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Abstract: This study aimed to explore the relationship between thyroid-stimulating hormone (TSH)
elevation and the baseline computed tomography (CT) density and volume of the thyroid. We
examined 86 cases with new-onset hypothyroidism (TSH > 4.5 IU/mL) and 1071 controls from a
medical check-up database over 5 years. A deep learning-based thyroid segmentation method was
used to assess CT density and volume. Statistical tests and logistic regression were employed to
determine differences and odds ratios. Initially, the case group showed a higher CT density (89.8 vs.
81.7 Hounsfield units (HUs)) and smaller volume (13.0 vs. 15.3 mL) than those in the control group.
For every +10 HU in CT density and −3 mL in volume, the odds of developing hypothyroidism
increased by 1.40 and 1.35, respectively. Over the course of the study, the case group showed a notable
CT density reduction (median: −8.9 HU), whereas the control group had a minor decrease (−2.9 HU).
Thyroid volume remained relatively stable for both groups. Higher CT density and smaller thyroid
volume at baseline are correlated with future TSH elevation. Over time, there was a substantial and
minor decrease in CT density in the case and control groups, respectively. Thyroid volumes remained
consistent in both cohorts.
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1. Introduction

Primary hypothyroidism, which is a common hormonal imbalance marked by high
thyroid-stimulating hormone (TSH) levels, has two main types: subclinical, with normal
free thyroxine (T4) levels, and overt, with below-normal T4 levels [1]. The prevalence
of hypothyroidism ranges from 4% to 15%, is higher among women, and increases with
age [2–4]. It has diverse symptoms, ranging from life-threatening to asymptomatic, and
these include fatigue, cold sensitivity, weight gain, constipation, voice changes, and dry
skin. Additionally, hypothyroidism can affect the cardiovascular system and bones [1,5].
Its diagnosis is impeded by its diverse and often non-specific symptoms, which increases
the risk of undetected cases. Accordingly, it is important to increase knowledge for the
identification of high-risk groups and early diagnosis of hypothyroidism.

Ultrasound is the most common imaging modality for thyroid assessment; however,
computed tomography (CT) imaging allows unique assessments since it can reflect the
iodine content of the thyroid gland [6]. Additionally, the thyroid is often included in
the imaging range of routine chest CTs; therefore, its size and CT density are commonly
assessed during standard radiological interpretations. Cross-sectional studies have shown
that thyroid CT densities in conditions such as chronic thyroiditis and hypothyroidism
typically range from 36 to 81 Hounsfield units (HUs), which is are significantly lower than
the normal range of 80–120 HU [7–10]. This decreased CT density can be attributed to the
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replacement of thyroid follicular cells, infiltration of inflammatory cells, and subsequent
fibrosis [7,8,11–13].

However, there remain no large-scale longitudinal studies on thyroid CT densities;
accordingly, the baseline characteristics and changes associated with the onset of hypothy-
roidism remain unclear. Furthermore, in cases of excessive iodine intake, the thyroid gland
increases iodine uptake, which increases the risk of the future onset of chronic thyroiditis
and thyroid dysfunction [14,15]. Accordingly, iodine-rich intake may result in increased
thyroid CT densities prior to the onset of the aforementioned conditions. Although com-
prehensive studies on the relationship between dietary iodine exposure and thyroid CT
densities are lacking, it is known that excessive iodine exposure through medications like
amiodarone can lead to an increase in thyroid densities [16,17]. Additionally, there are
scarce longitudinal data regarding thyroid volume.

For improved thyroid assessment via CT, which may facilitate the risk evaluation and
early diagnosis of hypothyroidism, a comprehensive longitudinal analysis of CT densities
and volumes is essential. Our institution has a large database of whole-body CT scans and
time series data from blood tests performed as part of the annual medical checkup program.
Although the manual measurement of CT density and volumes in numerous images was
previously labor-intensive, advances in deep learning-based segmentation techniques have
now provided an efficient solution [18,19]. These techniques enable precise pixel-level
extraction in CT images, which simplifies the acquisition of quantitative data. By leveraging
this database with deep learning-driven segmentation techniques, this study aimed to
examine the correlations between initial CT characteristics and the subsequent emergence
of hypothyroidism. Further, we aimed to examine alterations in imaging indicators from
baseline values among individuals who subsequently developed hypothyroidism.

