Novel Techniques for Musculoskeletal Pain Management after Orthopedic Surgical Procedures: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy and Selection Criteria
2.2. Data Extraction
2.3. Quality Assessment
2.4. Data Analysis
- Narrative Synthesis: Employing a qualitative approach, this synthesis method entailed a comprehensive summary and interpretation of the included studies’ findings. Through this method, we aimed to offer a descriptive and critical synthesis, shedding light on the implications for both healthcare providers and patients. This approach allowed for a thorough examination of the various nursing interventions and their potential impact on managing postpartum depression.
- Thematic Analysis: Utilizing thematic analysis, we systematically identified recurring themes, patterns, and implications present across the selected studies. This rigorous process involved coding and categorizing findings related to nursing interventions. By doing so, we aimed to delve deeper into understanding the connections, variations, and nuances within these themes. This method provided a comprehensive and in-depth exploration of the effectiveness and challenges associated with diverse nursing interventions aimed at managing postpartum depression.
3. Results
3.1. The Quality Assessment
3.2. Main Outcomes
4. Discussion
4.1. Nerve Blocks Effectively Reduce Pain Intensity and Opioid Consumption
4.2. Local Anesthetic Infiltrations Provide Similar Advantages to Nerve Blocks
4.3. Multimodal Oral Analgesia Demonstrates Equivalence to Opioid-Based Regimens
4.4. Adjuvant Modalities like Cryotherapy, TENS, Music Require Further Evaluation
4.5. Dexmedetomidine as an Opioid-Sparing Adjuvant Shows Promise for Expanded Use
4.6. Critical Knowledge Gaps Remain around Optimal Treatment Protocols
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Database | Search Terms |
---|---|
PubMed | (“Postoperative Pain”[Mesh] OR postoperat* OR post-operat*) AND (“Orthopedic Procedures, Operative”[Mesh] OR orthoped* OR musculoskel* OR “extremity fracture*” OR fracture* OR limb OR limbs OR bone OR bones OR joint OR joints OR arthro* OR chondro* OR osteoto*) AND (“Pain Management”[Mesh] OR analgesi* OR anesthetic* OR anaesthetic* OR “pain control” OR “perioperative care” OR “postoperative care”) AND (technique* OR method* OR modalit* OR strateg* OR intervent* OR approach* OR manag* OR control*) |
MEDLINE | Same as PubMed |
Embase | ‘postoperative pain’/exp OR postoperat* OR post-operat* AND ‘orthopedic procedure’/exp OR orthoped* OR musculoskel* OR ‘extremity fracture’ OR fracture* OR limb OR limbs OR bone OR bones OR joint OR joints OR arthro* OR chondro* OR osteoto* AND ‘pain management’/exp OR analgesi* OR anesthetic* OR anaesthetic* OR ‘pain control’ OR ‘perioperative care’ OR ‘postoperative care’ AND techniqu* OR method* OR modalit* OR strateg* OR intervent* OR approach* OR manag* OR control* |
Web of Science | TS = (postoperative pain OR postoperat* OR post-operat*) AND TS = (orthopedic procedure* OR orthoped* OR musculoskel* OR “extremity fracture*” OR fracture* OR limb OR limbs OR bone OR bones OR joint OR joints OR arthro* OR chondro* OR osteoto*) AND TS = (pain management OR analgesi* OR anesthetic* OR anaesthetic* OR “pain control” OR “perioperative care” OR “postoperative care”) AND TS = (technique* OR method* OR modalit* OR strateg* OR intervent* OR approach* OR manag* OR control*) |
Cochrane Library | postoperat* or post-operat* AND orthoped* or musculoskel* or “extremity fracture*” or fracture* or limb or limbs or bone or bones or joint or joints or arthro* or chondro* or osteoto* AND analgesi* or “pain management” or anesthetic* or anaesthetic* or “pain control” or “perioperative care” or “postoperative care” AND techniqu* or method* or modalit* or strateg* or intervent* or approach* or manag* or control* |
IEEE Xplore | postoperat* or post-operat* AND orthoped* or musculoskel* or “extremity fracture*” or fracture* or limb or limbs or bone or bones or joint or joints or arthro* or chondro* or osteoto* AND analgesi* or “pain management” or anesthetic* or anaesthetic* or “pain control” or “perioperative care” or “postoperative care” AND techniqu* or method* or modalit* or strateg* or intervent* or approach* or manag* or control* |
Scopus | postoperat* or post-operat* AND orthoped* or musculoskel* or “extremity fracture*” or fracture* or limb or limbs or bone or bones or joint or joints or arthro* or chondro* or osteoto* AND analgesi* or “pain management” or anesthetic* or anaesthetic* or “pain control” or “perioperative care” or “postoperative care” AND techniqu* or method* or modalit* or strateg* or intervent* or approach* or manag* or control* |
References
- El-Tallawy, S.N.; Nalamasu, R.; Salem, G.I.; LeQuang, J.A.K.; Pergolizzi, J.V.; Christo, P.J. Management of Musculoskeletal Pain: An Update with Emphasis on Chronic Musculoskeletal Pain. Pain Ther. 2021, 10, 181–209. [Google Scholar] [CrossRef] [PubMed]
