Patients with Hepatitis C Undergoing Direct-Acting Antiviral Treatment Have a Lower SARS-CoV-2 Infection Rate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Data Collection
2.2. Ethical Approval
2.3. Laboratory Tests—Nucleic Acid Amplification Testing
2.4. Data Analysis
3. Results
3.1. Baseline Characteristics of the Study Population
3.2. Clinical Characteristics of Patients Infected with HCV with Respect to SARS-CoV-2 Infection Status
3.3. Comparison of Patients Undergoing and Not Undergoing DAA Treatment
3.4. Analysis of HCV and SARS-CoV-2 Co-Infection with Respect to DAA Treatment and Hepatitis C Genotype
3.5. The Disease Severity and Mortality of 29 Patients with SARS-CoV-2 Infection While Undergoing and After Completing DAA Treatment
4. Discussion
- NS3/4A protease inhibitors: The NS3/4A protease is responsible for NS4A, NS4B, NS5A, NS5B from viral polyprotein. Inhibitors of the NS3/4A protease can suppress its activity, thereby effectively inhibiting the replication of the virus. Examples include Glecaprevir (MAVIRET®: Fournier Laboratories Ireland Limited/ Anngrove, Carrigtwohill Co., Cork, Ireland) and Voxilaprevir (VOSEVI®: Gilead Sciences Ireland UC/IDA Business and Technology Park, Carrigtohill, Co., Cork, Ireland).
- NS5A inhibitors: These drugs interfere with HCV’s genomic replication and the assembly of its progeny. Examples include VEL (Epclusa®: Gilead Sciences Ireland UC; location: IDA Business and Technology Park, Carrigtohill, Co., Cork, Ireland and VOSEVI®: Gilead Sciences Ireland UC; location: IDA Business and Technology Park, Carrigtohill, Co., Cork, Ireland), Pibrentasvir (MAVIRET®: Fournier Laboratories Ireland Limited/ Anngrove, Carrigtwohill Co., Cork, Ireland), and Ledipasvir (Harvoni®: Gilead Sciences Ireland UC/IDA Business and Technology Park, Carrigtohill, Co., Cork, Ireland).
- NS5B polymerase inhibitors: These drugs inhibit RNA polymerase activity by binding to RNA-dependent RNA polymerase (RdRp) and interrupting virus replication [23]. Examples include SOF (Epclusa®: Gilead Sciences Ireland UC; location: IDA Business and Technology Park, Carrigtohill, Co., Cork, Ireland, VOSEVI®: Gilead Sciences Ireland UC/IDA Business and Technology Park, Carrigtohill, Co., Cork, Ireland, and Harvoni®: Gilead Sciences Ireland UC / IDA Business and Technology Park, Carrigtohill, Co., Cork, Ireland). As a nucleotide prodrug, SOF becomes pharmacologically active through intracellular metabolism and becomes an HCV NS5B RNA polymerase inhibitor. It embeds itself into the HCV RNA through the NS5B polymerase, forcing a chain termination that ends the HCV life cycle [24].
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Correction Statement
References
- CDC COVID-19 Vaccine Breakthrough Case Investigations Team. COVID-19 Vaccine Breakthrough Infections Reported to CDC-United States, January 1–April 30, 2021. MMWR Morb. Mortal. Wkly. Rep. 2021, 70, 792–793. [Google Scholar] [CrossRef]
- Lamontagne, F.; Agarwal, A.; Rochwerg, B.; Siemieniuk, R.A.; Agoritsas, T.; Askie, L.; Lytvyn, L.; Leo, Y.S.; Macdonald, H.; Zeng, L.; et al. A living WHO guideline on drugs for COVID-19. BMJ 2020, 370, m3379. [Google Scholar]
- Shi, Y.; Wang, G.; Cai, X.P.; Deng, J.W.; Zheng, L.; Zhu, H.H.; Zheng, M.; Yang, B.; Chen, Z. An overview of COVID-19. J. Zhejiang Univ. Sci. B 2020, 21, 343–360. [Google Scholar] [CrossRef]
- Yuki, K.; Fujiogi, M.; Koutsogiannaki, S. COVID-19 pathophysiology: A review. Clin. Immunol. 2020, 215, 108427. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; McGoogan, J.M. Characteristics of and Important Lessons from the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. JAMA 2020, 323, 1239–1242. [Google Scholar] [CrossRef] [PubMed]
- National Center for Immunization and Respiratory Diseases, Division of Viral Diseases. CDC COVID-19 Science Briefs [Internet]. Atlanta (GA): Centers for Disease Control and Prevention (US); 2020–. Science Brief: Evidence Used to Update the List of Underlying Medical Conditions Associated with Higher Risk for Severe COVID-19. Available online: https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-care/underlyingconditions.html (accessed on 23 July 2023).
