Tacrolimus Maintains the Balance of Neutrophil Extracellular Traps by Inducing DNA Methylation of Neutrophils to Reduce Immune Rejection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Cell Lines, Culture, and Treatment
2.3. Cell Viability via MTT Assays, NET Visualization Using Confocal Microscopy
2.4. Extraction of DNA and RNA from Cells
2.5. Detection of NETosis, DNMTs, and TETs via the ELISA Method
2.6. Western Blotting (WB) to Detect TET1 and DNMT1 Protein Expression
2.7. Gene Expression Analysis of DNA Methylation and NET-Related Genes via qPCR
2.8. 5mC Detection of Total DNA via LC MS/MS
2.9. SAM and SAH Detection in Cells via LC MS/MS
2.10. Data Processing and Drawing
3. Results
3.1. FK506 Significantly Increased DNA Concentrations and ROS Levels but Decreased NET and NETosis Levels after PMA Treatment in Cells
3.2. FK506 Significantly Increased the Level of DNA Methylation in Cells
3.3. FK506 Changed the Expression Level of DNA-Methylation-Related Genes
3.4. DNMT and TET Protein Levels Were Significantly Up-Regulated via FK506 in HL-60 Cells
3.5. Correlation Analysis among Genes, Proteins, and DNA Methylation
3.6. Diagram of FK506 Reducing NET Formation by Enhancing DNA Methylation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DMEM | Dulbecco’s Modified Eagle Medium |
DMSO | Dimethyl sulfoxide |
DNMT | DNA methyltransferase |
ELISA | Enzyme-linked immunosorbent assay |
LC MS/MS | Liquid chromatography–tandem mass spectrometry |
MTT | 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide |
NETs | Neutrophil extracellular traps |
NETosis | Neutrophil cell-death-associated NETs |
PMA | Phorbol myristate acetate |
5mC | 5-methylcytosine |
MRM | Multiple-reaction monitoring |
ROS | Reactive oxygen species |
SAH | S-adenosylhomocysteine |
SAM | S-adenosylmethionine |
SE | Standard error |
TET | Ten eleven translocation |
UPLC | Ultra-performance liquid chromatography |
WB | Western blot |
References
- Ingulli, E. Mechanism of cellular rejection in transplantation. Pediatr. Nephrol. 2010, 25, 61–74. [Google Scholar] [CrossRef] [PubMed]
- Allison, A.C. Immunosuppressive drugs: The first 50 years and a glance forward. Immunopharmacology 2000, 47, 63–83. [Google Scholar] [CrossRef] [PubMed]
- Hartono, C.; Muthukumar, T.; Suthanthiran, M. Immunosuppressive drug therapy. Cold Spring Harb. Perspect. Med. 2013, 3, a015487. [Google Scholar] [CrossRef] [PubMed]
- Wiseman, A.C. Immunosuppressive medications. Clin. J. Am. Soc. Nephrol. 2016, 11, 332–343. [Google Scholar] [CrossRef] [PubMed]
- Wallemacq, P.E.; Reding, R. FK506 (Tacrolimus), A Novel Immunosuppressant in Organ Transplantation: Clinical, Biomedical, and Analytical Aspects The macrolide immunosuppressant FK506 (tacrolimus) is. Clin. Chem. 1993, 39, 2219–2228. [Google Scholar] [CrossRef]
- European FK506 Multicentre Liver Study Group. Randomised trial comparing tacrolimus (FK506) and cyclosporin in prevention of liver allograft rejection. Lancet 1994, 344, 423–428. [Google Scholar] [CrossRef]