- Arendt-Nielsen, L.; Fernández-de-las-Peñas, C.; Graven-Nielsen, T. Basic Aspects of Musculoskeletal Pain: From Acute to Chronic Pain. J. Man. Manip. Ther. 2011, 19, 186–193. [Google Scholar] [CrossRef] [PubMed]
- Lin, I.; Wiles, L.; Waller, R.; Goucke, R.; Nagree, Y.; Gibberd, M.; Straker, L.; Maher, C.G.; O’Sullivan, P.P.B. What Does Best Practice Care for Musculoskeletal Pain Look like? Eleven Consistent Recommendations from High-Quality Clinical Practice Guidelines: Systematic Review. Br. J. Sports Med. 2020, 54, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Dagnino, A.P.A.; Campos, M.M. Chronic Pain in the Elderly: Mechanisms and Perspectives. Front. Hum. Neurosci. 2022, 16, 736688. [Google Scholar] [CrossRef]
- Alruwaili, M.M.; Shaban, M. Digital Health Interventions for Promoting Healthy Aging: A Systematic Review of Adoption Patterns, Efficacy, and User Experience. Sustainability 2023, 15, 16503. [Google Scholar] [CrossRef]
- Gan, T.J. Poorly Controlled Postoperative Pain: Prevalence, Consequences, and Prevention. J. Pain Res. 2017, 10, 2287–2298. [Google Scholar] [CrossRef] [PubMed]
- Castroman, P.; Quiroga, O.; Mayoral Rojals, V.; Gómez, M.; Moka, E.; Pergolizzi Jr, J.; Varrassi, G. Reimagining How We Treat Acute Pain: A Narrative Review. Cureus 2022, 14, e23992. [Google Scholar] [CrossRef]
- Le-Wendling, L.; Glick, W.; Tighe, P. Goals and Objectives to Optimize the Value of an Acute Pain Service in Perioperative Pain Management. Tech. Orthop. 2017, 32, 200–208. [Google Scholar] [CrossRef]
- Garimella, V.; Cellini, C. Postoperative Pain Control. Clin. Colon Rectal Surg. 2013, 26, 191–196. [Google Scholar] [CrossRef]
- Krishna Prasad, G.; Khanna, S.; Jaishree, S. Review of Adjuvants to Local Anesthetics in Peripheral Nerve Blocks: Current and Future Trends. Saudi J. Anaesth. 2020, 14, 77. [Google Scholar] [CrossRef]
- Sangkum, L.; Tangjitbampenbun, A.; Chalacheewa, T.; Brennan, K.; Liu, H. Peripheral Nerve Blocks for Cesarean Delivery Analgesia: A Narrative Review. Medicina 2023, 59, 1951. [Google Scholar] [CrossRef] [PubMed]
- Alotaibi, Y.K.; Federico, F. The Impact of Health Information Technology on Patient Safety. Saudi Med. J. 2017, 38, 1173–1180. [Google Scholar] [CrossRef] [PubMed]
- Bombard, Y.; Baker, G.R.; Orlando, E.; Fancott, C.; Bhatia, P.; Casalino, S.; Onate, K.; Denis, J.-L.; Pomey, M.-P. Engaging Patients to Improve Quality of Care: A Systematic Review. Implement. Sci. 2018, 13, 98. [Google Scholar] [CrossRef]
- Maheshwari, A.V.; Blum, Y.C.; Shekhar, L.; Ranawat, A.S.; Ranawat, C.S. Multimodal Pain Management after Total Hip and Knee Arthroplasty at the Ranawat Orthopaedic Center. Clin. Orthop. Relat. Res. 2009, 467, 1418–1423. [Google Scholar] [CrossRef] [PubMed]
- Singelyn, F.; Ferrant, T.; Malisse, M.; Joris, D. Effects of Intravenous Patient-Controlled Analgesia With Morphine, Continuous Epidural Analgesia, and Continuous Femoral Nerve Sheath Block on Rehabilitation After Unilateral Total-Hip Arthroplasty. Reg. Anesth. Pain Med. 2005, 30, 452–457. [Google Scholar] [CrossRef] [PubMed]
- Singelyn, F.J.; Deyaert, M.; Joris, D.; Pendeville, E.; Gouverneur, J.M. Effects of Intravenous Patient-Controlled Analgesia with Morphine, Continuous Epidural Analgesia, and Continuous Three-in-One Block on Postoperative Pain and Knee Rehabilitation After Unilateral Total Knee Arthroplasty. Anesth. Analg. 1998, 87, 88–92. [Google Scholar] [CrossRef]
- Spangehl, M.J.; Clarke, H.D.; Hentz, J.G.; Misra, L.; Blocher, J.L.; Seamans, D.P. The Chitranjan Ranawat Award: Periarticular Injections and Femoral & Sciatic Blocks Provide Similar Pain Relief After TKA: A Randomized Clinical Trial. Clin. Orthop. Relat. Res. 2015, 473, 45–53. [Google Scholar] [CrossRef]
- Shaban, M.; Habib, N.; Helmy, I.; Mohammed, H.H. Dehydration Risk Factors and Outcomes in Older People in Rural Areas. Front. Nurs. 2022, 9, 395–403. [Google Scholar] [CrossRef]
- De Luca, M.L.; Ciccarello, M.; Martorana, M.; Infantino, D.; Letizia Mauro, G.; Bonarelli, S.; Benedetti, M.G. Pain Monitoring and Management in a Rehabilitation Setting after Total Joint Replacement. Medicine 2018, 97, e12484. [Google Scholar] [CrossRef]
- Wei, S.; Li, L.; Yang, X.; Li, X.; Jiang, Q. Psychological Interventions in the Pain Management after Hip and Knee Arthroplasty: A Mini Review. Ann. Jt. 2020, 5, 13. [Google Scholar] [CrossRef]
