, 1043–1065. [Google Scholar] [CrossRef]
- Westerhof, B.E.; Gisolf, J.; Stok, W.J.; Wesseling, K.H.; Karemaker, J.M. Time-domain cross-correlation baroreflex sensitivity: Performance on the EUROBAVAR data set. J. Hypertens. 2004, 22, 1371–1380. [Google Scholar] [CrossRef]
- Pinna, G.D. Assessing baroreflex sensitivity by the transfer function method: What are we really measuring? J. Appl. Physiol. 2007, 102, 1310–1311. [Google Scholar] [CrossRef]
- Van De Vooren, H.; Gademan, M.G.J.; Swenne, C.A.; Tenvoorde, B.J.; Schalij, M.J.; Van Der Wall, E.E. Baroreflex Sensitivity, Blood Pressure Buffering and Resonance: What are the Links? Computer Simulation of Healthy Subjects and Heart Failure Patients. Artic. Press. J. Appl. Physiol. 2006, 102, 1348–1356. [Google Scholar] [CrossRef] [PubMed]
- Schrezenmaier, C.; Singer, W.; Swift, N.M.; Sletten, D.; Tanabe, J.; Low, P.A. Adrenergic and vagal baroreflex sensitivity in autonomic failure. Arch. Neurol. 2007, 64, 381–386. [Google Scholar] [CrossRef] [PubMed]
- Corîci, O.M.; Tănasie, C.A.; Alexandru, D.O.; Florescu, C.; Comănescu, M.V.; Kamal, C.; Ţenea-Cojan, T.Ş.; Iancău, M.; Dinescu, S.N. A morpho-functional study using PEP/LVET ratio and global longitudinal strain in patients with dilated cardiomyopathy. Rom. J. Morphol. Emryol. 2018, 59, 93–103. [Google Scholar]
- Yoshimoto, T.; Eguchi, K.; Sakurai, H.; Ohmichi, Y.; Hashimoto, T.; Ohmichi, M.; Morimoto, A.; Yamaguchi, Y.; Ushida, T.; Iwase, S.; et al. Frequency components of systolic blood pressure variability reflect vasomotor and cardiac sympathetic functions in conscious rats. J. Physiol. Sci. 2011, 61, 373–383. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. A power primer. Psychol. Bull. 1992, 112, 155–159. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Routledge: New York, NY, USA, 1988. [Google Scholar]
- Kreibig, S.D.; Gendolla, G.H.E.; Scherer, K.R. Goal relevance and goal conduciveness appraisals lead to differential autonomic reactivity in emotional responding to performance feedback. Biol. Psychol. 2012, 91, 365–375. [Google Scholar] [CrossRef] [PubMed]
- Porges, S.W. The polyvagal perspective. Biol. Psychol. 2007, 74, 116–143. [Google Scholar] [CrossRef] [PubMed]
- Thayer, J.F.; Lane, R.D. A model of neurovisceral integration in emotion regulation and dysregulation. J. Affect. Disord. 2000, 61, 201–216. [Google Scholar] [CrossRef]
- Porges, S.W. Polyvagal Theory: A Science of Safety. Front. Integr. Neurosci. 2022, 16, 27. [Google Scholar] [CrossRef]
- Thayer, J.F.; Åhs, F.; Fredrikson, M.; Sollers, J.J.; Wager, T.D. A meta-analysis of heart rate variability and neuroimaging studies: Implications for heart rate variability as a marker of stress and health. Neurosci. Biobehav. Rev. 2012, 36, 747–756. [Google Scholar] [CrossRef]
- Williams, D.W.P.; Cash, C.; Rankin, C.; Bernardi, A.; Koenig, J.; Thayer, J.F. Resting heart rate variability predicts self-reported difficulties in emotion regulation: A focus on different facets of emotion regulation. Front. Psychol. 2015, 6, 261. [Google Scholar] [CrossRef] [PubMed]