2. Materials and Methods
2.1. Dataset and Study Design

This retrospective study was approved by the ethics review board of our institution.
Our comprehensive database consolidates data, including sex, age, and blood test results
such as TSH and T4 levels, as well as whole-body CT images of healthy individuals who
participated in our medical cancer screening program. In this database, we tracked infor-
mation regarding the above items for individuals who first visited the program between
November 2006 and October 2011 for up to 6 years. Written informed consent was obtained
from all participants for the use of their screening data for research purposes.

In our study, cases without a record of a visit from 5 to 6 years after the initial
consultation were defined as censored at the time of their last visit. After excluding
individuals with missing information, without follow-up visits, with previous thyroid
surgery, and with elevated TSH levels at the initial visit, the remaining individuals were
defined as the source cohort. Subsequently, we performed a nested case–control exploration,
with the focal outcome being the onset of elevated TSH levels. In this cohort, participants
who exceeded the upper limit of the TSH level during the course of the study were defined
as the case group. Among individuals without elevated TSH levels, those with available
follow-up data for >5 years were included in the control group. We examined differences in
the baseline characteristics between the case and control groups. Additionally, we checked
for significant changes in CT density and volume between the first visit and the end of
follow-up (i.e., when the TSH level exceeded the upper limit for the case group and at the
last visit for the control group).

2.2. Image Acquisition and Measurements

Whole-body CT scans in our database were performed using single-type scanners
(Discovery ST Elite, GE Healthcare, Waukesha, WI, USA) without a contrast medium.
The CT images were acquired with the participants’ arms down using the following
parameters: tube voltage, 120 kV; field of view, 500 mm; matrix size, 512 × 512; and voxel
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size, 0.98 × 0.98 × 1.25 mm. Using CT images, the CT densities and volumes of the thyroid
gland were calculated using the deep learning method described below.

Dual U-net architectures were used to attain a precise segmentation map of the thy-
roid gland. The U-net design, which is renowned for its symmetric U-shaped struc-
ture fortified with lateral skip connections, has gained significant traction in the realm
of medical image semantic segmentation [19,20]. Our approach entailed a two-tiered
process: we initiated coarse thyroid location prediction via a two-dimensional U-net,
followed by more refined segmentation facilitated by a cropped three-dimensional U-
net (Figure 1). The implementation was conducted using Python 3.8.13 (accessed on
3 December 2023, https://docs.python.org/3.8/) and PyTorch 1.11.0 (accessed on 3 Decem-
ber 2023, https://pytorch.org/docs/1.11/). The subsequently derived segmentation maps
were instrumental in computing the thyroid CT density and volume for each participant.
The computed CT density represented the average CT density across the entirety of the
segmented thyroid, whereas the volume was ascertained by multiplying the voxel count
within the segmented map by the dimensions of an individual voxel.
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Figure 1. Two-step method of calculating thyroid CT density and thyroid volume. Step 1: the
input is a two-dimensional whole-body CT image, and the output is a label image. We created a
cropped CT image of 96 × 96 × 96 pixels based on the label image. Step 2: the input is the cropped
three-dimensional CT image, and the output is the label image. We calculated the thyroid CT density
and volume using the input and output in Step 2.

As part of our preliminary assessments, the efficacy of our methodological implemen-
tation was gauged. When trained on a dataset comprising 107 cases (training cohort, 85;
validation cohort, 22)—these scans were captured using a consistent CT scanner, though
they were not incorporated into our primary analysis dataset—the model exhibited a
commendable Dice similarity coefficient [21] of 0.93. This demonstrated that our approach
could achieve high-quality semantic segmentation.