- Koh, I.J.; Choi, Y.J.; Kim, M.S.; Koh, H.J.; Kang, M.S.; In, Y. Femoral Nerve Block versus Adductor Canal Block for Analgesia after Total Knee Arthroplasty. Knee Surg. Relat. Res. 2017, 29, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Koh, H.J.; Koh, I.J.; Kim, M.S.; Choi, K.Y.; Jo, H.U.; In, Y. Does Patient Perception Differ Following Adductor Canal Block and Femoral Nerve Block in Total Knee Arthroplasty? A Simultaneous Bilateral Randomized Study. J. Arthroplast. 2017, 32, 1856–1861. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Tan, Z.; Kang, P.; Shen, B.; Pei, F. Effects of Multi-Site Infiltration Analgesia on Pain Management and Early Rehabilitation Compared with Femoral Nerve or Adductor Canal Block for Patients Undergoing Total Knee Arthroplasty: A Prospective Randomized Controlled Trial. Int. Orthop. 2017, 41, 75–83. [Google Scholar] [CrossRef]
- Kuang, M.; Ma, J.; Fu, L.; He, W.; Zhao, J.; Ma, X. Is Adductor Canal Block Better Than Femoral Nerve Block in Primary Total Knee Arthroplasty? A GRADE Analysis of the Evidence Through a Systematic Review and Meta-Analysis. J. Arthroplast. 2017, 32, 3238–3248.e3. [Google Scholar] [CrossRef] [PubMed]
- Razmjou, H.; Woodhouse, L.J.; Holtby, R. Neuropathic Pain after Shoulder Arthroplasty: Prevalence, Impact on Physical and Mental Function, and Demographic Determinants. Physiother. Can. 2018, 70, 212–220. [Google Scholar] [CrossRef]
- Hagedorn, J.M.; Pittelkow, T.P.; Bendel, M.A.; Moeschler, S.M.; Orhurhu, V.; Sanchez-Sotelo, J. The Painful Shoulder Arthroplasty: Appropriate Work-up and Review of Interventional Pain Treatments. JSES Rev. Rep. Tech. 2022, 2, 269–276. [Google Scholar] [CrossRef] [PubMed]
- Bakhsh, E.; Shaban, M.; Alzoum, M.A.; AlNassir, A.M.; Bin Hamad, A.A.; Alqahtani, M.S.; AlAyoubi, L.A.F.; Alamri, R.M.; Alamri, N.F. Neurological Consequences of Pulmonary Emboli in COVID-19 Patients: A Study of Incidence and Outcomes in the Kingdom of Saudi Arabia. Brain Sci. 2023, 13, 343. [Google Scholar] [CrossRef]
- Mears, S.C.; Kates, S.L. A Guide to Improving the Care of Patients with Fragility Fractures, Edition 2. Geriatr. Orthop. Surg. Rehabil. 2015, 6, 58–120. [Google Scholar] [CrossRef]
- Snelson, C.; Veenith, T.; Beard, L.; Holt, B.; Parcha, C.; Smith, F.G. Analgesia of Patients with Multiple Rib Fractures in Critical Care: A Survey of Healthcare Professionals in the UK. Indian J. Crit. Care Med. 2020, 24, 184–189. [Google Scholar] [CrossRef]
- He, Z.; Zhang, D.; Xiao, H.; Zhu, Q.; Xuan, Y.; Su, K.; Liao, M.; Tang, Y.; Xu, E. The Ideal Methods for the Management of Rib Fractures. J. Thorac. Dis. 2019, 11, S1078–S1089. [Google Scholar] [CrossRef]
- Hebl, J.R.; Dilger, J.A.; Byer, D.E.; Kopp, S.L.; Stevens, S.R.; Pagnano, M.W.; Hanssen, A.D.; Horlocker, T.T. A Pre-Emptive Multimodal Pathway Featuring Peripheral Nerve Block Improves Perioperative Outcomes after Major Orthopedic Surgery. Reg. Anesth. Pain Med. 2008, 33, 510–517. [Google Scholar] [CrossRef] [PubMed]
- Polomano, R.C.; Fillman, M.; Giordano, N.A.; Vallerand, A.H.; Nicely, K.L.; Jungquist, C.R. Multimodal Analgesia for Acute Postoperative and Trauma-Related Pain. Am. J. Nurs. 2017, 117, S12–S26. [Google Scholar] [CrossRef] [PubMed]
- Weinstein, E.J.; Levene, J.L.; Cohen, M.S.; Andreae, D.A.; Chao, J.Y.; Johnson, M.; Hall, C.B.; Andreae, M.H. Local Anaesthetics and Regional Anaesthesia versus Conventional Analgesia for Preventing Persistent Postoperative Pain in Adults and Children. Cochrane Database Syst. Rev. 2018, 2019, CD007105. [Google Scholar] [CrossRef]
- Tashani, O.; Johnson, M. Transcutaneous Electrical Nerve Stimulation (TENS). A Possible Aid for Pain Relief in Developing Countries? Libyan J. Med. 2008, 4, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Cisewski, D.H.; Motov, S.M. Essential Pharmacologic Options for Acute Pain Management in the Emergency Setting. Turkish J. Emerg. Med. 2019, 19, 1–11. [Google Scholar] [CrossRef] [PubMed]
- van der Merwe, J.M.; Mastel, M.S. Controversial Topics in Total Knee Arthroplasty: A 5-Year Update (Part 1). JAAOS Glob. Res. Rev. 2020, 4, e19.00047. [Google Scholar] [CrossRef] [PubMed]
- Thijssen, M.; Timmerman, L.; Koning, N.J.; Rinia, M.; van Dijk, J.F.M.; Cheuk-Alam, J.; Olthof, K.; Rekker, S.; Steegers, M.A.H.; van Boekel, R.L.M. Multimodal Analgesia Practices for Knee and Hip Arthroplasties in the Netherlands. A Prospective Observational Study from the PAIN OUT Registry. PLoS ONE 2022, 17, e0279606. [Google Scholar] [CrossRef]
- Xiao, M.; Cohen, S.A.; Cheung, E.V.; Freehill, M.T.; Abrams, G.D. Pain Management in Shoulder Arthroplasty: A Systematic Review and Network Meta-Analysis of Randomized Controlled Trials. J. Shoulder Elb. Surg. 2021, 30, 2638–2647. [Google Scholar] [CrossRef]
- Jogie, J.; Jogie, J.A. A Comprehensive Review on the Efficacy of Nerve Blocks in Reducing Postoperative Anesthetic and Analgesic Requirements. Cureus 2023, 15, e38552. [Google Scholar] [CrossRef]
- Ilfeld, B.M. Continuous Peripheral Nerve Blocks. Anesth. Analg. 2011, 113, 904–925. [Google Scholar] [CrossRef]
- Kandarian, B.S.; Elkassabany, N.M.; Tamboli, M.; Mariano, E.R. Updates on Multimodal Analgesia and Regional Anesthesia for Total Knee Arthroplasty Patients. Best Pract. Res. Clin. Anaesthesiol. 2019, 33, 111–123. [Google Scholar] [CrossRef]
