Gut Microbiota, Inflammation, and Probiotic Supplementation in Fetal Growth Restriction—A Comprehensive Review of Human and Animal Studies
Abstract
:1. Introduction
2. Methods
3. Gut Microbiota in FGR
3.1. Animal Models
3.2. Human Studies
4. Inflammation in FGR
4.1. Animal Models
4.2. Human Studies
5. Effects of Probiotics in FGR
5.1. Animal Models
5.2. Human Studies
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Suhag, A.; Berghella, V. Intrauterine growth restriction (IUGR): Etiology and diagnosis. Curr. Obstet. Gynecol. Rep. 2013, 2, 102–111. [Google Scholar] [CrossRef]
- Chew, L.C.; Verma, R.P. Fetal Growth Restriction; StatPearls: Treasure Island, FL, USA, 2023. [Google Scholar]
- Sharma, D.; Farahbakhsh, N.; Shastri, S.; Sharma, P. Intrauterine growth restriction—Part 2. J. Matern. Fetal Neonatal Med. 2016, 29, 4037–4048. [Google Scholar] [CrossRef]
- Sharma, D.; Shastri, S.; Farahbakhsh, N.; Sharma, P. Intrauterine growth restriction—Part 1. J. Matern. Fetal Neonatal Med. 2016, 29, 3977–3987. [Google Scholar] [CrossRef]
- Osuchukwu, Q.Q.; Reed, D.J. Small for Gestational Age; StatPearls: Treasure Island, FL, USA, 2022. [Google Scholar]
- Sharma, D.; Shastri, S.; Sharma, P. Intrauterine growth restriction: Antenatal and postnatal aspects. Clin. Med. Insights Pediatr. 2016, 10, 67–83. [Google Scholar] [CrossRef]
- Lausman, A.; McCarthy, F.P.; Walker, M.; Kingdom, J. Screening, diagnosis, and management of intrauterine growth restriction. J. Obstet. Gynaecol. Can. 2012, 34, 17–28. [Google Scholar] [CrossRef]
- Albu, A.R.; Anca, A.F.; Horhoianu, V.V.; Horhoianu, I.A. Predictive factors for intrauterine growth restriction. J. Med. Life 2014, 7, 165–171. [Google Scholar]
- Nardozza, L.M.M.; Caetano, A.C.R.; Zamarian, A.C.P.; Mazzola, J.B.; Silva, C.P.; Marçal, V.M.G.; Lobo, T.F.; Peixoto, A.B.; Júnior, E.A. Fetal growth restriction: Current knowledge. Arch. Gynecol. Obstet. 2017, 295, 1061–1077. [Google Scholar] [CrossRef]
- Westby, A.; Miller, L. Fetal growth restriction before and after birth. Am. Fam. Physician 2021, 104, 486–492. [Google Scholar]
- Salmeri, N.; Carbone, I.F.; Cavoretto, P.I.; Farina, A.; Morano, D. Epigenetics beyond fetal growth restriction: A comprehensive overview. Mol. Diagn. Ther. 2022, 26, 607–626. [Google Scholar] [CrossRef]
- Armengaud, J.B.; Yzydorczyk, C.; Siddeek, B.; Peyter, A.C.; Simeoni, U. Intrauterine growth restriction: Clinical consequences on health and disease at adulthood. Reprod. Toxicol. 2021, 99, 168–176. [Google Scholar] [CrossRef]
- D’Agostin, M.; Di Sipio Morgia, C.; Vento, G.; Nobile, S. Long-term implications of fetal growth restriction. World J. Clin. Cases 2023, 11, 2855–2863. [Google Scholar] [CrossRef]
- Krishna, R.G.; Bhat, B.V. Molecular mechanisms of intrauterine growth restriction. J. Matern. Fetal Neonatal Med. 2018, 31, 2634–2640. [Google Scholar] [CrossRef]
- Grivell, R.; Dodd, J.; Robinson, J. The prevention and treatment of intrauterine growth restriction. Best. Pract. Res. Clin. Obstet. Gynaecol. 2009, 23, 795–807. [Google Scholar] [CrossRef]
- Brown, L.D.; Green, A.S.; Limesand, S.W.; Rozance, P.J. Maternal amino acid supplementation for intrauterine growth restriction. Front Biosci Sch. Ed. 2011, 3, 428–444. [Google Scholar]
- Spiroski, A.-M.; Oliver, M.H.; Harding, J.E.; Bloomfield, F.H. Intrauterine intervention for the treatment of fetal growth restriction. Curr. Pediatr. Rev. 2016, 12, 168–178. [Google Scholar] [CrossRef]
- Roberge, S.; Odibo, A.O.; Bujold, E. Aspirin for the prevention of preeclampsia and intrauterine growth restriction. Clin. Lab. Med. 2016, 36, 319–329. [Google Scholar] [CrossRef]
- Nawathe, A.; David, A.L. Prophylaxis and treatment of foetal growth restriction. Best. Pract. Res. Clin. Obstet. Gynaecol. 2018, 49, 66–78. [Google Scholar] [CrossRef]
- Groom, K.M.; David, A.L. The role of aspirin, heparin, and other interventions in the prevention and treatment of fetal growth restriction. Am. J. Obstet. Gynecol. 2018, 218, S829–S840. [Google Scholar] [CrossRef]
- Bettiol, A.; Avagliano, L.; Lombardi, N.; Crescioli, G.; Emmi, G.; Urban, M.L.; Virgili, G.; Ravaldi, C.; Vannacci, A. Pharmacological interventions for the prevention of fetal growth restriction: A systematic review and network meta-analysis. Clin. Pharmacol. Ther. 2021, 110, 189–199. [Google Scholar] [CrossRef]