- Schinas, G.; Polyzou, E.; Mitropetrou, F.; Pazionis, A.; Gogos, C.; Triantos, C.; Akinosoglou, K. COVID-19 Vaccination in Patients with Chronic Liver Disease. Viruses 2022, 14, 2778. [Google Scholar] [CrossRef] [PubMed]
- Arum, C.; Fraser, H.; Artenie, A.A.; Bivegete, S.; Trickey, A.; Alary, M.; Astemborski, J.; Iversen, J.; Lim, A.G.; MacGregor, L.; et al. Homelessness, HIV, and HCV Review Collaborative Group. Homelessness, unstable housing, and risk of HIV and hepatitis C virus acquisition among people who inject drugs: A systematic review and meta-analysis. Lancet Public Health 2021, 6, e309–e323. [Google Scholar] [CrossRef] [PubMed]
- Domovitz, T.; Ayoub, S.; Werbner, M.; Alter, J.; Izhaki Tavor, L.; Yahalom-Ronen, Y.; Tikhonov, E.; Meirson, T.; Maman, Y.; Paran, N.; et al. HCV Infection Increases the Expression of ACE2 Receptor, Leading to Enhanced Entry of Both HCV and SARS-CoV-2 into Hepatocytes and a Coinfection State. Microbiol. Spectr. 2022, 10, e0115022. [Google Scholar] [CrossRef] [PubMed]
- Benedicto, A.; Garcia-Kamiruaga, I.; Arteta, B. Neuropilin-1, A feasible link between liver pathologies and COVID-19. World J. Gastroenterol. 2021, 27, 3516–3529. [Google Scholar] [CrossRef]
- Davies, J.; Randeva, H.S.; Chatha, K.; Hall, M.; Spandidos, D.A.; Karteris, E.; Kyrou, I. Neuropilin-1 as a new potential SARS-CoV-2 infection mediator implicated in the neurologic features and central nervous system involvement of COVID-19. Mol. Med. Rep. 2020, 22, 4221–4226. [Google Scholar] [CrossRef]
- Chen, J.J.; Tung, H.D.; Lee, P.L.; Kuo, H.T.; Sheu, M.J.; Cheng, C.T.; Chuang, T.W.; Kao, H.J.; Lu, N.M.; Wu, L.C.; et al. High prevalence of genotype 6 hepatitis C virus infection in Southern Taiwan using Abbott genotype assays. J. Formos Med. Assoc. 2020, 119, 413–419. [Google Scholar] [CrossRef]
- Messina, V.; Nevola, R.; Izzi, A.; De Lucia Sposito, P.; Marrone, A.; Rega, R.; Fusco, R.; Lumino, P.; Rinaldi, L.; Gaglione, P.; et al. Efficacy and safety of the sofosbuvir/velpatasvir combination for the treatment of patients with early mild to moderate COVID-19. Sci. Rep. 2022, 12, 5771. [Google Scholar] [CrossRef]
- Chien, R.N.; Lu, S.N.; Pwu, R.F.; Wu, G.H.; Yang, W.W.; Liu, C.L. Taiwan accelerates its efforts to eliminate hepatitis C. Glob. Health Med. 2021, 3, 293–300. [Google Scholar] [CrossRef] [PubMed]
- Cerbu, B.; Pantea, S.; Bratosin, F.; Vidican, I.; Turaiche, M.; Frent, S.; Borsi, E.; Marincu, I. Liver Impairment and Hematological Changes in Patients with Chronic Hepatitis C and COVID-19, A Retrospective Study after One Year of Pandemic. Medicina 2021, 57, 597. [Google Scholar] [CrossRef]
- Ronderos, D.; Omar, A.M.S.; Abbas, H.; Makker, J.; Baiomi, A.; Sun, H.; Mantri, N.; Choi, Y.; Fortuzi, K.; Shin, D.; et al. Chronic hepatitis-C infection in COVID-19 patients is associated with in-hospital mortality. World J. Clin. Cases 2021, 9, 8749–8762. [Google Scholar] [CrossRef] [PubMed]
- Mirzaie, H.; Vahidi, M.; Shokoohi, M.; Darvishian, M.; Sharifi, H.; Sharafi, H.; Karamouzian, M. COVID-19 among patients with hepatitis B or hepatitis C: A systematic review. Hepat. Mon. 2020, 20, e111617. [Google Scholar] [CrossRef]