- Liyew, B.; Dejen Tilahun, A.; Habtie Bayu, N.; Kassew, T. Knowledge and Attitude towards Pain Management among Nurses Working at University of Gondar Comprehensive Specialized Hospital, Northwest Ethiopia. Pain Res. Manag. 2020, 2020, 6036575. [Google Scholar] [CrossRef]
- Jira, L.; Weyessa, N.; Mulatu, S.; Alemayehu, A. Knowledge and Attitude Towards Non-Pharmacological Pain Management and Associated Factors Among Nurses Working in Benishangul Gumuz Regional State Hospitals in Western Ethiopia, 2018. J. Pain Res. 2020, 13, 2917–2927. [Google Scholar] [CrossRef]
- Lentz, T.A.; Gonzalez-Smith, J.; Huber, K.; Goertz, C.; Bleser, W.K.; Saunders, R. Overcoming Barriers to the Implementation of Integrated Musculoskeletal Pain Management Programs: A Multi-Stakeholder Qualitative Study. J. Pain 2023, 24, 860–873. [Google Scholar] [CrossRef] [PubMed]
- Hyland, S.J.; Brockhaus, K.K.; Vincent, W.R.; Spence, N.Z.; Lucki, M.M.; Howkins, M.J.; Cleary, R.K. Perioperative Pain Management and Opioid Stewardship: A Practical Guide. Healthcare 2021, 9, 333. [Google Scholar] [CrossRef] [PubMed]
- Keefe, F.J.; Main, C.J.; George, S.Z. Advancing Psychologically Informed Practice for Patients With Persistent Musculoskeletal Pain: Promise, Pitfalls, and Solutions. Phys. Ther. 2018, 98, 398–407. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Xiao, S.; Yang, H.; Lv, X.; Hou, A.; Ma, Y.; Jiang, Y.; Duan, C.; Mi, W.; Yang, J.; et al. Postoperative Pain-Related Outcomes and Perioperative Pain Management in China: A Population-Based Study. Lancet Reg. Heal. West. Pacific 2023, 39, 100822. [Google Scholar] [CrossRef] [PubMed]
- Meissner, W.; Coluzzi, F.; Fletcher, D.; Huygen, F.; Morlion, B.; Neugebauer, E.; Pérez, A.M.; Pergolizzi, J. Improving the Management of Post-Operative Acute Pain: Priorities for Change. Curr. Med. Res. Opin. 2015, 31, 2131–2143. [Google Scholar] [CrossRef] [PubMed]
- Schwenk, E.S.; Mariano, E.R. Designing the Ideal Perioperative Pain Management Plan Starts with Multimodal Analgesia. Korean J. Anesthesiol. 2018, 71, 345–352. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Shamseer, L.; Moher, D.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A. Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols (PRISMA-P) 2015: Elaboration and Explanation. BMJ 2015, 349, g7647. [Google Scholar] [CrossRef]
- McGuinness, L.A.; Higgins, J.P.T. Risk-of-bias VISualization (Robvis): An R Package and Shiny Web App for Visualizing Risk-of-bias Assessments. Res. Synth. Methods 2021, 12, 55–61. [Google Scholar] [CrossRef]
- Janiak, M.; Kowalczyk, R.; Gorniewski, G.; Olczyk-Miiller, K.; Kowalski, M.; Nowakowski, P.; Trzebicki, J. Efficacy and Side Effect Profile of Intrathecal Morphine versus Distal Femoral Triangle Nerve Block for Analgesia Following Total Knee Arthroplasty: A Randomized Trial. J. Clin. Med. 2022, 11, 6945. [Google Scholar] [CrossRef] [PubMed]
- Elmansy, S.; Abdelkhalek, M.; Farouk, S.; Shoukry, R.; Khames, A. Ultrasound -Guided Erector Spinae Plane Block (ESPB) versus Intravenous Opioids Based Analgesia in Patients with Rib Fractures. Egypt. J. Anaesth. 2023, 39, 249–254. [Google Scholar] [CrossRef]
- Domagalska, M.; Ciftci, B.; Reysner, T.; Kolasiński, J.; Wieczorowska-Tobis, K.; Kowalski, G. Pain Management and Functional Recovery after Pericapsular Nerve Group (PENG) Block for Total Hip Arthroplasty: A Prospective, Randomized, Double-Blinded Clinical Trial. J. Clin. Med. 2023, 12, 4931. [Google Scholar] [CrossRef] [PubMed]
- Mellecker, C.; Albright, J.; Clark, R. Peripheral Nerve Blocks and Incidence of Post-Operative Neurogenic Complaints and Pain Scores. Iowa Orthop. J. 2012, 32, 83–89. [Google Scholar] [PubMed]
- Murphy, P.B.; Kasotakis, G.; Haut, E.R.; Miller, A.; Harvey, E.; Hasenboehler, E.; Higgins, T.; Hoegler, J.; Mir, H.; Cantrell, S.; et al. Efficacy and Safety of Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) for the Treatment of Acute Pain after Orthopedic Trauma: A Practice Management Guideline from the Eastern Association for the Surgery of Trauma and the Orthopedic Trauma Association. Trauma Surg. Acute Care Open 2023, 8, e001056. [Google Scholar] [CrossRef]
- Morrison, R.S.; Dickman, E.; Hwang, U.; Akhtar, S.; Ferguson, T.; Huang, J.; Jeng, C.L.; Nelson, B.P.; Rosenblatt, M.A.; Silverstein, J.H.; et al. Regional Nerve Blocks Improve Pain and Functional Outcomes in Hip Fracture: A Randomized Controlled Trial. J. Am. Geriatr. Soc. 2016, 64, 2433–2439. [Google Scholar] [CrossRef]
- Haeseler, G.; Schaefers, D.; Prison, N.; Ahrens, J.; Liu, X.; Karch, A. Combatting Pain after Orthopedic/Trauma Surgery-Perioperative Oral Extended-Release Tapentadol vs. Extended-Release Oxycodone/Naloxone. BMC Anesthesiol. 2017, 17, 91. [Google Scholar] [CrossRef]