- Massimiani, M.; Tiralongo, G.M.; Salvi, S.; Fruci, S.; Lacconi, V.; La Civita, F.; Mancini, M.; Stuhlmann, H.; Valensise, H.; Campagnolo, L. Treatment of pregnancies complicated by intrauterine growth restriction with nitric oxide donors increases placental expression of Epidermal Growth Factor-Like Domain 7 and improves fetal growth: A pilot study. Transl. Res. 2021, 228, 28–41. [Google Scholar] [CrossRef]
- Xu, L.; Wang, X.; Wang, C.; Li, W.; Liu, H. l-arginine supplementation improved neonatal outcomes in pregnancies with hypertensive disorder or intrauterine growth restriction: A systematic review and meta-analysis of randomized controlled trials. Clin. Nutr. 2022, 41, 1512–1522. [Google Scholar] [CrossRef]
- Lim, S.; McDougall, A.R.A.; Goldstein, M.; Tuttle, A.; Hastie, R.; Tong, S.; Ammerdorffer, A.; Rushwan, S.; Ricci, C.; Gülmezoglu, A.M.; et al. Analysis of a maternal health medicines pipeline database 2000-2021: New candidates for the prevention and treatment of fetal growth restriction. BJOG 2023, 130, 653–663. [Google Scholar] [CrossRef]
- Mor, G.; Cardenas, I.; Abrahams, V.; Guller, S. Inflammation and pregnancy: The role of the immune system at the implantation site. Ann. N. Y. Acad. Sci. 2011, 1221, 80–87. [Google Scholar] [CrossRef]
- Leber, A.; Zenclussen, M.L.; Teles, A.; Brachwitz, N.; Casalis, P.; El-Mousleh, T.; Jensen, F.; Woidacki, K.; Zenclussen, A.C. Pregnancy: Tolerance and suppression of immune responses. Methods Mol. Biol. 2011, 677, 397–417. [Google Scholar]
- Kalagiri, R.R.; Carder, T.; Choudhury, S.; Vora, N.; Ballard, A.R.; Govande, V.; Drever, N.; Beeram, M.R.; Uddin, M.N. Inflammation in complicated pregnancy and its outcome. Am. J. Perinatol. 2016, 33, 1337–1356. [Google Scholar] [CrossRef]
- Yao, Y.; Cai, X.; Ye, Y.; Wang, F.; Chen, F.; Zheng, C. The role of microbiota in infant health: From early life to adulthood. Front. Immunol. 2021, 12, 708472. [Google Scholar] [CrossRef]
- Alsharairi, N.A. The infant gut microbiota and risk of asthma: The effect of maternal nutrition during pregnancy and lactation. Microorganisms 2020, 8, 1119. [Google Scholar] [CrossRef]
- Alsharairi, N.A. The role of short-chain fatty acids in the interplay between a very low-calorie ketogenic diet and the infant gut microbiota and its therapeutic implications for reducing asthma. Int. J. Mol. Sci. 2020, 21, 9580. [Google Scholar] [CrossRef]
- Alsharairi, N.A. The role of short-chain fatty acids in mediating very low-calorie ketogenic diet-infant gut microbiota relationships and its therapeutic potential in obesity. Nutrients 2021, 13, 3702. [Google Scholar] [CrossRef]
- Alsharairi, N.A. The therapeutic role of short-chain fatty acids mediated very low-calorie ketogenic diet-gut microbiota relationships in paediatric inflammatory bowel diseases. Nutrients 2022, 14, 4113. [Google Scholar] [CrossRef]
- Alsharairi, N.A. Therapeutic potential of gut microbiota and its metabolite short-chain fatty acids in neonatal necrotizing enterocolitis. Life 2023, 13, 561. [Google Scholar] [CrossRef]
- Alsharairi, N.A. Exploring the diet-gut microbiota-epigenetics crosstalk relevant to neonatal diabetes. Genes. 2023, 14, 1017. [Google Scholar] [CrossRef]
- Liu, Z.-Z.; Sun, J.-H.; Wang, W.-J. Gut microbiota in gastrointestinal diseases during pregnancy. World J. Clin. Cases 2022, 10, 2976–2989. [Google Scholar] [CrossRef]
- Salmeri, N.; Sinagra, E.; Dolci, C.; Buzzaccarini, G.; Sozzi, G.; Sutera, M.; Candiani, M.; Ungaro, F.; Massimino, L.; Danese, S.; et al. Microbiota in irritable bowel syndrome and endometriosis: Birds of a feather flock together—A review. Microorganisms 2023, 11, 2089. [Google Scholar] [CrossRef]
- Cowardin, C.A.; Syed, S.; Iqbal, N.; Jamil, Z.; Sadiq, K.; Iqbal, J.; Ali, S.A.; Moore, S.R. Environmental enteric dysfunction: Gut and microbiota adaptation in pregnancy and infancy. Nat. Rev. Gastroenterol. Hepatol. 2023, 20, 223–237. [Google Scholar] [CrossRef]
- Edwards, S.M.; Cunningham, S.A.; Dunlop, A.L.; Corwin, E.J. The maternal gut microbiome during pregnancy. MCN Am. J. Matern. Child. Nurs. 2017, 42, 310–317. [Google Scholar] [CrossRef]