- Taylor, A.L.; Watson, C.J.E.; Bradley, J.A. Immunosuppressive agents in solid organ transplantation: Mechanisms of action and therapeutic efficacy. Crit. Rev. Oncol. Hematol. 2005, 56, 23–46. [Google Scholar] [CrossRef]
- Scalea, J.R.; Levi, S.T.; Ally, W.; Brayman, K.L. Tacrolimus for the prevention and treatment of rejection of solid organ transplants. Expert Rev. Clin. Immunol. 2016, 12, 333–342. [Google Scholar] [CrossRef]
- Plosker, G.L.; Foster, R.H.; Tacrolimus, A. Further Update of its Pharmacology and Therapeutic Use in the Management of Organ Transplantation. Drugs 2000, 59, 323–389. [Google Scholar] [CrossRef]
- Staatz, C.E.; Tett, S.E. Clinical Pharmacokinetics and Pharmacodynamics of Tacrolimus in Solid Organ Transplantation. Clin. Pharmacokinet. 2004, 43, 623–653. [Google Scholar] [CrossRef]
- Tolou-Ghamari, Z. Nephro and neurotoxicity of calcineurin inhibitors and mechanisms of rejections: A review on tacrolimus and cyclosporin in organ transplantation. J. Nephropathol. 2012, 1, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Takei, H.; Araki, A.; Watanabe, H.; Ichinose, A.; Sendo, F. Rapid killing of human neutrophils by the potent activator phorbol 12-myristate 13-acetate (PMA) accompanied by changes different from typical apoptosis or necrosis. J. Leukoc. Biol. 1996, 59, 229–240. [Google Scholar] [CrossRef]
- Papayannopoulos, V.; Zychlinsky, A. NETs: A new strategy for using old weapons. Trends Immunol. 2009, 30, 513–521. [Google Scholar] [CrossRef]
- Kumar, V.; Sharma, A. Neutrophils: Cinderella of innate immune system. Int. Immunopharmacol. 2010, 10, 1325–1334. [Google Scholar] [CrossRef]
- Brinkmann, V.; Zychlinsky, A. Neutrophil extracellular traps: Is immunity the second function of chromatin? J. Cell Biol. 2012, 198, 773–783. [Google Scholar] [CrossRef] [PubMed]
- Andrews, R.K.; Arthur, J.F.; Gardiner, E.E. Neutrophil extracellular traps (NETs) and the role of platelets in infection. Thromb. Haemost. 2014, 112, 659–665. [Google Scholar] [CrossRef] [PubMed]
- Castanheira, F.V.S.; Kubes, P. Neutrophils and NETs in modulating acute and chronic inflammation. Blood 2019, 133, 2178–2185. [Google Scholar] [CrossRef]
- Delgado-Rizo, V.; Martínez-Guzmán, M.A.; Iñiguez-Gutierrez, L.; García-Orozco, A.; Alvarado-Navarro, A.; Fafutis-Morris, M. Neutrophil extracellular traps and its implications in inflammation: An overview. Front. Immunol. 2017, 8, 81. [Google Scholar] [CrossRef]
- Vanaudenaerde, B.M.; Dupont, L.J.; Wuyts, W.A.; Verbeken, E.K.; Meyts, I.; Bullens, D.M.; Dillisen, E.; Luyts, L.; Van Raedmdonck, D.E.; Verleden, G.M. The role of interleukin-17 during acute rejection after lung transplantation. Eur. Respir. J. 2006, 27, 779–787. [Google Scholar] [CrossRef]
- Scozzi, D.; Ibrahim, M.; Menna, C.; Krupnick, A.S.; Kreisel, D.; Gelman, A.E. The Role of Neutrophils in Transplanted Organs. Am. J. Transplant. 2017, 17, 328–335. [Google Scholar] [CrossRef]