- Karaduman, Z.O.; Turhal, O.; Turhan, Y.; Orhan, Z.; Arican, M.; Uslu, M.; Cangur, S. Evaluation of the Clinical Efficacy of Using Thermal Camera for Cryotherapy in Patients with Total Knee Arthroplasty: A Prospective Study. Medicina 2019, 55, 661. [Google Scholar] [CrossRef]
- Okoroha, K.R.; Lynch, J.R.; Keller, R.A.; Korona, J.; Amato, C.; Rill, B.; Kolowich, P.A.; Muh, S.J. Liposomal Bupivacaine versus Interscalene Nerve Block for Pain Control after Shoulder Arthroplasty: A Prospective Randomized Trial. J. Shoulder Elb. Surg. 2016, 25, 1742–1748. [Google Scholar] [CrossRef] [PubMed]
- Jelodar, A.G.; Makrani, N.F.; Shafizad, M.; Saeidiborojeni, H.; Kiabi, F.H.; Ebrahimian, M. Comparison of Dexmedetomidine and Ketamine in Adjuvant with Morphine for Postoperative Pain Management Following Lumbar Fusion Surgery. Interdiscip. Neurosurg. 2023, 33, 101767. [Google Scholar] [CrossRef]
- Brouwers, H.F.G.; de Vries, A.J.; van Zuilen, M.; van Kouswijk, H.W.; Brouwer, R.W. The Role of Computer-Assisted Cryotherapy in the Postoperative Treatment after Total Knee Arthroplasty: Positive Effects on Pain and Opioid Consumption. Knee Surg. Sport. Traumatol. Arthrosc. 2022, 30, 2698–2706. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Chen, T.; Huang, C.; Hsieh, Y.; Lai, H. Effects of Music on Psychophysiological Responses and Opioid Dosage in Patients Undergoing Total Knee Replacement Surgery. Jpn. J. Nurs. Sci. 2015, 12, 309–319. [Google Scholar] [CrossRef] [PubMed]
- Cogan, C.J.; Kandemir, U. Role of Peripheral Nerve Block in Pain Control for the Management of Acute Traumatic Orthopaedic Injuries in the Emergency Department: Diagnosis-Based Treatment Guidelines. Injury 2020, 51, 1422–1425. [Google Scholar] [CrossRef] [PubMed]
- Elboim-Gabyzon, M.; Andrawus Najjar, S.; Shtarker, H. Effects of Transcutaneous Electrical Nerve Stimulation (TENS) on Acute Postoperative Pain Intensity and Mobility after Hip Fracture: A Double-Blinded, Randomized Trial. Clin. Interv. Aging 2019, 14, 1841–1850. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Tian, F. Music Intervention to Orthopedic Patients: A Possible Alternative Solution to Control Pain. Comput. Math. Methods Med. 2021, 2021, 1234686. [Google Scholar] [CrossRef]
- Guay, J.; Parker, M.J.; Griffiths, R.; Kopp, S. Peripheral Nerve Blocks for Hip Fractures. Cochrane Database Syst. Rev. 2017. [Google Scholar] [CrossRef]
- Guay, J.; Kopp, S. Peripheral Nerve Blocks for Hip Fractures in Adults. Cochrane Database Syst. Rev. 2020, 2021, CD001159. [Google Scholar] [CrossRef]
- Dowell, D.; Ragan, K.R.; Jones, C.M.; Baldwin, G.T.; Chou, R. CDC Clinical Practice Guideline for Prescribing Opioids for Pain—United States, 2022. MMWR. Recomm. Rep. 2022, 71, 1–95. [Google Scholar] [CrossRef]
- Farag, E.; Atim, A.; Ghosh, R.; Bauer, M.; Sreenivasalu, T.; Kot, M.; Kurz, A.; Dalton, J.E.; Mascha, E.J.; Mounir-Soliman, L.; et al. Comparison of Three Techniques for Ultrasound-Guided Femoral Nerve Catheter Insertion. Anesthesiology 2014, 121, 239–248. [Google Scholar] [CrossRef] [PubMed]
- Ilfeld, B.M.; Le, L.T.; Meyer, R.S.; Mariano, E.R.; Vandenborne, K.; Duncan, P.W.; Sessler, D.I.; Enneking, F.K.; Shuster, J.J.; Theriaque, D.W.; et al. Ambulatory Continuous Femoral Nerve Blocks Decrease Time to Discharge Readiness after Tricompartment Total Knee Arthroplasty. Anesthesiology 2008, 108, 703–713. [Google Scholar] [CrossRef]
- Rogers, E.; Mehta, S.; Shengelia, R.; Reid, M.C. Four Strategies for Managing Opioid-Induced Side Effects in Older Adults. Clin. Geriatr. 2013, 21. [Google Scholar]
- Pehora, C.; Pearson, A.M.; Kaushal, A.; Crawford, M.W.; Johnston, B. Dexamethasone as an Adjuvant to Peripheral Nerve Block. Cochrane Database Syst. Rev. 2017, 2017, CD011770. [Google Scholar] [CrossRef] [PubMed]
- Schnabel, A.; Weibel, S.; Pogatzki-Zahn, E.; Meyer-Frießem, C.H.; Oostvogels, L. Erector Spinae Plane Block for Postoperative Pain. Cochrane Database Syst. Rev. 2023, 2023. [Google Scholar] [CrossRef]
- Chitnis, S.S.; Tang, R.; Mariano, E.R. The Role of Regional Analgesia in Personalized Postoperative Pain Management. Korean J. Anesthesiol. 2020, 73, 363–371. [Google Scholar] [CrossRef]
- Kaye, A.; Urman, R.; Rappaport, Y.; Siddaiah, H.; Cornett, E.; Belani, K.; Salinas, O.; Fox, C. Multimodal Analgesia as an Essential Part of Enhanced Recovery Protocols in the Ambulatory Settings. J. Anaesthesiol. Clin. Pharmacol. 2019, 35, 40. [Google Scholar] [CrossRef]
- Saesen, R.; Van Hemelrijck, M.; Bogaerts, J.; Booth, C.M.; Cornelissen, J.J.; Dekker, A.; Eisenhauer, E.A.; Freitas, A.; Gronchi, A.; Hernán, M.A.; et al. Defining the Role of Real-World Data in Cancer Clinical Research: The Position of the European Organisation for Research and Treatment of Cancer. Eur. J. Cancer 2023, 186, 52–61. [Google Scholar] [CrossRef]
- Berninger, M.T.; Friederichs, J.; Leidinger, W.; Augat, P.; Bühren, V.; Fulghum, C.; Reng, W. Effect of Local Infiltration Analgesia, Peripheral Nerve Blocks, General and Spinal Anesthesia on Early Functional Recovery and Pain Control in Unicompartmental Knee Arthroplasty. BMC Musculoskelet. Disord. 2018, 19, 249. [Google Scholar] [CrossRef]