- Tang, R.; Xiao, G.; Jian, Y.; Yuan, Q.; Jiang, C.; Wang, W. The gut microbiota dysbiosis in preeclampsia contributed to trophoblast cell proliferation, invasion, and migration via lncRNA BC030099/NF-κB pathway. Mediators Inflamm. 2022, 2022, 6367264. [Google Scholar] [CrossRef]
- Gorczyca, K.; Obuchowska, A.; Kimber-Trojnar, Z.; Wierzchowska-Opoka, M.; Leszczyńska-Gorzelak, B. Changes in the gut microbiome and pathologies in pregnancy. Int. J. Environ. Res. Public Health 2022, 19, 9961. [Google Scholar] [CrossRef]
- Arai, Y.; Shoji, H.; Santosa, I.; Awata, K.; Tokita, K.; Shimizu, T. Effects of fetal growth restriction on postnatal gut microbiota in a rat model. J. Pediatr. Gastroenterol. Nutr. 2023, 77, e42–e47. [Google Scholar] [CrossRef]
- Fança-Berthon, P.; Hoebler, C.; Mouzet, E.; David, A.; Michel, C. Intrauterine growth restriction not only modifies the cecocolonic microbiota in neonatal rats but also affects its activity in young adult rats. J. Pediatr. Gastroenterol. Nutr. 2010, 51, 402–413. [Google Scholar] [CrossRef]
- Zhang, W.; Ma, C.; Xie, P.; Zhu, Q.; Wang, X.; Yin, Y.; Kong, X. Gut microbiota of newborn piglets with intrauterine growth restriction have lower diversity and different taxonomic abundances. J. Appl. Microbiol. 2019, 127, 354–369. [Google Scholar] [CrossRef]
- Xiong, L.; You, J.; Zhang, W.; Zhu, Q.; Blachier, F.; Yin, Y.; Kong, X. Intrauterine growth restriction alters growth performance, plasma hormones, and small intestinal microbial communities in growing-finishing pigs. J. Anim. Sci. Biotechnol. 2020, 11, 86. [Google Scholar] [CrossRef]
- Yang, J.; Hou, L.; Wang, J.; Xiao, L.; Zhang, J.; Yin, N.; Yao, S.; Cheng, K.; Zhang, W.; Shi, Z.; et al. Unfavourable intrauterine environment contributes to abnormal gut microbiome and metabolome in twins. Gut 2022, 71, 2451–2462. [Google Scholar] [CrossRef]
- He, X.; Li, Z.; Li, X.; Zhao, H.; Hu, Y.; Han, W.; Wang, C.; Yin, C.; Chen, Y. The fecal microbiota of gravidas with fetal growth restriction newborns characterized by metagenomic sequencing. Curr. Res. Transl. Med. 2023, 71, 103354. [Google Scholar] [CrossRef]
- Tu, X.; Duan, C.; Lin, B.; Li, K.; Gao, J.; Yan, H.; Wang, K.; Zhao, Z. Characteristics of the gut microbiota in pregnant women with fetal growth restriction. BMC Pregnancy Childbirth 2022, 22, 297. [Google Scholar] [CrossRef]
- Tao, Z.; Chen, Y.; He, F.; Tang, J.; Zhan, L.; Hu, H.; Ding, Z.; Ruan, S.; Chen, Y.; Chen, B.; et al. Alterations in the gut microbiome and metabolisms in pregnancies with fetal growth restriction. Microbiol. Spectr. 2023, 11, e0007623. [Google Scholar] [CrossRef]
- Hu, J.; Benny, P.; Wang, M.; Ma, Y.; Lambertini, L.; Peter, I.; Xu, Y.; Lee, M.-J. Intrauterine growth restriction is associated with unique features of the reproductive microbiome. Reprod. Sci. 2021, 28, 828–837. [Google Scholar] [CrossRef]
- Stupak, A.; Gęca, T.; Kwaśniewska, A.; Mlak, R.; Piwowarczyk, P.; Nawrot, R.; Goździcka-Józefiak, A.; Kwaśniewsk, W. Comparative analysis of the placental microbiome in pregnancies with late fetal growth restriction versus physiological pregnancies. Int. J. Mol. Sci. 2023, 24, 6922. [Google Scholar] [CrossRef]
- Han, K.; Jin, W.; Mao, Z.; Dong, S.; Zhnag, Q.; Yang, Y.; Chen, B.; Wu, H.; Zeng, M. Microbiome and butyrate production are altered in the gut of rats fed a glycated fish protein diet. J. Funct. Foods 2018, 47, 423–433. [Google Scholar] [CrossRef]
- Cheatham, C.N.; Gustafson, K.L.; McAdams, Z.L.; Turner, G.M.; Dorfmeyer, R.A.; Ericsson, A.C. Standardized complex gut microbiomes influence fetal growth, food intake, and adult body weight in outbred mice. Microorganisms 2023, 11, 484. [Google Scholar] [CrossRef]
- Li, N.; Huang, S.; Jiang, L.; Dai, Z.; Li, T.; Han, D.; Wang, J. Characterization of the early life microbiota development and predominant Lactobacillus species at distinct gut segments of low- and normal-birth-weight piglets. Front. Microbiol. 2019, 10, 797. [Google Scholar] [CrossRef]
- Hu, L.; Peng, X.; Chen, H.; Yan, C.; Liu, Y.; Xu, Q.; Fang, Z.; Lin, Y.; Xu, S.; Feng, B.; et al. Effects of intrauterine growth retardation and Bacillus subtilis PB6 supplementation on growth performance, intestinal development and immune function of piglets during the suckling period. Eur. J. Nutr. 2017, 56, 1753–1765. [Google Scholar] [CrossRef]