- Choi, D.H.; Kobayashi, Y.; Nishi, T.; Luikart, H.; Dimbil, S.; Kobashigawa, J.; Khush, K.; Fearon, W.F. Change in lymphocyte to neutrophil ratio predicts acute rejection after heart transplantation. Int. J. Cardiol. 2018, 251, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Gorantla, V.S.; Barker, J.H.; Jones, J.W.; Prabhune, K.; Maldonado, C.; Granger, D.K. Immunosuppressive agents in transplantation: Mechanisms of action and current anti-rejection strategies. Microsurg. Off. J. Int. Microsurg. Soc. Eur. Fed. Soc. Microsurg. 2000, 20, 420–429. [Google Scholar] [CrossRef]
- Duncan, M.D.; Wilkes, D.S. Transplant-related immunosuppression: A review of immunosuppression and pulmonary infections. Proc. Am. Thorac. Soc. 2005, 2, 449–455. [Google Scholar] [CrossRef] [PubMed]
- Claeys, E.; Vermeire, K.; Leuven, K.U. Immunosuppressive drugs in organ transplantation to prevent allograft rejection: Mode of action and side effects. J. Immunol. Sci. 2019, 3, 14–21. [Google Scholar] [CrossRef]
- Yin, M.; Ochs, R.S. Mechanism for the paradoxical inhibition and stimulation of calcineurin by the immunosuppresive drug tacrolimus (FK506). Arch. Biochem. Biophys. 2003, 419, 207–213. [Google Scholar] [CrossRef] [PubMed]
- Fukudo, M.; Yano, I.; Masuda, S.; Okuda, M.; Inui, K.I. Distinct inhibitory effects of tacrolimus and cyclosporin A on calcineurin phosphatase activity. J. Pharmacol. Exp. Ther. 2005, 312, 816–825. [Google Scholar] [CrossRef]
- Sollberger, G.; Amulic, B.; Zychlinsky, A. Neutrophil extracellular trap formation is independent of de novo gene expression. PLoS ONE 2016, 11, e0157454. [Google Scholar] [CrossRef]
- Van Der Linden, M.; Westerlaken, G.H.A.; Van Der Vlist, M.; Van Montfrans, J.; Meyaard, L. Differential Signalling and Kinetics of Neutrophil Extracellular Trap Release Revealed by Quantitative Live Imaging. Sci. Rep. 2017, 7, 6529. [Google Scholar] [CrossRef]
- Mroczek, A.; Cieloch, A.; Manda-Handzlik, A.; Kuźmicka, W.; Muchowicz, A.; Wachowska, M. Overexpression of atg5 gene makes granulocyte-like hl-60 susceptible to release reactive oxygen species. Int. J. Mol. Sci. 2020, 21, 5194. [Google Scholar] [CrossRef]
- Friso, S.; Choi, S.W.; Dolnikowski, G.G.; Selhub, J. A method to assess genomic DNA methylation using high-performance liquid chromatography/electrospray ionization mass spectrometry. Anal. Chem. 2002, 74, 4526–4531. [Google Scholar] [CrossRef]
- Fernandez, A.F.; Valledor, L.; Vallejo, F.; Cañal, M.J.; Fraga, M.F. Quantification of global DNA methylation levels by mass spectrometry. Methods Mol. Biol. 2018, 1708, 49–58. [Google Scholar] [PubMed]
- Burren, K.A.; Mills, K.; Copp, A.J.; Greene, N.D.E. Quantitative analysis of s-adenosylmethionine and s-adenosylhomocysteine in neurulation-stage mouse embryos by liquid chromatography tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2006, 844, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, K.D.; Helin, K. Role of TET enzymes in DNA methylation, development, and cancer. Genes Dev. 2016, 30, 733–750. [Google Scholar] [CrossRef] [PubMed]