- Singh, S.; Khan, A. Clinical Characteristics and Outcomes of Coronavirus Disease 2019 among Patients with Preexisting Liver Disease in the United States: A Multicenter Research Network Study. Gastroenterology 2020, 159, 768–771.e3. [Google Scholar] [CrossRef] [PubMed]
- Jang, T.Y. Suppression of hepatitis C virus replication during COVID-19 infection. Kaohsiung J. Med. Sci. 2022, 38, 394–395. [Google Scholar] [CrossRef]
- Afify, S.; Eysa, B.; Hamid, F.A.; Abo-Elazm, O.M.; Edris, M.A.; Maher, R.; Abdelhalim, A.; Abdel Ghaffar, M.M.; Omran, D.A.; Shousha, H.I. Survival and outcomes for co-infection of chronic hepatitis C with and without cirrhosis and COVID-19, A multicenter retrospective study. World J. Gastroenterol. 2021, 27, 7362–7375. [Google Scholar] [CrossRef]
- Alazard-Dany, N.; Denolly, S.; Boson, B.; Cosset, F.L. Overview of HCV Life Cycle with a Special Focus on Current and Possible Future Antiviral Targets. Viruses 2019, 11, 30. [Google Scholar] [CrossRef]
- Dustin, L.B.; Bartolini, B.; Capobianchi, M.R.; Pistello, M. Hepatitis C virus: Life cycle in cells, infection and host response, and analysis of molecular markers influencing the outcome of infection and response to therapy. Clin. Microbiol. Infect. 2016, 22, 826–832. [Google Scholar] [CrossRef] [PubMed]
- Preciado, M.V.; Valva, P.; Escobar-Gutierrez, A.; Rahal, P.; Ruiz-Tovar, K.; Yamasaki, L.; Vazquez-Chacon, C.; Martinez-Guarneros, A.; Carpio-Pedroza, J.C.; Fonseca-Coronado, S.; et al. Hepatitis C virus molecular evolution: Transmission, disease progression and antiviral therapy. World J. Gastroenterol. 2014, 20, 15992–16013. [Google Scholar] [CrossRef] [PubMed]
- Feeney, E.R.; Chung, R.T. Antiviral treatment of hepatitis C. BMJ 2014, 348, g3308. [Google Scholar] [CrossRef]
- Reddy, K.R. SARS-CoV-2 and the Liver: Considerations in Hepatitis B and Hepatitis C Infections. Clin. Liver Dis. 2020, 15, 191–194. [Google Scholar] [CrossRef]
- Kovalic, A.J.; Satapathy, S.K.; Thuluvath, P.J. Prevalence of chronic liver disease in patients with COVID-19 and their clinical outcomes: A systematic review and meta-analysis. Hepatol. Int. 2020, 14, 612–620. [Google Scholar] [CrossRef]
- Thong, V.D.; Akkarathamrongsin, S.; Poovorawan, K.; Tangkijvanich, P.; Poovorawan, Y. Hepatitis C virus genotype 6, virology, epidemiology, genetic variation and clinical implication. World J. Gastroenterol. 2014, 20, 2927–2940. [Google Scholar] [CrossRef]
- Jockusch, S.; Tao, C.; Li, X.; Chien, M.; Kumar, S.; Morozova, I.; Kalachikov, S.; Russo, J.J.; Ju, J. Sofosbuvir terminated RNA is more resistant to SARS-CoV-2 proofreader than RNA terminated by Remdesivir. Sci. Rep. 2020, 10, 16577. [Google Scholar] [CrossRef] [PubMed]
- Elfiky, A.A. Anti-HCV nucleotide inhibitors repurposing against COVID-19. Life Sci. 2020, 248, 117477. [Google Scholar] [CrossRef]
- Elfiky, A.A. Ribavirin, Remdesivir, Sofosbuvir, Galidesivir, and Tenofovir against SARS-CoV-2 RNA dependent RNA polymerase (RdRp): A molecular docking study. Life Sci. 2020, 253, 117592. [Google Scholar] [CrossRef]