- Stamenkovic, D.M.; Bezmarevic, M.; Bojic, S.; Unic-Stojanovic, D.; Stojkovic, D.; Slavkovic, D.Z.; Bancevic, V.; Maric, N.; Karanikolas, M. Updates on Wound Infiltration Use for Postoperative Pain Management: A Narrative Review. J. Clin. Med. 2021, 10, 4659. [Google Scholar] [CrossRef]
- Verlinde, M.; Hollmann, M.; Stevens, M.; Hermanns, H.; Werdehausen, R.; Lirk, P. Local Anesthetic-Induced Neurotoxicity. Int. J. Mol. Sci. 2016, 17, 339. [Google Scholar] [CrossRef] [PubMed]
- Neal, J.M.; Gerancher, J.C.; Hebl, J.R.; Ilfeld, B.M.; McCartney, C.J.L.; Franco, C.D.; Hogan, Q.H. Upper Extremity Regional Anesthesia. Reg. Anesth. Pain Med. 2009, 34, 134–170. [Google Scholar] [CrossRef] [PubMed]
- Vadhanan, P.; Tripaty, D.; Adinarayanan, S. Physiological and Pharmacologic Aspects of Peripheral Nerve Blocks. J. Anaesthesiol. Clin. Pharmacol. 2015, 31, 384. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Almonte, J.H.; Wyles, C.C.; Wyles, S.P.; Norambuena-Morales, G.A.; Báez, P.J.; Murad, M.H.; Sierra, R.J. Is Local Infiltration Analgesia Superior to Peripheral Nerve Blockade for Pain Management After THA: A Network Meta-Analysis. Clin. Orthop. Relat. Res. 2016, 474, 495–516. [Google Scholar] [CrossRef] [PubMed]
- Shah, D.; Shah, S.; Mahajan, A.; Shah, N.; Sanghvi, D.; Shah, R. A Comparative Clinical Evaluation of Analgesic Efficacy of Tapentadol and Ketorolac in Mandibular Third Molar Surgery. Natl. J. Maxillofac. Surg. 2017, 8, 12. [Google Scholar] [CrossRef]
- Birrell, F.; Lohmander, S. Non-Steroidal Anti-Inflammatory Drugs after Hip Replacement. BMJ 2006, 333, 507–508. [Google Scholar] [CrossRef] [PubMed]
- Chandok, N.; Watt, K.D.S. Pain Management in the Cirrhotic Patient: The Clinical Challenge. Mayo Clin. Proc. 2010, 85, 451–458. [Google Scholar] [CrossRef]
- Chunduri, A.; Aggarwal, A.K. Multimodal Pain Management in Orthopedic Surgery. J. Clin. Med. 2022, 11, 6386. [Google Scholar] [CrossRef]
- Van Ooij, B.; Wiegerinck, J.J.; Wegener, J.T.; van Dijk, C.N.; Schafroth, M.U. Cryotherapy after Total Knee Arthroplasty Provides Faster Recovery and Better Ranges of Motion in Short Term Follow up. Results of a Prospective Comparative Study. Acta Orthop. Belg. 2020, 86, 463–469. [Google Scholar]
- Lin, C.; Hwang, S.; Jiang, P.; Hsiung, N. Effect of Music Therapy on Pain After Orthopedic Surgery—A Systematic Review and Meta-Analysis. Pain Pract. 2020, 20, 422–436. [Google Scholar] [CrossRef]
- Patiyal, N.; Kalyani, V.; Mishra, R.; Kataria, N.; Sharma, S.; Parashar, A.; Kumari, P. Effect of Music Therapy on Pain, Anxiety, and Use of Opioids Among Patients Underwent Orthopedic Surgery: A Systematic Review and Meta-Analysis. Cureus 2021, 13, e18377. [Google Scholar] [CrossRef]
- Chiang, B.; Marquardt, C.; Martin, J.C.; Malyavko, A.; Tabaie, S. The Role of Music-Based Interventions in Orthopaedic Surgery. Cureus 2022, 14, e31157. [Google Scholar] [CrossRef]
- Ke, H.-H.; Liou, J.-Y.; Teng, W.-N.; Hsu, P.-K.; Tsou, M.-Y.; Chang, W.-K.; Ting, C.-K. Opioid-Sparing Anesthesia with Dexmedetomidine Provides Stable Hemodynamic and Short Hospital Stay in Non-Intubated Video-Assisted Thoracoscopic Surgery: A Propensity Score Matching Cohort Study. BMC Anesthesiol. 2023, 23, 110. [Google Scholar] [CrossRef]
- Kweon, D.; Koo, Y.; Lee, S.; Chung, K.; Ahn, S.; Park, C. Postoperative Infusion of a Low Dose of Dexmedetomidine Reduces Intravenous Consumption of Sufentanil in Patient-Controlled Analgesia. Korean J. Anesthesiol. 2018, 71, 226–231. [Google Scholar] [CrossRef]
- Ghasemi, M.; Behnaz, F.; Hajian, H. The Effect of Dexmedetomidine Prescription on Shivering during Operation in the Spinal Anesthesia Procedures of Selective Orthopedic Surgery of the Lower Limb in Addicted Patients. Anesthesiol. Pain Med. 2018, 8, e63230. [Google Scholar] [CrossRef]
- Aguirre, J.; Del Moral, A.; Cobo, I.; Borgeat, A.; Blumenthal, S. The Role of Continuous Peripheral Nerve Blocks. Anesthesiol. Res. Pract. 2012, 2012, 560879. [Google Scholar] [CrossRef]
- Shaban, M.; Mohammed, H.H.; Hassan, S. Role of Community Health Nurse in the Prevention of Elderly Dehydration: A Mini-Review. J. Integr. Nurs. 2022, 4, 166–171. [Google Scholar] [CrossRef]
- Bhide, A.; Shah, P.S.; Acharya, G. A Simplified Guide to Randomized Controlled Trials. Acta Obstet. Gynecol. Scand. 2018, 97, 380–387. [Google Scholar] [CrossRef]
- Berger, S.E.; Baria, A.T. Assessing Pain Research: A Narrative Review of Emerging Pain Methods, Their Technosocial Implications, and Opportunities for Multidisciplinary Approaches. Front. Pain Res. 2022, 3, 896276. [Google Scholar] [CrossRef]
- Kurdi, M.; Agrawal, P.; Thakkar, P.; Arora, D.; Barde, S.; Eswaran, K. Recent Advancements in Regional Anaesthesia. Indian J. Anaesth. 2023, 67, 63. [Google Scholar] [CrossRef]