- Tahiliani, M.; Koh, K.P.; Shen, Y.; Pastor, W.A.; Bandukwala, H.; Brudno, Y.; Agarwal, S.; Iyer, L.M.; Liu, D.R.; Aravind, L.; et al. Conversion of 5-Methylcytosine to 5-Hydroxymethylcytosine in Mammalian DNA by MLL Partner TET1. Science 2009, 324, 930–935. [Google Scholar] [CrossRef]
- He, Y.F.; Li, B.Z.; Li, Z.; Liu, P.; Wang, Y.; Tang, Q.; Ding, J.; Jia, Y.; Chen, Z.; Li, L.; et al. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 2009, 324, 929–930. [Google Scholar] [CrossRef]
- Yasuda, H.; Takishita, Y.; Morita, A.; Tsutsumi, T.; Tsuchiya, M.; Sato, E.F. DNA demethylation increases NETosis. Arch. Biochem. Biophys. 2020, 689, 108465. [Google Scholar] [CrossRef]
- Brinkmann, V.; Reichard, U.; Goosmann, C.; Fauler, B.; Uhlemann, Y.; Weiss, D.S.; Weinrauch, Y.; Zychlinsky, A. Neutrophil Extracellular Traps Kill Bacteria. Science 2004, 303, 1532–1535. [Google Scholar] [CrossRef]
- Tan, C.; Aziz, M.; Wang, P. The vitals of NETs. J. Leukoc. Biol. 2021, 110, 797–808. [Google Scholar] [CrossRef]
- Wang, X.; Scozzi, D.; Kreisel, D.; Krupnick, A.; Miller, M.J.; Gelman, A.E. The Real Time Visualization of Neutrophil Extracellular Trap Formation in Lung Transplants Reveals a Critical Role in Tolerance. J. Heart Lung Transplant. 2016, 35, S48. [Google Scholar] [CrossRef]
- Masucci, M.T.; Minopoli, M.; del Vecchio, S.; Carriero, M.V. The Emerging Role of Neutrophil Extracellular Traps (NETs) in Tumor Progression and Metastasis. Front. Immunol. 2020, 11, 1749. [Google Scholar] [CrossRef]
- Vega-Roman, C.; Leal-Cortes, C.; Portilla-de Buen, E.; Gomez-Navarro, B.; Melo, Z.; Franco-Acevedo, A.; Medina-Perez, M.; Jalomo-Martinez, B.; Martinez-Martinez, P.; Evangelista-Carrillo, L.A.; et al. Impact of transplantation on neutrophil extracellular trap formation in patients with end-stage renal disease A single-center, prospective cohort study. Medicine 2021, 100, e26595. [Google Scholar] [CrossRef] [PubMed]
- Caldarone, L.; Mariscal, A.; Sage, A.; Khan, M.; Juvet, S.; Martinu, T.; Zamel, R.; Cypel, M.; Liu, M.; Palaniyar, N.; et al. Neutrophil extracellular traps in ex vivo lung perfusion perfusate predict the clinical outcome of lung transplant recipients. Eur. Respir. J. 2019, 53, 1801736. [Google Scholar] [CrossRef] [PubMed]
- Bieber, S.; Muczynski, K.A.; Lood, C. Neutrophil Activation and Neutrophil Extracellular Trap Formation in Dialysis Patients. Kidney Med. 2020, 2, 692–698.e1. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yan, P.; Bin, Y.; Qin, X.; Wu, Z. Neutrophil extracellular traps and complications of liver transplantation. Front. Immunol. 2022, 13, 1054753. [Google Scholar] [CrossRef] [PubMed]
- Sayah, D.M.; Mallavia, B.; Liu, F.; Ortiz-Muñoz, G.; Caudrillier, A.; Der Hovanessian, A.; Ross, D.J.; Lynch, J.P.; Saggar, R.; Ardehali, A.; et al. Neutrophil extracellular traps are pathogenic in primary graft dysfunction after lung transplantation. Am. J. Respir. Crit. Care Med. 2015, 191, 455–463. [Google Scholar] [CrossRef]