- Sharma, P.; Behl, T.; Sharma, N.; Singh, S.; Grewal, A.S.; Albarrati, A.; Albratty, M.; Meraya, A.M.; Bungau, S. COVID-19 and diabetes: Association intensify risk factors for morbidity and mortality. Biomed. Pharmacother. 2022, 151, 113089. [Google Scholar] [CrossRef]
- Wang, X.; Lei, J.; Li, Z.; Yan, L. Potential Effects of Coronaviruses on the Liver: An Update. Front. Med. 2021, 8, 651658. [Google Scholar] [CrossRef] [PubMed]
- Sikkema, R.S.; Pas, S.D.; Nieuwenhuijse, D.F.; O’Toole, Á.; Verweij, J.; van der Linden, A.; Chestakova, I.; Schapendonk, C.; Pronk, M.; Lexmond, P.; et al. COVID-19 in health-care workers in three hospitals in the south of the Netherlands: A cross-sectional study. Lancet Infect. Dis. 2020, 20, 1273–1280. [Google Scholar] [CrossRef] [PubMed]
- Dzinamarira, T.; Murewanhema, G.; Mhango, M.; Iradukunda, P.G.; Chitungo, I.; Mashora, M.; Makanda, P.; Atwine, J.; Chimene, M.; Mbunge, E.; et al. COVID-19 Prevalence among Healthcare Workers. A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2021, 19, 146. [Google Scholar] [CrossRef] [PubMed]
Characteristics, n (%) | Not Infected with SARS-CoV-2 n = 543 | SARS-CoV-2 Infection n = 59 | p-Value |
---|---|---|---|
Gender | 0.5257 | ||
Female | 268 (49.36) | 26 (44.07) | |
Male | 275 (50.64) | 33 (55.93) | |
Age, mean (SD) | 64.24 (14.11) | 67.68 (14.40) | 0.0763 |
Age group | 0.5158 | ||
20–39 year | 18 (3.31) | 1 (1.69) | |
40–59 year | 177 (32.60) | 15 (25.42) | |
60–79 year | 249 (45.86) | 29 (49.15) | |
≥80 year | 99 (18.23) | 14 (23.73) | |
Vaccinate | 0.479 | ||
0 | 129 (23.76) | 19 (32.20) | |
1 | 33 (6.08) | 2 (3.39) | |
2 | 74 (13.63) | 7 (11.86) | |
≥3 | 307 (56.54) | 31 (52.54) | |
Comorbidities (n = 389) | |||
Hypertension | 225 (41.44) | 30 (50.85) | 0.2111 |
Diabetes mellitus | 133 (24.49) | 21 (35.59) | 0.0894 |
Cancer | 99 (18.23) | 18 (30.51) | 0.0366 |
Hyperlipidemia | 62 (11.42) | 11 (18.64) | 0.1601 |
COPD | 18 (3.31) | 1 (1.69) | 0.7765 |
CKD | 49 (9.02) | 9 (15.25) | 0.1909 |
CVA | 44 (8.10) | 9 (15.25) | 0.1098 |
Genotype | 0.0532 | ||
1a | 23 (4.24) | 4 (6.78) | |
1b | 123 (22.65) | 13 (22.03) | |
2 | 229 (42.17) | 16 (27.12) | |
3 | 14 (2.58) | 1 (1.69) | |
6 | 108 (19.89) | 14 (23.73) | |
mix type | 5 (0.92) | 0 (0) | |
not verified | 41 (7.55) | 11 (18.64) | |
DAA treatment | 433 (79.74) | 29 (49.15) | <0.0001 |
Mortality | 28 (5.16) | 7 (11.86) | 0.0721 |
Characteristics, n (%) | Non-DAA Treatment n = 140 | DAA Treatment n = 462 | p-Value |
---|---|---|---|
Gender | 0.9803 | ||
Female | 69 (49.29) | 225 (48.70) | |
Male | 71 (50.71) | 237 (51.30) | |
Age, mean (SD) | 70.76 (15.41) | 62.70 (13.22) | |
SARS-CoV-2 infection | 30 (21.43) | 29 (6.28) | <0.0001 |
Mortality | 27 (19.29) | 8 (1.73) | <0.0001 |
Item | Event of Infected with SARS-CoV-2, n (%) | OR (95%CI) | p-Value | Adjusted OR (95%CI) | p-Value | Adjusted OR (95%CI) | p-Value |
---|---|---|---|---|---|---|---|
DAA treatment | |||||||
No | 30 (50.85) | ref | |||||
Yes | 29 (49.15) | 0.25 (0.14–0.43) | <0.0001 | 0.27 (0.15–0.49) | <0.0001 | ||
DAA treatment | |||||||