Study | Study Design | Diagnosis | Intervention | Control | Outcomes | Key Findings |
---|---|---|---|---|---|---|
Domagalska et al., (2023) [55] | A prospective, randomized, double-blinded clinical trial | Total hip arthroplasty | Pericapsular nerve group (PENG) block with 20 mL of 0.5% ropivacaine. | Sham block | Primary outcome measure: Postoperative NRS (Numeric Rating Scale) score in motion. Secondary outcomes: Cumulative opioid consumption. Time to the first opioid. Functional recovery. | The time to the first opioid was considerably longer in the PENG group (p < 0.0001). Overall, 24% of PENG patients did not require opioids (p < 0.0001). The PENG block led to significantly decreased opioid consumption and improved functional recovery after total hip arthroplasty. |
Haeseler et al., (2017) [59] | Randomized, observer-blinded, active-controlled prospective clinical trial | High post-operative pain scores after “minor” orthopedic/trauma | Perioperative oral administration of extended release tapentadol | Oxycodone/naloxone | Pain scores, adverse events, patient satisfaction | Both tapentadol and oxycodone/naloxone resulted in mean daily pain levels of 2.8 in the first five post-operative days. Tapentadol was non-inferior but not superior to oxycodone/naloxone. |
Mellecker et al., (2012) [56] | Cohort study | Neurogenic complaints and pain control post-PNB after orthopedic procedures | Peripheral nerve block | Patients who did not receive a PNB | Pain scale ratings, severe pain incidence, ER visits/house officer calls, persistence of complaints | Patients with PNB reported a 38.14% incidence of neurogenic complaints vs. 9.43% in non-PNB patients (p < 0.001). Higher incidence of severe pain in the PNB group (27.9% vs. 15.1%, p < 0.05). Improved pain control immediately after surgery |
Morrison et al., (2016) [58] | Multi-site randomized controlled trial | Pain following hip fracture | Ultrasound-guided single injection femoral nerve block and continuous fascia iliaca block | Conventional analgesics | Pain scores (0–10 scale), distance walked on post-operative day (POD) 3, walking ability at 6 weeks post-discharge, opioid side effects | Pain scores 2 h following admission favored intervention group (3.5 versus 5.3, p = 0.002) Significant improvements in pain scores on POD 3 for intervention group compared to control group (pain at rest, with transfers out of bed, and with walking) Intervention patients walked significantly further than controls on POD 3 Intervention patients reported better walking |
Murphy et al., (2023) [65] | Diagnosis-based treatment guidelines | Orthopedic trauma and acute pain control | Peripheral nerve block (PNB) | Opioid medications | Healthcare cost, opioid consumption, opioid-related complications | Peripheral nerve block (PNB) is proposed as a potential strategy to decrease healthcare cost, opioid consumption, and opioid-related complications in acute orthopedic injury, providing a specific diagnosis-based treatment guideline for improved pain management. |
Cogan et al., (2020) [57] | Randomized controlled trial | NSAID prophylaxis for ectopic bone formation in hip replacement surgery | 14 days’ treatment with ibuprofen (1200 mg daily) or matching placebo started within 24 h of surgery | Placebo | Changes in self-reported hip pain and physical function 6 to 12 months after surgery | No significant differences observed between groups for improvements in hip pain or physical function (p = 0.6 and p = 0.5, respectively). Despite a reduced risk of ectopic bone formation associated with ibuprofen, a significantly increased risk of major bleeding complications was noted in the ibuprofen group. The data do not support the routine use of NSAIDs in patients undergoing total hip replacement surgery. |
Jelodar et al., (2023) [62] | Double-blind randomized clinical trial | Postoperative pain in patients undergoing lumbar fusion surgery | Group D: 50 μg dexmedetomidine + 20 mg intravenous morphine Group K: 50 mg ketamine + 20 mg intravenous morphine Control Group C: 20 mg intravenous morphine + normal saline (100 cc) | Control Group C: 20 mg intravenous morphine + normal saline (100 cc) | Pain severity using Visual Analog Scale (VAS) at 2, 6, and 24 postoperative hours, Nausea, vomiting, drug consumption via PCA pump, duration of hospital stay | Postoperative pain management with dexmedetomidine and morphine demonstrated the most effectiveness in reducing pain, adverse effects, hospitalization, and enhancing patient satisfaction, superior to ketamine and morphine as adjuvants and morphine alone. |