- Gaukroger, C.H.; Stewart, C.J.; Edwards, S.A.; Walshaw, J.; Adams, I.P.; Kyriazakis, I. Changes in faecal microbiota profiles associated with performance and birthweight of piglets. Front. Microbiol. 2020, 11, 917. [Google Scholar] [CrossRef]
- Gough, E.K.; Edens, T.J.; Geum, H.M.; Baharmand, I.; Gill, S.K.; Robertson, R.C.; Mutasa, K.; Ntozini, R.; Smith, L.E.; Chasekwa, B.; et al. Maternal fecal microbiome predicts gestational age, birth weight and neonatal growth in rural Zimbabwe. EBioMedicine 2021, 68, 103421. [Google Scholar] [CrossRef]
- Peterson, D.; Bonham, K.S.; Rowland, S.; Pattanayak, C.W.; RESONANCE Consortium; Klepac-Ceraj, V. Comparative analysis of 16S rRNA gene and metagenome sequencing in pediatric gut microbiomes. Front. Microbiol. 2021, 12, 670336. [Google Scholar] [CrossRef]
- Abdelbary, M.M.H.; Hatting, M.; Bott, A.; Dahlhausen, A.; Keller, D.; Trautwein, C.; Contrads, G. The oral-gut axis: Salivary and fecal microbiome dysbiosis in patients with inflammatory bowel disease. Front. Cell. Infect. Microbiol. 2022, 12, 1010853. [Google Scholar] [CrossRef]
- Huang, S.; Li, N.; Liu, C.; Li, T.; Wang, W.; Jiang, L.; Li, Z.; Han, D.; Tao, S.; Wang, J. Characteristics of the gut microbiota colonization, inflammatory profile, and plasma metabolome in intrauterine growth restricted piglets during the first 12 hours after birth. J. Microbiol. 2019, 57, 748–758. [Google Scholar] [CrossRef]
- Dong, L.; Zhong, X.; Ahmad, H.; Li, W.; Wang, Y.; Zhang, L.; Wang, T. Intrauterine growth restriction impairs small intestinal mucosal immunity in neonatal piglets. J. Histochem. Cytochem. 2014, 62, 510–518. [Google Scholar] [CrossRef]
- Amdi, C.; Lynegaard, J.C.; Thymann, T.; Williams, A.R. Intrauterine growth restriction in piglets alters blood cell counts and impairs cytokine responses in peripheral mononuclear cells 24 days post-partum. Sci. Rep. 2020, 10, 4683. [Google Scholar] [CrossRef]
- Tang, H.; Li, H.; Li, D.; Peng, J.; Zhang, X.; Yang, W. The gut microbiota of pregnant rats alleviates fetal growth restriction by inhibiting the TLR9/MyD88 pathway. J. Microbiol. Biotechnol. 2023, 33, 1213–1227. [Google Scholar] [CrossRef]
- Chu, A.; Thamotharan, S.; Ganguly, A.; Wadehra, A.; Pellegrini, M.; Devaskar, S.U. Gestational food restriction decreases placental interleukin-10 expression and markers of autophagy and endoplasmic reticulum stress in murine intrauterine growth restriction. Nutr. Res. 2016, 36, 1055–1067. [Google Scholar] [CrossRef]
- Kaya, S.A.; Okuyan, H.M.; Erboğa, Z.F.; Güzel, S.; Yılmaz, A.; Karaboğ, I. Prenatal immobility stress: Relationship with oxidative stress, inflammation, apoptosis, and intrauterine growth restriction in rats. Birth Defects Res. 2023, 115, 1398–1410. [Google Scholar] [CrossRef]
- Inoue, H.; Nishio, H.; Takada, H.; Sakai, Y.; Nanishi, E.; Ochiai, M.; Onimaru, M.; Chen, S.J.; Matsui, T.; Hara, T. Activation of Nod1 signaling induces fetal growth restriction and death through fetal and maternal vasculopathy. J. Immunol. 2016, 196, 2779–2787. [Google Scholar] [CrossRef]
- Robb, K.P.; Cotechini, T.; Allaire, C.; Sperou, A.; Graham, C.H. Inflammation-induced fetal growth restriction in rats is associated with increased placental HIF-1α accumulation. PLoS ONE 2017, 12, e0175805. [Google Scholar] [CrossRef]
- Cadaret, C.N.; Posont, R.J.; Beede, K.A.; Riley, H.E.; Loy, J.D.; Yates, D.T. Maternal inflammation at midgestation impairs subsequent fetal myoblast function and skeletal muscle growth in rats, resulting in intrauterine growth restriction at term. Transl. Anim. Sci. 2019, 3, 867–876. [Google Scholar] [CrossRef]
- Posont, R.J.; Most, M.S.; Cadaret, C.N.; Marks-Nelson, E.S.; Beede, K.A.; Limesand, S.W.; Schmidt, T.B.; Petersen, J.L.; Yates, D.T. Primary myoblasts from intrauterine growth-restricted fetal sheep exhibit intrinsic dysfunction of proliferation and differentiation that coincides with enrichment of inflammatory cytokine signaling pathways. J. Anim. Sci. 2022, 100, skac145. [Google Scholar] [CrossRef]