Non-DAA treatment | 30 (50.85) | ref | |||||
Epclusa | 20 (68.97) | 0.27 (0.14–0.48) | <0.0001 | 0.29 (0.15–0.54) | 0.0001 | ||
Maviret | 9 (30.03) | 0.24 (0.1–0.51) | 0.0004 | 0.28 (0.11–0.62) | 0.0025 | ||
Vosevi | 0 (0) | - | - | - | - | ||
others | 0 (0) | - | - | - | - | ||
Vaccinate | |||||||
0 | 19 (32.20) | ref | |||||
1 | 2 (3.39) | 0.41 (0.06–1.52) | 0.2479 | ||||
2 | 7 (11.86) | 0.64 (0.24–1.54) | 0.3416 | ||||
≥3 | 31 (52.54) | 0.69 (0.38–1.28) | 0.2229 | ||||
Comorbidities | |||||||
Hypertension | 30 (11.76) | 1.46 (0.85–2.51) | 0.1666 | ||||
DM | 21 (13.64) | 1.7 (0.95–2.98) | 0.0659 | ||||
Cancer | 18 (15.38) | 1.97 (1.06–3.52) | 0.0257 | 1.46 (0.76–2.70) | 0.2361 | 1.47 (0.77–2.72) | 0.2314 |
Hyperlipidemia | 11 (15.07) | 1.78 (0.84–3.49) | 0.1104 | ||||
COPD | 1 (5.26) | 0.5 (0.03–2.5) | 0.5073 | ||||
CKD | 9 (15.52) | 1.81 (0.79–3.76) | 0.1283 | ||||
CVA | 9 (16.98) | 2.04 (0.89–4.25) | 0.0707 | ||||
Genotype | |||||||
1a | 4 (6.78) | ref | |||||
1b | 13 (22.03) | 0.61 (0.19–2.3) | 0.4182 | ||||
2 | 16 (27.12) | 0.4 (0.13–1.49) | 0.1287 | ||||
3 | 1 (1.69) | 0.41 (0.02–3.14) | 0.4463 | ||||
6 | 14 (23.72) | 0.75 (0.24–2.81) | 0.6309 | ||||
mix type | 0 (0) | - | - | ||||
not verified | 11 (18.64) | 1.54 (0.47–6.07) | 0.4977 | ||||
Genotype_2 | |||||||
1a1b2 | 33 (55.93) | ref | |||||
3 | 1 (1.69) | 0.81 (0.04–4.24) | 0.8426 | ||||
6 | 14 (23.72) | 1.47 (0.74–2.8) | 0.2506 | ||||
mix type | 0 (0) | - | - | ||||
not verified | 11 (18.64) | 3.05 (1.38–6.34) | 0.0038 |
Characteristics, n (%) | DAA Within Treatment n = 5 | Complete DAA Treatment n = 24 | p-Value/ Nonparametric Fisher/MWU Test |
---|---|---|---|
Vaccinate | 0.2965 | ||
0 | 0 (0) | 7 (29.17) | |
≥1 | 5 (100) | 17 (70.83) | |
SARS-CoV-2 infection severity | 0.9999 | ||
Mild | 5 (100.00) | 21 (87.50) | |
Moderate, Severe | 0 (0) | 3 (12.50) | |
Mortality | 0 (0) | 3 (12.50) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsu, C.-W.; Yang, W.-W.; Hou, C.-Y.; Feng, I.-J.; Huang, T.-Y.; Lee, P.-L.; Guo, H.-R.; Huang, C.-Y.; Su, S.-B. Patients with Hepatitis C Undergoing Direct-Acting Antiviral Treatment Have a Lower SARS-CoV-2 Infection Rate. Life 2023, 13, 2326. https://doi.org/10.3390/life13122326
Hsu C-W, Yang W-W, Hou C-Y, Feng I-J, Huang T-Y, Lee P-L, Guo H-R, Huang C-Y, Su S-B. Patients with Hepatitis C Undergoing Direct-Acting Antiviral Treatment Have a Lower SARS-CoV-2 Infection Rate. Life. 2023; 13(12):2326. https://doi.org/10.3390/life13122326
Chicago/Turabian StyleHsu, Chin-Wen, Wan-Wen Yang, Chia-Yi Hou, I-Jung Feng, Ting-Yi Huang, Pei-Lun Lee, How-Ran Guo, Chien-Yuan Huang, and Shih-Bin Su. 2023. "Patients with Hepatitis C Undergoing Direct-Acting Antiviral Treatment Have a Lower SARS-CoV-2 Infection Rate" Life 13, no. 12: 2326. https://doi.org/10.3390/life13122326
APA StyleHsu, C. -W., Yang, W. -W., Hou, C. -Y., Feng, I. -J., Huang, T. -Y., Lee, P. -L., Guo, H. -R., Huang, C. -Y., & Su, S. -B. (2023). Patients with Hepatitis C Undergoing Direct-Acting Antiviral Treatment Have a Lower SARS-CoV-2 Infection Rate. Life, 13(12), 2326. https://doi.org/10.3390/life13122326