- Bonneau, S.; Landry, C.; Bégin, S.; Adam, D.; Villeneuve, L.; Clavet-Lanthier, M.-É.; Dasilva, A.; Charles, E.; Dumont, B.L.; Neagoe, P.-E.; et al. Correlation between Neutrophil Extracellular Traps (NETs) Expression and Primary Graft Dysfunction Following Human Lung Transplantation. Cells 2022, 11, 3420. [Google Scholar] [CrossRef]
- Sawalha, A.H. The Innate and Adaptive Immune Response Are Both Involved in Drug-Induced Autoimmunity. Arthritis Rheumatol. 2018, 70, 330–333. [Google Scholar] [CrossRef]
- Yasuda, H.; Takishita, Y.; Sato, E.F. Epigenetic regulation of neutrophil extracellular traps. Free. Radic. Biol. Med. 2018, 120, S74. [Google Scholar] [CrossRef]
Gene Name | Forward Primer (5′–3′) | Reverse Primer (5′–3′) |
---|---|---|
DNMT1 | ACCGCTTCTACTTCCTCGAGGCCTA | GTTGCAGTCCTCTGTGAACACTGTGG |
DNMT3A | CACACAGAAGCATATCCAGGAGTG | AGTGGACTGGGAAACCAAATACCC |
DNMT3B | AATGTGAATCCAGCCAGGAAAGGC | ACTGGATTACACTCCAGGAACCGT |
TET1 | TCTGTTGTTGTGCCTCTGGA | CCCATGACCACATCTACTGT |
TET2 | AGCAATAGGACATCCCTGAG | CATCTAGGAGCAGGTCCTAA |
TET3 | CGGATCGAGAAGGTCATCTA | ATGACGATCACAGCGTTCTG |
GAPDH | CAAGGTCATCCATGACAACTTTG | GTCCACCACCCTGTTGCTGTAG |
Compound | Parent (m/z) | Daughters (m/z) | Cone Voltage (V) | Collision Energy (V) | Comments |
---|---|---|---|---|---|
Cytidine (C) | 244.23 | 112.06 | 28 | 10 | Quantitative ion pair |
244.23 | 94.96 | 28 | 46 | Qualitative ion pair | |
5mC | 258.23 | 126.11 | 22 | 10 | Quantitative ion pair |
258.23 | 108.89 | 22 | 42 | Qualitative ion pair | |
Thymidine (IS) | 243.23 | 127.11 | 16 | 10 | Quantitative ion pair |
243.23 | 117.06 | 16 | 6 | Qualitative ion pair |
Compound | Parent (m/z) | Daughters (m/z) | Cone Voltage (V) | Collision Energy (V) | Comments |
---|---|---|---|---|---|
SAH | 385.2 | 134.1 | 30 | 22 | Quantitative ion pair |
385.2 | 136.1 | 30 | 20 | Qualitative ion pair | |
SAM | 399.2 | 250.1 | 30 | 16 | Quantitative ion pair |
399.2 | 298.2 | 30 | 12 | Qualitative ion pair |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, L.; Cai, M. Tacrolimus Maintains the Balance of Neutrophil Extracellular Traps by Inducing DNA Methylation of Neutrophils to Reduce Immune Rejection. Life 2023, 13, 2253. https://doi.org/10.3390/life13122253
Xu L, Cai M. Tacrolimus Maintains the Balance of Neutrophil Extracellular Traps by Inducing DNA Methylation of Neutrophils to Reduce Immune Rejection. Life. 2023; 13(12):2253. https://doi.org/10.3390/life13122253
Chicago/Turabian StyleXu, Liang, and Ming Cai. 2023. "Tacrolimus Maintains the Balance of Neutrophil Extracellular Traps by Inducing DNA Methylation of Neutrophils to Reduce Immune Rejection" Life 13, no. 12: 2253. https://doi.org/10.3390/life13122253
APA StyleXu, L., & Cai, M. (2023). Tacrolimus Maintains the Balance of Neutrophil Extracellular Traps by Inducing DNA Methylation of Neutrophils to Reduce Immune Rejection. Life, 13(12), 2253. https://doi.org/10.3390/life13122253