- Fernandez-Gonzalez, S.; Ortiz-Arrabal, O.; Torrecillas, A.; Pérez-Cruz, M.; Chueca, N.; Gómez-Roig, M.D.; Gómez-Llorente, C. Study of the fetal and maternal microbiota in pregnant women with intrauterine growth restriction and its relationship with inflammatory biomarkers: A case-control study protocol (SPIRIT compliant). Medicine 2020, 99, e22722. [Google Scholar] [CrossRef]
- Areia, A.L.; Mota-Pinto, A. Inflammation and preterm birth: A systematic review. Reprod. Med. 2022, 3, 9. [Google Scholar] [CrossRef]
- Ferguson, K.K.; Kamai, E.M.; Cantonwine, D.E.; Mukherjee, B.; Meeker, J.D.; McElrath, T.F. Associations between repeated ultrasound measures of fetal growth and biomarkers of maternal oxidative stress and inflammation in pregnancy. Am. J. Reprod. Immunol. 2018, 80, e13017. [Google Scholar] [CrossRef]
- Cappelletti, M.; Giannelli, S.; Martinelli, A.; Cetin, I.; Colombo, E.; Calcaterra, F.; Mavilio, D.; Della Bella, S. Lack of activation of peripheral blood dendritic cells in human pregnancies complicated by intrauterine growth restriction. Placenta 2013, 34, 35–41. [Google Scholar] [CrossRef]
- Al-Azemi, M.; Raghupathy, R.; Azizieh, F. Pro-inflammatory and anti-inflammatory cytokine profiles in fetal growth restriction. Clin. Exp. Obstet. Gynecol. 2017, 44, 98–103. [Google Scholar] [CrossRef]
- Raghupathy, R.; Al-Azemi, M.; Azizieh, F. Intrauterine growth restriction: Cytokine profiles of trophoblast antigen-stimulated maternal lymphocytes. Clin. Dev. Immunol. 2012, 2012, 734865. [Google Scholar] [CrossRef]
- Kırıcı, P.; Çağıran, F.T.; Kalı, Z.; Tanrıverdi, E.F.; Mavral, N.; Ecin, S.M. Determination of maternal serum pro-inflammatory cytokine changes in intrauterine growth restriction. Eur. Rev. Med. Pharmacol. Sci. 2023, 27, 1996–2001. [Google Scholar]
- Kara, A.E.; Guney, G.; Tokmak, A.; Ozaksit, G. The role of inflammatory markers hs-CRP, sialic acid, and IL-6 in the pathogenesis of preeclampsia and intrauterine growth restriction. Eur. Cytokine Netw. 2019, 30, 29–33. [Google Scholar] [CrossRef]
- Elfayomy, A.K.; Habib, F.A.; Almasry, S.M.; Safwat, M.D.; Eldomiaty, M.A. Serum levels of adrenomedullin and inflammatory cytokines in women with term idiopathic intrauterine growth restriction. J. Obstet. Gynaecol. 2013, 33, 135–139. [Google Scholar] [CrossRef]
- Krajewski, P.; Sieroszewski, P.; Karowicz-Bilinska, A.; Kmiecik, M.; Chudzik, A.; Strzalko-Gloskowska, B.; Kwiatkowska, M.; Pokrzywnicka, M.; Wyka, K.; Chlapinski, J.; et al. Assessment of interleukin-6, interleukin-8 and interleukin-18 count in the serum of IUGR newborns. J. Matern. Fetal Neonatal Med. 2014, 27, 1142–1145. [Google Scholar] [CrossRef]
- Visentin, S.; Lapolla, A.; Londero, A.P.; Cosma, C.; Dalfrà, M.; Camerin, M.; Faggian, D.; Plebani, M.; Cosmi, E. Adiponectin levels are reduced while markers of systemic inflammation and aortic remodelling are increased in intrauterine growth restricted mother-child couple. Biomed. Res. Int. 2014, 2014, 401595. [Google Scholar] [CrossRef]
- Lyu, L.; Zhou, X.; Zhang, M.; Liu, L.; Liu, T.; Niu, H.; Wu, Y.; Liang, C.; Han, X.; Zhang, L. Lactobacillus derived from breast milk facilitates intestinal development in IUGR rats. J. Appl. Microbiol. 2022, 133, 503–514. [Google Scholar] [CrossRef]
- Lopez-Tello, J.; Schofield, Z.; Kiu, R.; Dalby, M.J.; van Sinderen, D.; Le Gall, G.; Sferruzzi-Perri, A.N.; Hall, L.J. Maternal gut microbiota Bifidobacterium promotes placental morphogenesis, nutrient transport and fetal growth in mice. Cell Mol. Life Sci. 2022, 79, 386. [Google Scholar] [CrossRef]
- Patole, S.K.; Keil, A.D.; Nathan, E.; Doherty, D.; Esvaran, M.; Simmer, K.N.; Conway, P. Effect of Bifidobacterium breve M-16V supplementation on faecal bifidobacteria in growth restricted very preterm infants—Analysis from a randomised trial. J. Matern. Fetal Neonatal Med. 2016, 29, 3751–3755. [Google Scholar] [CrossRef]
- Chiang, M.-C.; Chen, C.-L.; Feng, Y.; Chen, C.-C.; Lien, R.; Chiu, C.-H. Lactobacillus rhamnosus sepsis associated with probiotic therapy in an extremely preterm infant: Pathogenesis and a review for clinicians. J. Microbiol. Immunol. Infect. 2021, 54, 575–580. [Google Scholar] [CrossRef]