2.3. Statistical Analysis

Differences in baseline distributions between the case and control groups were exam-
ined using the chi-square test for sex and the Mann–Whitney U test for age, TSH level, T4
level, CT density, and volume. Scatter plots of CT density at baseline and volume were
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created for visualization. Logistic regression analysis was performed to examine the associ-
ation between CT imaging features (CT density and volume) and new abnormalities. Sex,
age, TSH level, and T4 level at baseline were used as covariates. The Wilcoxon signed-rank
test was used to assess whether or not the CT density and volume changed from baseline
to follow-up end within the groups. Between-group comparisons of these changes were
not performed since there was no appropriate compensation for the different follow-up
periods in the two groups. Scatter plots were generated for changes in CT densities and
TSH levels. Subsequently, ordinary least squares (OLS) regression analysis was employed
to draw regression lines on these plots, quantifying the relationship between changes in
CT densities and TSH levels. All statistical analyses were performed using the JMP Pro
17.0.0 software (JMP Statistical Discovery LLC, Cary, NC, USA). Statistical significance was
defined as p < 0.05.

3. Results

Figure 2 shows a flowchart of the participants. Between November 2006 and October
2011, 3672 participants were initially included. Among them, participants were excluded
in accordance with the exclusion criteria; 109 were missing crucial information, 1252 did
not attend follow-up visits, 76 had a history of thyroid surgery, and 112 presented with
a baseline TSH level > 4.5 IU/mL. Subsequently, the source cohort stood at 2123 partic-
ipants. Among them, 2037 participants had a TSH level ≤ 4.5 IU/mL until censored,
with 966 being excluded for being censored before a 5-year span. Subsequently, partici-
pants were segmented into two main groups. The case group comprised 86 participants
with a TSH level > 4.5 IU/mL after their initial visit, while the control group comprised
1071 participants who maintained a TSH level of ≤4.5 IU/mL for ≥5 years.
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Figure 2. Flowchart of participants.

Table 1 summarizes the distribution of each variable per group at baseline. The
participants in the case group tended to be older (median: 61 vs. 56 years; p < 0.01), and
had higher TSH levels (median: 2.80 vs. 1.30 IU/mL; p < 0.01), lower T4 levels (median:
1.08 vs. 1.12 ng/dL; p < 0.01), higher CT densities (median: 89.8 vs. 77.5 HU; p < 0.01),
and lower volumes (median: 13.0 vs. 15.1 mL; p < 0.01) than those in the control group at
baseline. The proportion of male participants was non-significantly lower in the case group
than in the control group (male%: 59% vs. 66%; p = 0.22).
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Table 1. Characteristics of study population in baseline analysis.

Case Group
(n = 86)

Control Group
(n = 1071) p-Value

Follow-up time (Years)
(Median [IQR]) 2.1 [1.9–3.4] 5.5 [5.4–5.7] N/A

Sex (No.) 0.22
Male 51 712

Female 35 359

Age (Years)
(Median [IQR]) 61 [54–69] 56 [48–64] <0.01

TSH (IU/mL)
(Median [IQR]) 2.80 [2.23–3.63] 1.30 [0.87–1.84] <0.01

T4 (ng/dL)
(Median [IQR]) 1.08 [0.92–1.23] 1.12 [1.12–1.26] <0.01

CT density (HU)
(Median [IQR]) 89.8 [74.3–99.8] 81.7 [73.5–90.0] <0.01

Volume (mL)
(Median [IQR]) 13.0 [10.1–16.4] 15.3 [11.9–19.2] <0.01

IQR, interquartile range. p-values < 0.05 are shown in bold.

Figure 3 illustrates a scatter plot highlighting the relationship between CT density
(HU) and volume (ml) at baseline. The case and control groups are distinctly represented
by red and gray dots, respectively. Upon observation, it becomes apparent that the red data
points of the case group tend to shift slightly toward the lower-right quadrant, indicating
a lower volume and higher CT density compared with those indicated by the gray data
points of the control group.
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For every 10 HU increase in CT density, the non-adjusted odds ratio for new-onset
TSH elevation was 1.40, with a 95% confidence interval (CI) of 1.16–1.67 (p < 0.01). Similarly,
for a 3 mL reduction in volume, the odds ratio was 1.26 (95% CI: 1.11–1.59; p < 0.01). After
adjusting for baseline factors such as sex, age, TSH level, and T4 level, the odds ratios for a
10 HU increase in CT density and 3 mL decrease in volume were 1.44 (95% CI: 1.17–1.77;
p < 0.01) and 1.33 (95% CI: 1.11–1.59; p < 0.01), respectively. Despite these adjustments, the
significance remained unchanged. These findings are detailed in Table 2.