- Schumann, A.; de la Cruz, F.; Köhler, S.; Brotte, L.; Bär, K.-J. The Influence of Heart Rate Variability Biofeedback on Cardiac Regulation and Functional Brain Connectivity. Front. Neurosci. 2021, 15, 775. [Google Scholar] [CrossRef] [PubMed]
- Palmer, S.M.; Crewther, S.G.; Carey, L.M. A meta-analysis of changes in brain activity in clinical depression. Front. Hum. Neurosci. 2015, 8, 1045. [Google Scholar] [CrossRef] [PubMed]
- Quigley, K.M.; Moore, G.A. Development of cardiac autonomic balance in infancy and early childhood: A possible pathway to mental and physical health outcomes. Dev. Rev. 2018, 49, 41–61. [Google Scholar] [CrossRef]
- Wilder, J. Basimetric Approach (Law of Initial Value) to Biological Rhythms. Ann. N. Y. Acad. Sci. 1962, 98, 1211–1220. [Google Scholar] [CrossRef] [PubMed]
- Kujawa, A.; MacNamara, A.; Fitzgerald, K.D.; Monk, C.S.; Phan, K.L. Enhanced Neural Reactivity to Threatening Faces in Anxious Youth: Evidence from Event-Related Potentials. J. Abnorm. Child Psychol. 2015, 43, 1493–1501. [Google Scholar] [CrossRef] [PubMed]
- Smith, R.; Thayer, J.F.; Khalsa, S.S.; Lane, R.D. The hierarchical basis of neurovisceral integration. Neurosci. Biobehav. Rev. 2017, 75, 274–296. [Google Scholar] [CrossRef] [PubMed]
- Williams, L.M. Precision psychiatry: A neural circuit taxonomy for depression and anxiety. Lancet Psychiatry 2016, 3, 472–480. [Google Scholar] [CrossRef]
- Koenig, J.; Rash, J.A.; Campbell, T.S.; Thayer, J.F.; Kaess, M. A meta-analysis on sex differences in resting-state vagal activity in children and adolescents. Front. Physiol. 2017, 8, 582. [Google Scholar] [CrossRef]
- Koenig, J. Neurovisceral regulatory circuits of affective resilience in youth: Principal outline of a dynamic model of neurovisceral integration in development. Psychophysiology 2020, 57, e13568. [Google Scholar] [CrossRef]
- Williams, D.W.P.; Joseph, N.; Gerardo, G.M.; Hill, L.B.K.; Koenig, J.; Thayer, J.F. Gender Differences in Cardiac Chronotropic Control: Implications for Heart Rate Variability Research. Appl. Psychophysiol. Biofeedback 2022, 47, 65–75. [Google Scholar] [CrossRef] [PubMed]
- Williams, P.G.; Cribbet, M.R.; Tinajero, R.; Rau, H.K.; Thayer, J.F.; Suchy, Y. The association between individual differences in executive functioning and resting high-frequency heart rate variability. Biol. Psychol. 2019, 148, 107772. [Google Scholar] [CrossRef] [PubMed]
- Sims, S.T.; Heather, A.K. Myths and Methodologies: Reducing scientific design ambiguity in studies comparing sexes and/or menstrual cycle phases. Exp. Physiol. 2018, 103, 1309–1317. [Google Scholar] [CrossRef] [PubMed]
- Sims, S.T.; Ware, L.; Capodilupo, E.R. Patterns of endogenous and exogenous ovarian hormone modulation on recovery metrics across the menstrual cycle. BMJ Open Sp Ex Med. 2021, 7, 1047. [Google Scholar] [CrossRef] [PubMed]