- Sadowska-Krawczenko, I.; Paprzycka, M.; Korbal, P.; Wiatrzyk, A.; Krysztopa-Grzybowska, K.; Polak, M.; Czajka, U.; Lutyńska, A. Lactobacillus rhamnosus GG suspected infection in a newborn with intrauterine growth restriction. Benef. Microbes 2014, 5, 397–402. [Google Scholar] [CrossRef]
- Knoop, K.A.; Newberry, R.D. Goblet cells: Multifaceted players in immunity at mucosal surfaces. Mucosal Immunol. 2018, 11, 1551–1557. [Google Scholar] [CrossRef]
- Lueschow, S.R.; McElroy, S.J. The curator and defender of the immature small intestine. Front. Immunol. 2020, 11, 587. [Google Scholar] [CrossRef]
- Nordqvist, M.; Jacobsson, B.; Brantsæter, A.-L.; Myhre, R.; Nilsson, S.; Sengpiel, V. Timing of probiotic milk consumption during pregnancy and effects on the incidence of preeclampsia and preterm delivery: A prospective observational cohort study in Norway. BMJ Open 2018, 8, e018021. [Google Scholar] [CrossRef]
- Brantsaeter, A.; Myhre, R.; Haugen, M.; Myking, S.; Sengpiel, V.; Magnus, P.; Jacobsson, B.; Meltzer, H.M. Intake of probiotic food and risk of preeclampsia in primiparous women: The Norwegian Mother and Child Cohort Study. Am. J. Epidemiol. 2011, 174, 807–815. [Google Scholar] [CrossRef]
Experimental Model | Sampling | Bacterial Taxonomic Expressions | Ref. |
---|---|---|---|
Rats | Four pregnant Sprague Dawley rats FGR (rats fed a diet containing 7% protein until birth) and controls (rats fed a diet containing 21% protein) Fecal samples were collected using polymerase chain reaction amplification and sequencing | FGR compared with controls Enterococcus, Blautia, Enterobacteriaceae ↑ Clostridium, Eubacterium Akkermansia, Allobacutum ↓ | [41] |
Rats | Virgin Sprague Dawley rats (IUGR and controls/normal birth weight Cecocolonic contents were analyzed using real-time quantitative polymerase chain reaction (qPCR) at different ages (days 5, 12, 16, 22, 40, and 100) | IUGR compared with controls Day 5 = Bacteroides sp., clostridial cluster IV, C. leptum cluster, F. prausnitzii, R. intestinalis ↑ Day 12 = Bifidobacterium sp., clostridial clusters IV and XIVa ↓ Day 16 = Lactobacillus sp., clostridial cluster XIVa ↑ E coli ↓ Day 40 = Bifidobacterium sp. ↓ Bacteroides sp. ↑ Day 100 = R. intestinalis ↑ | [42] |
Piglets | 48 newborn large white and landrace piglets = (24 IUGR and 24 controls/normal birth weight) Microbial community structure was analyzed at 7, 21 and 28 days of age Jejunum and ileum content samples were analyzed using a thermocycler PCR system | IUGR compared with controls Days 7, 21 and 28 = Bacteroidetes, Bacteroides ↓ Day 21 = Oscillibacter, Firmicutes ↓ Proteobacteria, Pasteurell ↑ Day 28 = Escherichia-Shigella ↑ | [43] |
Piglets | 36 large white and landrace piglets = (18 IUGR and 18 controls/normal birth weight) Intestinal microbiota composition was analyzed when pigs reached 25, 50, and 100 kg of body weight PCR amplification was used to analyze the duodenum-jejunum contents | IUGR compared with controls 25 kg BW group = Bacteroidetes ↑ Proteobacteria, Lactobacillus ↓ 50 kg BW group = Firmicutes ↑ Proteobacteria, Thermi, Cyanobacteria, Bacteroidetes ↓ 100 kg BW groups = Firmicutes ↑ Fusobacteria, Proteobacteria, Thermi ↓ | [44] |
Study Design | Sample Characteristics | Bacterial Taxonomic Expressions | Ref. |
---|---|---|---|
Prospective cohort study | 2~3 years of follow-up 150 twin neonates classified into four groups Fecal samples were used to characterize the gut microbiota using 16S ribosomal RNA (rRNA) sequencing metabonomics and metagenome sequencing Groups: monochorionic-diamniotic (MCDA) twins with birth weight discordance/FGR (30 cases), MCDA twins with birth weight concordance (43 cases), dichorionic-diamniotic (DCDA) twins with birth weight discordance (26 cases) and DCDA with birth weight concordance (51 cases) | MCDA-C compared with other groups = Actinobacillus ↑ MCDA-C group compared with MCDA-D = E. faecium ↑ MCDA-D and MCDA-C groups compared with DCDA-C and DCDA-D groups = Coprococcus, Robinsoniella, Oscillospira ↑ Acinetobacter, Enterococcus, Actinobacillus ↓ | [45] |