Table 2. Odds ratios of new-onset TSH elevation.

Non-Adjusted
Odds Ratio

(95%CI)
p-Value

Multivariable-
Adjusted

Odds Ratio *
(95% CI)

p-Value

CT density (+10 HU) 1.40
(1.16–1.67) <0.01 1.44

(1.17–1.77) <0.01

Volume (−3 mL) 1.26
(1.10–1.45) <0.01 1.33

(1.11–1.59) <0.01

CI, confidence interval; TSH, thyroid-stimulating hormone. * Estimated from logistic regression models. Multi-
variable model was adjusted for sex, age, TSH, and T4 at baseline. p-values < 0.05 are shown in bold.

In the case group, during a median observation span of 2.1 years (interquartile range:
1.9–3.4 years), there was a notable reduction in CT density. The average decrease in CT
density was −8.4 HUs, with a range from −17.1 to −1.1 HUs; further, this change was
statistically significant (p < 0.01), as indicated in Table 3. Contrastingly, the shift in volume
was minimal and not statistically significant, with an average change of −0.1 mL and a
range from −1.9 to 1.2 mL (p = 0.23). Similarly, among 870 participants in the control
group without any TSH elevations over a 5-year period, there was a statistically significant
decrease in CT density, with an average of −2.9 HUs and ranging from −8.5 to 1.8 HUs
(p < 0.01). However, similar to the case group, the volume change was negligible and not
statistically significant, with an average alteration of −0.1 mL, within a range of −1.4 to
1.2 mL (p = 0.29).

Table 3. Changes in CT densities and volumes in the case and control groups.

Baseline End of Follow-Up * p-Value Changes

TSH

Case group 2.80 [2.23–3.63] 5.21 [4.89–5.76] ** 2.53 [1.80–3.25]

Control group 1.30 [0.87–1.84] 1.32 [0.92–1.85] ** 0.02 [−0.27–0.35]

T4

Case group 1.12 [1.00–1.26] 1.09 [0.99–1.21] <0.01 −0.03 [−0.17–0.11]

Control group 1.08 [0.92–1.23] 1.05 [0.87–1.17] 0.04 −0.04 [−0.23–0.11]

CT density

Case group 89.8 [74.3–99.8] 77.5 [66.0–90.7] <0.01 −8.4 [−17.1–−1.1]

Control group 81.7 [73.5–90.0] 78.3 [71.0–86.5] <0.01 −2.9 [−8.5–1.8]

Volume

Case group 13.0 [10.1–16.4] 13.1 [9.9–16.3] 0.23 −0.1 [−1.9–1.2]

Control group 15.3 [11.9–19.2] 15.1 [12.0–18.9] 0.29 −0.1 [−1.4–1.2]

The values are presented as medians (interquartile ranges). CT, computed tomography; TSH, thyroid-stimulating
hormone. * When the TSH level exceeded the upper limit for the case group and at the visit from 5 to 6 years
after the initial visit for the control group. ** TSH is a variable with an arbitrary cutoff; hence, p-values were not
calculated. p-values < 0.05 are shown in bold.
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Changes in CT densities and TSH levels are visualized as a scatter plot in Figure 4.
The regression line is represented by the equation ∆TSH = −0.022 × (∆CT density) +
0.1240, which indicates an inverse relationship between changes in CT densities and TSH.
The statistical analysis yielded a p-value of less than 0.01 for the ∆CT density coefficient
(Table 4).
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Figure 4. Scatter plot of changes in CT densities and TSH levels in the analyzed cohort. The
scatter plot represents the differences between the values at the end of the follow-up and the initial
consultation for both CT densities and TSH. The regression line is given by ∆TSH = −0.022 × (∆CT
density) + 0.1240.

Table 4. Linear regression results for the impact of changes in CT on variations in TSH levels.

Coefficient Standard Error 95%CI p-Value

Constant 0.124 0.034 0.058–0.190 <0.01

Changes in CT (HU) −0.022 0.003 −0.029–−0.015 <0.01
p-values < 0.05 are shown in bold.