- Tenan, M.S.; Brothers, R.M.; Tweedell, A.J.; Hackney, A.C.; Griffin, L. Changes in resting heart rate variability across the menstrual cycle. Psychophysiology 2014, 51, 996–1004. [Google Scholar] [CrossRef] [PubMed]
- von Holzen, J.J.; Capaldo, G.; Wilhelm, M.; Stute, P. Impact of endo- and exogenous estrogens on heart rate variability in women: A review. Climacteric 2016, 19, 222–228. [Google Scholar] [CrossRef] [PubMed]
- Reed, B.G.; Carr, B.R. The Normal Menstrual Cycle and the Control of Ovulation; MDText.com, Inc.: South Dartmouth, MA, USA, 2018. [Google Scholar]
- McKinley, P.S.; King, A.R.; Shapiro, P.A.; Slavov, I.; Fang, Y.; Chen, I.S.; Jamner, L.D.; Sloan, R.P. The impact of menstrual cycle phase on cardiac autonomic regulation. Psychophysiology 2009, 46, 904–911. [Google Scholar] [CrossRef]
- Minson, C.T.; Halliwill, J.R.; Young, T.M.; Joyner, M.J. Influence of the menstrual cycle on sympathetic activity, baroreflex sensitivity, and vascular transduction in young women. Circulation 2000, 101, 862–868. [Google Scholar] [CrossRef]
- Brooks, V.L.; Cassaglia, P.A.; Zhao, D.; Goldman, R.K. Baroreflex function in females: Changes with the reproductive cycle and pregnancy. Gend. Med. 2012, 9, 61–67. [Google Scholar] [CrossRef]
- Tanaka, M.; Sato, M.; Umehara, S.; Nishikawa, T. Influence of menstrual cycle on baroreflex control of heart rate: Comparison with male volunteers. Am. J. Physiol. Integr. Comp. Physiol. 2003, 285, R1091–R1097. [Google Scholar] [CrossRef]
- Nicholson, C.J.; Sweeney, M.; Robson, S.C.; Taggart, M.J. Estrogenic vascular effects are diminished by chronological aging. Sci. Rep. 2017, 7, 12153. [Google Scholar] [CrossRef]
- Thomas, P.; Pang, Y. Protective actions of progesterone in the cardiovascular system: Potential role of membrane progesterone receptors (mPRs) in mediating rapid effects. Steroids 2013, 78, 583–588. [Google Scholar] [CrossRef]
Evaluated Parameter | Controls | MDD | p-Value | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Total a (N = 80) | Girls b (N = 51) | Boys c (N = 29) | Total d (N = 85) | Girls e (N = 52) | Boys f (N = 33) | a vs. d | b vs. e | c vs. f | b vs. c | e vs. f | |
Age (years) | 15.9 ± 0.15 | 16.0 ± 0.19 | 15.9 ± 0.27 | 15.7 ± 0.14 | 15.6 ± 0.18 | 15.9 ± 0.2 | 0.421 | 0.999 | 0.999 | 0.999 | 0.999 |
BMI (kg/m2) | 21.5 ± 0.4 | 21.4 ± 0.5 | 21.8 ± 0.7 | 20.4 ± 0.2 | 20.7 ± 0.3 | 20.1 ± 0.4 | 0.007 | 0.999 | 0.091 | 0.999 | 0.996 |
WHR | 0.84 ± 0.005 | 0.84 ± 0.007 | 0.84 ± 0.010 | 0.83 ± 0.004 | 0.83 ± 0.004 | 0.83 ± 0.006 | 0.064 | 0.847 | 0.999 | 0.999 | 0.994 |
CDI | 6.7 ± 0.5 | 7.2 ± 0.6 | 6.0 ± 0.8 | 24.6 ± 0.9 | 23.5 ± 1.1 | 26.5 ± 1.4 | <0.001 | <0.001 | <0.001 | 0.999 | 0.301 |
Evaluated Parameter | Controls | MDD | p-Value | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Total a (N = 80) | Girls b (N = 51) | Boys c (N = 29) | Total d (N = 85) | Girls e (N = 52) | Boys f (N = 33) | a vs. d | b vs. e | c vs. f | b vs. c | e vs. f | |
Baseline | |||||||||||