Case–control study | 16 gravidas = eight FGR and eight controls/normal Metagenomic sequencing and bioinformatic analysis on the fecal samples of gravidas were used | FGR compared with controls = Fusobacteria, Aerophobetes, Ornatilinea, Sphingomonas, Plesiomonas ↑ Roseburia, Prevotellaceae, Dysgonomonas, Anaerovibrio, Mobilisporobacter, Symbiothrix, Arthromitus, Micrococcales, Thermohydrogenium, Cellulosimicrobium, Propionibacteriaceae, Aquabacterium, Roseomonas ↓ | [46] |
Case–control study | 32 gravidas = 14 FGR and 18 controls/normal Fecal samples were obtained from maternal rectum using 16S rDNA amplicon sequencing | FGR compared with controls = Firmicutes, Bacteroides, Faecalibacterium and Lachnospira ↑ | [47] |
Case–control study | 70 gravidas = 35 FGR and 35 controls/normal Fecal samples were using 16S rRNA sequences and metabolomes | FGR compared with controls = Lactobacillus, Catenibacterium ↑ Ruminococcaceae, Bacteroides uniformis, Mollicutes, Alistipes onderdonkii ↓ | [48] |
Case–control study | 40 gravidas = 20 IUGR and 20 controls/normal 16S rRNA Sequencing was used to analyze the reproductive microbiome | IUGR compared with controls = Neisseriaceae, Desulfovibrio ↑ Firmicutes/Bacteroidetes ratio, Bifidobacterium, Lactobacillus ↓ | [49] |
Case–control study | 36 gravidas = 18 FGR and 18 controls/with physiological pregnancy and eutrophic fetus Liquid chromatography–mass spectrometry (LC-ESI-MS/MS) was used to analyze the placental microbiome | FGR compared with controls = Actinopolyspora erythraea, Pararhizbium haloflavum, Clostridiales bacterium, Paenisporosarcina sp., Acidobacteria bacterium, Escherichia coli, Mucilagini bacteria sp. Shinorhizobium arboris ↑ | [50] |
Experimental Model | Sampling | Inflammatory Markers | Ref. |
---|---|---|---|
Piglets | 12 sows (6 IUGR and 6 controls/normal birth weight) | IUGR compared with controls = Interleukins (IL)-4, IL-1β, interferon (IFN)-γ, tumor necrosis factor (TNF-α) ↑ IL-2, IL-10, Immunoglobulins IgG and IgA ↓ | [59] |
Piglets | 12 newborn Duroc × (Landrace × Yorkshire) piglets (six IUGR and six controls/normal birth weight) | IUGR compared with controls = IL-2, IL-1β, IFN-γ, TNF-α ↓ | [60] |
Piglets | 40 Danish Landrace × Danish Yorkshire piglets (20 IUGR and 20 controls/normal birth weight) | IUGR compared with controls = IL-1β ↓ | [61] |
Rats | 10 female Sprague Dawley rats were assigned to two groups: FGR group (n = five) and healthy group (n = five) | FGR compared with controls = IL-1β, TNF-α, TRAF3, TBK1, IRF3 ↑ IL-10 ↓ | [62] |
Rats | Male and female C57/BL6 pregnant mice were assigned to three groups: mild restriction group-restricted by 25% of their daily intake, moderate restriction group-restricted by 50% of their daily intake, and ad libitum access to the standard rodent diet | Groups 1 and 2 compared with group 3 = IL-10 ↓ | [63] |
Rats | 50 adult pregnant virgin female Wistar albino rats were assigned to five stress groups: Groups I and II (Day 1–10 stress group), Group III and Group IV (10–19th-day) and Group V (1–19th-day stress group) | Groups III, IV and V compared groups I and II = IL-6, TNF-α ↑ IL-10 ↓ | [64] |
Rats | Pregnant C57BL/6 adult female mice | IL-6, TNF-α, CC chemokine ligand 2 (CCL2) ↑ | [65] |
Rats | 13 pregnant virgin female Wistar rats were assigned to three groups: LPS (n = seven dams per time-point), Saline (n = three dams per timepoint), and LPS + Goniothalamin (GTN) (n = three dams per timepoint) | LPS group compared to other groups = IL-6, IL-10, TNF-α, HIF-1α ↑ | [66] |
Rats | 19 IUGR pregnant Sprague-Dawley rats were assigned to be injected with saline (n = nine, controls) or 0.1 µg/kg BW of LPS endotoxin from E. coli (n = 19, cases) | Cases compared to controls = TNF-α, tumor necrosis factor receptor 1 (TNFR1), IL6R (IL-6 receptor) ↑ | [67] |
Sheep | Experiment 1: nine IUGR ewes were exposed to ambient temperatures (40 ± 1 °C, 35 ± 5% relative humidity); seven normal ewes were exposed to temperatures at 25 ± 1 °C and 35 ± 5% relative humidity. Experiment 2: six IUGR ewes were injected with LPS, endotoxin and E. coli; seven normal ewes were injected with saline carrier. | Experiment 1: IUGR compared with controls = IL-6, TNF-α, IκB-Kinase ↑ Experiment 2: IUGR compared with controls = TNF-α, IκB-Kinase, β-catenin, nuclear factor kappa B (NF-κB), TNFR1 ↑ | [68] |
Study Design | Sample Characteristics | Inflammatory Markers | Ref. |
---|---|---|---|