4. Discussion

Our findings demonstrated that higher CT densities and smaller thyroid volumes at
baseline are associated with subsequent elevations in TSH levels. The case group experi-
enced a significant decrease in CT density, whereas the control group experienced only a
minor decrease, with both groups maintaining stable volumes over time. To our knowl-
edge, this is the first study to perform a comprehensive longitudinal analysis regarding the
relationship between TSH levels and CT imaging characteristics of the thyroid gland.

Recent advancements in deep learning technology have significantly impacted the
field of medical image analysis [19,22]. The segmentation technique employed in this
study, which uses deep learning, involves labeling each pixel in an image to represent
the characteristics of the corresponding region [20,23]. By utilizing tens to hundreds of
annotated images for training neural networks, we can automate the extraction of regions of
interest. This automation has drastically increased the efficiency of tasks that traditionally
required considerable effort for each case at imaging workstations. Furthermore, apart
from identifying regions, these networks can provide various quantitative data depending
on the applied imaging modality. These quantitative data include volume measurements,
CT density, signal intensity for magnetic resonance imaging (MRI), or a standardized
uptake value (SUV) for positron emission tomography (PET) [24–26]. Therefore, deep
learning-enhanced image segmentation is a crucial and valuable fundamental technique for
large-scale image analysis. This segmentation technique and the large database facilitated
our large-scale analysis and provided new insights into this field. Although several studies
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have employed deep learning for thyroid analysis, the current primary focus appears to
be on using ultrasound to detect thyroid nodules or differentiate between benign and
malignant nodules [27–29], with CT studies being relatively limited. However, the thyroid
is often included in the upper bound of standard chest CT scans, suggesting a potentially
large dataset for analysis. Accordingly, this approach is expected to receive increasing
attention, thus leading to more detailed research, including longitudinal studies. Moreover,
using the quantitative values of regions of interest, this approach can provide explanatory
or dependent variables for epidemiological studies, similar to other clinical information,
which may further invigorate epidemiological research, including image feature analysis.

In our observations, we observed notable differences between the case and control
groups. Compared with the control group, the case group tended to have higher thyroid
CT density (median: 89.8 HU for the case group; 77.5 HU for the control group; p < 0.01)
and smaller thyroid volumes (median: 13.0 mL for the case group; 15.1 mL for the control
group; p < 0.01) at baseline. Moreover, when the TSH level exceeded the upper limit, there
was a large decrease in thyroid CT densities (median: −8.4 HU) but almost no change
in thyroid volume (median: −0.1 mL) in the case group; similarly, in the control group,
there was a slight but significant decrease in CT densities (median: −2.9 HU), but almost
no change in volume (median: −0.1 mL). The observed marginally lower proportion
of male participants in the case group, despite not reaching statistical significance, is
consistent with previous findings. Numerous studies have demonstrated that the incidence
of hypothyroidism tends to be higher among women and escalates with advancing age [2,4].
Moreover, the higher baseline TSH level in the case group is reasonable since it comprised
participants whose TSH levels were in the process of rising at baseline. A high CT density
and low volume of the thyroid was associated with new-onset TSH level elevation even
after adjusting for other baseline information (i.e., sex, age, TSH levels, and T4 levels) in
logistic regression (Table 2). The higher CT densities in the case group than those in the
control group could be attributed to iodine intake. Previous studies have suggested that
high iodine intake leads to increased TSH levels and thyroid iodine uptake, which may be
reflected as increased CT densities [6]. Furthermore, excessive iodine intake can trigger
chronic thyroiditis and hypothyroidism [14,15]. Therefore, high thyroid CT densities could
be indicative of excessive iodine intake, with these cases potentially developing chronic
thyroiditis or hypothyroidism. The significant decrease in CT densities in the case group
could be attributed to the onset of chronic thyroiditis. Unfortunately, our study could not
verify this hypothesis given the lack of dietary and thyroid peroxidase (TPO) antibody
data. Nonetheless, our findings provide a basis for more detailed future research on iodine
exposure, CT findings, and thyroid function. Regarding thyroid volume, a previous cohort
study using ultrasonography indicated that smaller thyroid sizes are associated with the
development of hypothyroidism [30], which is consistent with our findings. However,
the underlying mechanism of this relationship remains unclear, and further research is
warranted. Another important point to note is that when examining the endpoint of the
follow-up, only a slight between-group difference was observed in the CT densities. This
suggests that, in the context of predicting elevated TSH levels, relying solely on assessing
thyroid CT density at a single time point may not be sufficient. Therefore, it is crucial to
monitor changes in thyroid CT density over time. If a notably low thyroid CT density is
incidentally observed, the measurement of TSH should be considered.