Elboim et al., (2019) [66] | Randomized controlled trial | Intense perioperative pain after Gamma-nail surgical fixation of extracapsular hip fractures | Supplement of 30 min active TENS | Sham TENS | Pain intensity during ambulation, Functional Ambulation Classification, time for sit-to-stand tests, two-minute walk test | Addition of TENS alongside standard care significantly reduced pain during walking, increased walking distance, and improved mobility. No notable effects on pain at rest and night or sit-to-stand performance. The study recommends TENS for pain management during walking and functional gait recovery in the early days following surgical fixation of hip fractures. |
Wang et al., (2021) [67] | Comparative, descriptive, quasi-experimental | Pain in postoperative orthopedic patients | Pocket-size MP3 players with prerecorded music tracks (instrumental and lyrical in Hindi, English, and Urdu) | No specific control mentioned | Pre-post-pain scores recorded using patient logs; satisfaction survey completed at discharge | Music intervention significantly reduced pain from 5.40 to 2.98. Patients recommended the use of music to others with a 96.6% recommendation. |
Chen et al., (2015) [64] | Quasi-experimental | Patients undergoing total knee replacement | Listening to music | Control group (no music) | Psychophysiological parameters (blood pressure, heart rate, respiratory rate), pain intensity (measured via visual analog scale), opioid dosage | No significant difference observed in pain intensity or opioid dosage between music and control groups. However, within the music group, a significant and consistent decrease in systolic blood pressure was noted during postoperative recovery. |
Brouwers et al., (2022) [63] | Non-blinded randomized controlled trial | Postoperative pain after total knee arthroplasty (TKA) | Computer-assisted cryotherapy | Usual postoperative care | Primary: Pain levels monitored with numerical rating scale and opioid use; Secondary: Function, swelling, patient-reported outcomes, satisfaction | Computer-assisted cryotherapy for TKA reduced pain and opioid consumption in the first postoperative week. No significant differences were observed in knee function or swelling. |
Karaduman et al., (2019) [60] | Prospective evaluation | Total knee arthroplasty for grade 4 gonarthrosis | Cryotherapy pre- and/or postoperatively | Cold pack (gel ice) postoperatively | Pain scores, hemorrhage follow-up, knee circumference, temperature, knee flexion | Cryotherapy, especially when applied postoperatively, significantly reduces pain values compared to using only a cold pack. Additionally, it shows benefits in reducing bleeding, analgesic requirement, and swelling after total knee arthroplasty. |
Okoroha et al., (2016) [61] | Prospective randomized trial | Patients undergoing shoulder arthroplasty | Interscalene nerve block (INB) | Local liposomal bupivacaine (LB) | Average daily visual analog scale scores for 4 days, opioid consumption, length of stay, complications | LB showed increased pain between 0 and 8 h postoperatively (p = 0.001), INB group required more narcotics at 13 to 16 h postoperatively (p = 0.01). No significant differences between groups after postoperative day 0. |
Elmansy et al., (2023) [54] | Prospective study | Rib fractures causing pain | Ultrasound-guided ESPB with 20 mL of bupivacaine 0.25% | Intravenous morphine then IV PCA containing morphine | Visual Analogue Scale (VAS) score, Peak Inspiratory Flow Rate (PIFR), morphine consumption, complications, patient satisfaction | Erector spinae plane block (ESPB) provided superior analgesia compared to IV PCA morphine. Higher VAS scores were observed in the morphine group. ESPB resulted in higher PIFR, less opioid consumption and side effects, and better patient satisfaction. |
Janiak et al., (2023) [53] | Comparative study | Postoperative pain after knee replacement | Intrathecal morphine (ITM) | Single-shot femoral nerve block (SSFNB | Total morphine dose in the postoperative period, pain management efficacy, incidence of side effects | Intrathecal morphine (ITM) showed similar effectiveness in pain treatment post knee replacement as SSFNB. However, ITM was associated with a higher incidence of cumbersome side effects, primarily nausea and pruritus |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aldanyowi, S.N. Novel Techniques for Musculoskeletal Pain Management after Orthopedic Surgical Procedures: A Systematic Review. Life 2023, 13, 2351. https://doi.org/10.3390/life13122351
Aldanyowi SN. Novel Techniques for Musculoskeletal Pain Management after Orthopedic Surgical Procedures: A Systematic Review. Life. 2023; 13(12):2351. https://doi.org/10.3390/life13122351
Chicago/Turabian StyleAldanyowi, Saud N. 2023. "Novel Techniques for Musculoskeletal Pain Management after Orthopedic Surgical Procedures: A Systematic Review" Life 13, no. 12: 2351. https://doi.org/10.3390/life13122351
APA StyleAldanyowi, S. N. (2023). Novel Techniques for Musculoskeletal Pain Management after Orthopedic Surgical Procedures: A Systematic Review. Life, 13(12), 2351. https://doi.org/10.3390/life13122351