Case–control study | 58 gravidas = 36 IUGR and 22 controls/normal | IUGR compared with controls = IL-4, IL-6, IL-12, TNFα ↑ IL-10 ↓ | [73] |
Case–control study | 58 gravidas = 36 IUGR and 22 controls/normal | IUGR compared with controls = IL-8, IL-12, IFNγ, TNFα ↑ IL-10, IL-13 ↓ | [74] |
Case–control study | 100 gravidas = 50 IUGR and 50 controls/normal | IUGR compared with controls = IL-6, TNF-α, high-sensitivity C-reactive protein (hsCRP), erythrocyte sedimentation rate (ESR) ↑ IL-10 ↓ | [75] |
Case–control study | 80 gravidas = 20 PE, 24 IUGR and 36 controls/normal | IUGR and PE compared with controls = IL-6, hs-CRP ↑ | [76] |
Case–control study | 75 participants = 50 idiopathic IUGR and 25 AGA infants | Idiopathic IUGR compared with AGA = IL-6, TNF-α, adrenomedullin ↑ | [77] |
Case–control study | 100 infants = 50 IUGR infants and 50 AGA infants | IUGR compared with AGA = IL-6 and IL-18 ↑ | [78] |
Retrospective study | 140 participants = 37 IUGR mother-child couples/fetuses, 70 AGA and 33 SGA infants | IUGR compared with AGA and SGA = IL-6, TNFα, leptin ↑ Adiponectin ↓ | [79] |
Experimental Model | Probiotic Strains/Prebiotics | Dosage | Duration | Effects | Ref. |
---|---|---|---|---|---|
Piglets | Bacillus subtilis PB6 | 60 g per 100 kg FORM powder, containing 2 × 109 cfu/kg. | 21 days | Increased protein and mRNA abundances of claudin-1 and zonula occludens-1 in the intestine Decreased plasma levels of IL-1β, immunoglobulin A (IgA), percentage/count of blood lymphocytes, maltase activity, villous height, Toll-interacting protein and mRNA abundance of TLR-9 in the intestine | [54] |
Rats | Limosilactobacillus oris ML-329, Lacticaseibacillus paracasei ML-446, Lacticaseibacillus rhamnosus GG | 100 μL of PBS (Solarbio) or strains in PBS (1 × 107 CFU) (Solarbio) | 1–10 days | ML-329 and ML-446 compared with Lacticaseibacillus rhamnosus GG = Increased the number of goblet and Paneth cells in the intestine, the mean density of lysozyme, the expression of wnt gene and the abundance of β-catenin protein Decreased the expression of Notch gene | [80] |
Rats | Bifidobacterium breve UCC2003 | 100 μL of reconstituted lyophilised B. breve (containing 1010 CFU/mL) | 10–14 days | Altered metabolites/nutrient milieu, placental structure, maternal body adaptations and the expression of signaling pathways implicated in cell proliferation | [81] |
Study Design | Probiotic Strains | Sample Characteristics | Effects | Ref. |
---|---|---|---|---|
RCT | Bifidobacterium breve M-16V | 42 FGR infants supplemented with probiotic (22 cases) or dextrin (Placebo, 20 cases) 111 non-SGA preterm infants supplemented with probiotic (55 cases) or dextrin (Placebo, 56 cases) | Reached full feeds in FGR infants | [82] |
Case report | Lactobacillus rhamnosus GG (ATCC 53103 | Female preterm infant treated with probiotic (3 × 109 cfu, once a day) | Developed sepsis after the treatment | [83] |
Case report | Lactobacillus rhamnosus GG (ATCC 53103 | 6-day-old IUGR newborn treated with probiotic (0.5 × 109 CFU/day) | Increased inflammation parameters (high levels of serum C-reactive protein (CRP), procalcitonin and immature neutrophils/neutrophils). Decreased white blood cell count/platelet count | [84] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alsharairi, N.A.; Li, L. Gut Microbiota, Inflammation, and Probiotic Supplementation in Fetal Growth Restriction—A Comprehensive Review of Human and Animal Studies. Life 2023, 13, 2239. https://doi.org/10.3390/life13122239
Alsharairi NA, Li L. Gut Microbiota, Inflammation, and Probiotic Supplementation in Fetal Growth Restriction—A Comprehensive Review of Human and Animal Studies. Life. 2023; 13(12):2239. https://doi.org/10.3390/life13122239
Chicago/Turabian StyleAlsharairi, Naser A., and Li Li. 2023. "Gut Microbiota, Inflammation, and Probiotic Supplementation in Fetal Growth Restriction—A Comprehensive Review of Human and Animal Studies" Life 13, no. 12: 2239. https://doi.org/10.3390/life13122239
APA StyleAlsharairi, N. A., & Li, L. (2023). Gut Microbiota, Inflammation, and Probiotic Supplementation in Fetal Growth Restriction—A Comprehensive Review of Human and Animal Studies. Life, 13(12), 2239. https://doi.org/10.3390/life13122239