In the course of this study, we observed nuanced shifts in CT density (−2.9 [−8.5–1.8]
HU over a span of 5.5 [5.4–5.7] years) and volume (−0.1 [−1.4–1.2] mL across the same time
frame) within the control groups. Our interpretation of these results leads us to postulate
that such changes may indeed signify “the typical 5-year aging transformations of the
thyroid”, as captured via CT imaging. Moreover, we observed an inverse relationship
between changes in CT densities and changes in TSH levels (Figure 4 and Table 3). These
findings could inform future longitudinal imaging studies and routine CT interpretations
related to thyroid health. For example, these results can serve as a foundational reference
for interpreting reduced CT densities and potential enlargement in conditions such as
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chronic thyroiditis or identifying thyroid atrophy stemming from side effects of oncological
treatments [30–32]. Taken together, we believe that our study provides fundamental
information for correctly interpreting changes in thyroid imaging findings.

Building on our findings, we envisage potential developments in the following re-
search topics. First, we consider whether or not it is feasible to predict elevations in TSH
levels by observing changes in thyroid CT density. We observed a pronounced decline
in CT densities in the case group; however, it remains unclear whether this decrease is a
precursor to or a consequence of TSH elevation. By examining whether or not alterations
in CT densities are harbingers of functional changes, we might be able to establish a system
capable of preemptively flagging TSH increases during CT scans not originally intended for
thyroid evaluation. Secondly, a detailed examination is necessary regarding the correlation
between iodine intake, including from diet and medications, and histopathological changes,
as well as their correspondence with imaging. The integration of such multidisciplinary
information will contribute to a further elucidation of the mechanisms from normal to
pathological states. Additionally, a holistic assessment incorporating clinical symptoms
is warranted. Hypothyroidism, while acknowledged as a significant clinical state, is also
the subject of studies suggesting that aging-related TSH elevations may not hold clinical
significance [33,34]. Differentiating clinically meaningful TSH elevations from those at-
tributable to aging presents a challenge. Nevertheless, we posit that an integrated analysis,
encompassing imaging characteristics with existing medical insights, could help elucidate
the disease’s pathology and inform therapeutic decision-making.

There are several limitations to this study. First, our study did not include essential
information regarding iodine exposure levels, TPO antibody status with respect to thyroid
disease, and histopathological findings. Iodine intake may be a potential confounder
in our results; moreover, anti-TPO antibodies are significant in confirming the onset of
chronic thyroiditis. Additionally, we did not explore the correlation between imaging and
histopathological findings. Accordingly, there is a need for further research that includes
these aspects to enhance the comprehensiveness and accuracy of our findings. Second, this
single-center study only included one ethnic group. In addition, our screening program is
a fee-based examination that includes a wide variety of test items; as a result, the surveyed
population may be biased toward economically affluent and health-conscious individuals.
Several studies have reported differences in TSH level, CT density, and thyroid volume
according to ethnicity, region, diet, and other factors [13,30,35–38]. Therefore, it is unclear
whether or not the present findings are generalizable to other populations. Third, the
subsequent course in the case group could not be evaluated. In this study, only screening
program data were available; therefore, some important information, such as thyroid
antibody levels and subsequent needs for treatment, could not be ascertained. Future
studies are required to perform time-series analysis, including information on antibodies,
which may provide additional information. Forth, we did not consider lesions within the
thyroid gland. Our system evaluated the entire thyroid gland, and thus internal lesions
were not excluded from the calculation of the volume and CT densities. The influence
of small lesions, including cysts and nodules, on the course of the disease should be
investigated separately.

5. Conclusions

A high CT density and smaller thyroid volume at baseline are associated with future
TSH elevation. The case group experienced a substantial decrease in thyroid CT density,
while the control group had a minor decrease, with both groups maintaining a stable
thyroid volume over time.
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