R-R intervals (ms) | 799.0 ± 11.5 | 800.0 ± 11.5 | 798.0 ± 11.8 | 686 ± 10.2 | 692.0 ± 9.3 | 677.0 ± 11.6 | <0.001 | <0.001 | 0.010 | 0.999 | 0.999 |
lnHF-HRV (ms2) | 2.04 ± 0.48 | 2.06 ± 0.49 | 1.99 ± 0.46 | 1.62 ± 0.49 | 1.71 ± 0.42 | 1.48 ± 0.57 | 0.282 | 0.999 | 0.999 | 0.999 | 0.999 |
LVET (ms) | 292 ± 17.5 | 294.0 ± 18.2 | 287.0 ± 15.2 | 275 ± 20.4 | 278.0 ± 19.2 | 269.0 ± 21.2 | <0.001 | <0.001 | 0.006 | 0.999 | 0.999 |
SBP (mmHg) | 113.0 ± 17.0 | 115.0 ± 16.4 | 110 ± 13.8 | 111.0 ± 17.0 | 108.0 ± 16.3 | 115.0 ± 15.5 | 0.999 | 0.917 | 0.994 | 0.978 | 0.993 |
DBP (mmHg) | 69.9 ± 1.0 | 15.1 ± 1.0 | 14.8 ± 1.5 | 69.5 ± 1.2 | 67.3 ± 1.5 | 73.2 ± 2.1 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 |
BRS (ms/mmHg) | 15.00 ± 0.84 | 15.10 ± 1.03 | 14.80 ± 1.46 | 9.86 ± 0.61 | 10.10 ± 0.69 | 9.56 ± 1.12 | <0.001 | 0.011 | 0.149 | 0.999 | 0.999 |
lnHF-SBPV (mmHg2) | 6.03 ± 0.03 | 5.99 ± 0.03 | 6.09 ± 0.05 | 6.20 ± 0.04 | 6.18 ± 0.05 | 6.22 ± 0.06 | 0.999 | 0.005 | 0.114 | 0.123 | 0.287 |
zHF-HRV | 0.407 ± 0.101 | 0.453 ± 0.129 | 0.327 ± 0.163 | −0.383 ± 0.102 | −0.211 ± 0.111 | −0.655 ± 0.189 | <0.001 | 0.060 | 0.017 | 0.999 | 0.999 |
–zLVET | −0.252 ± 0.198 | −0.283 ± 0.303 | −0.198 ± 0.135 | 0.397 ± 0.106 | 0.231 ± 0.128 | 0.659 ± 0.177 | 0.032 | 0.999 | 0.988 | 0.999 | 0.999 |
CAB | 0.659 ± 0.226 | 0.736 ± 0.324 | 0.524 ± 0.257 | −0.780 ± 0.181 | −0.441 ± 0.204 | −1.310 ± 0.321 | <0.001 | 0.061 | 0.005 | 0.999 | 0.999 |
CAR | 0.155 ± 0.219 | 0.170 ± 0.334 | 0.129 ± 0.154 | 0.014 ± 0.102 | 0.020 ± 0.126 | 0.004 ± 0.176 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 |
Go/NoGo task | |||||||||||
R-R intervals (ms) | 793 ± 14.5 | 781 ± 12.5 | 815 ± 15.6 | 698 ± 10.9 | 700 ± 9.6 | 694 ± 13.0 | <0.001 | 0.035 | <0.001 | 0.999 | 0.999 |
lnHF-HRV (ms2) | 5.9 ± 1.61 | 5.68 ± 1.32 | 6.27 ± 1.97 | 4.66 ± 1.26 | 4.77 ± 1.08 | 4.47 ± 1.51 | <0.001 | 0.010 | <0.001 | 0.999 | 0.999 |
LVET (ms) | 294 ± 15.9 | 296 ± 16.6 | 291 ± 14.4 | 276 ± 19.6 | 280 ± 16.9 | 270 ± 22 | <0.001 | 0.003 | <0.001 | 0.999 | 0.584 |
SBP (mmHg) | 127.0 ± 20.2 | 128.0 ± 20.3 | 125.0 ± 17.6 | 122.0 ± 20.0 | 118.0 ± 17.6 | 129.0 ± 16.9 | 0.999 | 0.187 | 0.999 | 0.999 | 0.645 |
DBP (mmHg) | 77.4 ± 1.28 | 77.7 ± 1.6 | 76.9 ± 2.1 | 76.0 ± 1.57 | 72.3 ± 1.8 | 82.2 ± 2.6 | 0.999 | 0.999 | 0.999 | 0.999 | 0.093 |
BRS (ms/mmHg) | 16.80 ± 0.87 | 16.60 ± 1.04 | 17.40 ± 1.56 | 11.00 ± 0.70 | 11.00 ± 0.80 | 11.00 ± 1.29 | <0.001 | 0.004 | 0.012 | 0.999 | 0.999 |
lnHF-SBPV (mmHg2) | 13.70 ± 0.08 | 13.60 ± 0.09 | 13.70 ± 0.14 | 14.00 ± 0.08 | 14.10 ± 0.10 | 14.00 ± 0.16 | 0.020 | 0.001 | 0.279 | 0.329 | 0.758 |
zHF-HRV | 0.098 ± 0.138 | −0.011 ± 0.154 | 0.278 ± 0.262 | −0.390 ± 0.078 | −0.324 ± 0.085 | −0.494 ± 0.149 | <0.001 | 0.999 | 0.260 | 0.999 | 0.999 |
–zLVET | −0.457 ± 0.089 | −0.545 ± 0.117 | −0.301 ± 0.134 | 0.598 ± 0.194 | 0.232 ± 0.118 | 1.170 ± 0.451 | <0.001 | 0.291 | 0.002 | 0.999 | 0.152 |
CAB | 0.557 ± 0.179 | 0.544 ± 0.218 | 0.578 ± 0.313 | −0.998 ± 0.228 | −0.557 ± 0.173 | −1.670 ± 0.504 | <0.001 | 0.169 | <0.001 | 0.999 | 0.403 |
CAR | −0.362 ± 0.150 | −0.566 ± 0.169 | −0.023 ± 0.275 | 0.208 ± 0.188 | −0.092 ± 0.110 | 0.680 ± 0.444 | 0.434 | 0.999 | 0.999 | 0.999 | 0.999 |
Recovery | |||||||||||
R-R intervals (ms) | 782 ± 12.6 | 785 ± 13.6 | 776 ± 10.6 | 695 ± 10.5 | 706 ± 9.8 | 678 ± 11.4 | <0.001 | 0.063 | 0.101 | 0.999 | 0.999 |
lnHF-HRV (ms2) | 5.40 ± 1.29 | 5.44 ± 1.30 | 5.34 ± 1.29 | 4.73 ± 1.37 | 4.73 ± 1.02 | 4.73 ± 1.80 | 0.014 | 0.311 | 0.999 | 0.999 | 0.999 |
LVET (ms) | 292 ± 17.4 | 295 ± 18.4 | 286 ± 13.9 | 275 ± 19.5 | 280 ± 16.8 | 267 ± 21.5 | <0.001 | 0.003 | 0.004 | 0.999 | 0.170 |
SBP (mmHg) | 119.0 ± 19.9 | 121.0 ± 17.5 | 116.0 ± 16.3 | 117.0 ± 19.9 | 114.0 ± 17.4 | 122.0 ± 16.2 | 0.999 | 0.819 | 0.997 | 0.991 | 0.935 |
DBP (mmHg) | 73.5 ± 1.22 | 74.1 ± 1.5 | 72.5 ± 2.2 | 74.4 ± 1.54 | 71.3 ± 1.9 | 79.3 ± 2.4 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 |
BRS (ms/mmHg) | 15.10 ± 0.76 | 15.10 ± 0.97 | 14.90 ± 1.23 | 9.53 ± 0.46 | 10.20 ± 0.59 | 8.51 ± 0.72 | <0.001 | 0.045 | 0.028 | 0.999 | 0.999 |
lnHF-SBPV (mmHg2) | 14.20 ± 0.09 | 14.00 ± 0.09 | 14.50 ± 0.18 | 14.50 ± 0.12 | 14.40 ± 0.14 | 14.70 ± 0.19 | 0.085 | 0.033 | 0.410 | 0.009 | 0.111 |
zHF-HRV | −0.033 ± 0.155 | 0.054 ± 0.184 | −0.186 ± 0.279 | −0.229 ± 0.108 | −0.224 ± 0.104 | −0.232 ± 0.229 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 |
–zLVET | −0.431 ± 0.096 | −0.598 ± 0.126 | −0.138 ± 0.127 | 0.569 ± 0.189 | 0.182 ± 0.115 | 1.180 ± 0.436 | <0.001 | 0.286 | 0.013 | 0.999 | 0.081 |
CAB | 0.398 ± 0.193 | 0.652 ± 0.235 | −0.048 ± 0.322 | −0.798 ± 0.196 | −0.409 ± 0.183 | −1.410 ± 0.396 | <0.001 | 0.262 | 0.217 | 0.999 | 0.872 |
CAR | −0.464 ± 0.170 | −0.544 ± 0.211 | −0.324 ± 0.291 | 0.340 ± 0.238 | −0.046 ± 0.118 | 0.949 ± 0.574 | 0.011 | 0.999 | 0.181 | 0.999 | 0.486 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tonhajzerova, I.; Ferencova, N.; Ondrejka, I.; Hrtanek, I.; Farsky, I.; Kukucka, T.; Visnovcova, Z. Cardiac Autonomic Balance Is Altered during the Acute Stress Response in Adolescent Major Depression—Effect of Sex. Life 2023, 13, 2230. https://doi.org/10.3390/life13112230
Tonhajzerova I, Ferencova N, Ondrejka I, Hrtanek I, Farsky I, Kukucka T, Visnovcova Z. Cardiac Autonomic Balance Is Altered during the Acute Stress Response in Adolescent Major Depression—Effect of Sex. Life. 2023; 13(11):2230. https://doi.org/10.3390/life13112230
Chicago/Turabian StyleTonhajzerova, Ingrid, Nikola Ferencova, Igor Ondrejka, Igor Hrtanek, Ivan Farsky, Tomas Kukucka, and Zuzana Visnovcova. 2023. "Cardiac Autonomic Balance Is Altered during the Acute Stress Response in Adolescent Major Depression—Effect of Sex" Life 13, no. 11: 2230. https://doi.org/10.3390/life13112230
APA StyleTonhajzerova, I., Ferencova, N., Ondrejka, I., Hrtanek, I., Farsky, I., Kukucka, T., & Visnovcova, Z. (2023). Cardiac Autonomic Balance Is Altered during the Acute Stress Response in Adolescent Major Depression—Effect of Sex. Life, 13(11), 2230. https://doi.org/10.3390/life13112230