High Biofilm-Forming Ability and Clonal Dissemination among Colistin-Resistant Escherichia coli Isolates Recovered from Cows with Mastitis, Diarrheic Calves, and Chickens with Colibacillosis in Tunisia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling and Sample Collection
2.2. Isolation and Bacteria Identification
2.3. Antimicrobial Susceptibility Testing and Screening for ESBL Production
2.4. Colistin Susceptibility Testing and Screening of Colistin Resistance Genes
2.5. Detection of Resistance Genes in CREC Isolates
2.6. Detection of β-Lactamase-Encoding Genes
2.7. Biofilm Formation Assay
2.8. Detection of Virulence and Biofilm Encoding Genes
2.9. E. coli Phylogenetic Typing
Primer Name | Oligonucleotide Sequence (5′-3′) | Amplicon Size (bp) | Annealing Temp. °C | Specificity | Reference |
---|---|---|---|---|---|
E. coli Identification | |||||
UidA | F: ATCACCGTGGTGACGCATGTCGC | 486 | 51 | β-glucuronidase enzyme | [24] |
R: CACCACGATGCCATGTTCATCTGC | |||||
Resistance Genes | |||||
mcr1 | F: CGGTCAGTCCGTTTGTTC | 309 | 58 | Colistin | [18] |
R: CTTGGTCGGTCTGTAGGG | |||||
mcr2 | F:TGTTGCTTGTGCCGATTGGA | 567 | 58 | [29] | |
R: AGATGGTATTGTTGGTTGCTG | |||||
mcr-3 | F: TTGGCACTGTATTTTGCATTT | 542 | 50 | [30] | |
R: TTAACGAAATTGGCTGGAACA | |||||
mcr-4 | F: ATTGGGATAGTCGCCTTTTT | 487 | 56 | [31] | |
R: TTACAGCCAGAATCATTATCA | |||||
blaTEM | F: ATTCTTGAAGACGAAAGGGC | 1150 | 60 | Bêtalactamases | [32] |
R: ACGCTCAGTGGAACGAAAAC | |||||
tet(A) | F:AATTCTGAGCACTGTCGC | 937 | 62 | Tetracyclines | |
R: CTGCCTGGACAACATTGCTT | |||||
tet(B) | F: CTCAGTATTCCAAGCCTTTG | 416 | 57 | ||
R: CTAAGCACTTGTCTCCTGTT | |||||
strA | F: ATTCTGACTGGTTGCCTGTC | 1562 | 55 | Streptomycin | |
R: CGCAGATAGAAGGCAAGG | |||||
strB | F: TTCTCATTGCGGACAACCT | 1562 | 55 | ||
R: TAGATCGCGTTGCTCCTCTT | |||||
DfrAI | F: GTGAAACTATCACTAATGG | 474 | 55 | Trimethoprim | |
R: TTAACCCTTTTGCCAGATTT | |||||
DfrVII | F: TTGAAAATTTCATTGATT | 474 | 55 | ||
R: TTAGCCTTTTTTCCAAATCT | |||||
sul1 | F:TGGTGACGGTGTTCGGCATTC | 789 | 63 | Sulfamides | |
R: GCGAGGGTTTCCGAGAAGGTG | |||||
sul2 | F: CGGCATCGTCAACATAACC | 722 | 50 | ||
R: GTGTGCGGATGAAGTCAG | |||||
aadA | F: GCAGCGCAATGACATTCTTG | 282 | 60 | Streptomycin | [33] |
R: ATCCTTCGGCGCGATTTTG | |||||
floR | F: CACGTTGAGCCTCTATAT | 868 | 55 | Florfenicol | [32] |
R: ATGCAGAAGTAGAACGCG | |||||
cmlA | F: TGTCATTTACGGCATACTCG | 455 | 55 | Chloramphenicol | |
R: ATCAGGCATCCCATTCCCAT | |||||
blaSHV | F: CACTCAAGGATGTATTGTG | 885 | 52 | β-lactamases | [24] |
R: TTAGCGTTGCCAGTGCTCG | |||||
blaCTX-M-g-1 | F: GTTACAATGTGTGAGAAGCAG | 1041 | 50 | ||
R: CCGTTTCCGCTATTACAAAC | |||||
blaCTX-M-g-8 | F: TGATGAGACATCGCGTTAAG | 666 | 52 | ||
R: TAACCGTCGGTGACGATTTT | |||||
blaCTX-M-g-9 | F: GTGACAAAGAGAGTGCAACGG | 856 | 62 | ||
R: ATGATTCTCGCCGCTGAAGCC | |||||
Virulence Genes | |||||
fimA | F: GTTGTTCTGTCGGCTCTGTC | 447 | 55 | Type 1 Fimbriae | [36] |
R: ATGGTGTTGGTTCCGTTATTC | |||||
aer | F: TACCGGATTGTCATATGCAGACCGT | 602 | 55 | Aerobactin iron uptake system | |
R: AATATCTTCCTCCAGTCCGGAGAAG | |||||
stx1 | F: CTGGATTTAATGTCGCATAGTG | 150 | 55 | Type 1 Shiga-toxin | [37] |
R: AGAACGCCCACTGAGATCATC | |||||
stx2 | F: GGCACTGTCTGAAACTGCTCC | 255 | 55 | Type 2 Shiga-toxin | |
R: TCGCCAGTTATCTGACATTCTG | |||||
hlyA | F: AACAAGGATAAGCACTGTTCTGGCT | 1177 | 55 | Alpha-hemolysin | [36] |
R: ACCATATAAGCGGTCATTCCCGTCA | |||||
cnf1 | F: AAGATGGAGTTTCCTATGCAGGAG | 498 | 55 | Cytotoxic necrotizing factor 1 | |
R: CATTCAGAGTCCTGCCCTCATTATT | |||||
papC | F:GACGGCTGTACTGCAGGGTGTGGCG | 328 | 55 | P Fimbriae | |
R: ATATCCTTTCTGCAGGGATGCAATA | |||||
Phylogenetic Groups | |||||
chuA | F: GACGAACCAACGGTCAGGAT | 279 | 55 | Phylogenetic groups | [38,39] |
R: TGCCGCCAGTACCAAAGACA | |||||
yjaA | F: TGAAGTGTCAGGAGACGCTG | 211 | 55 | ||
R: ATGGAGAATGCGTTCCTCAAC | |||||
tspE4.C2 | F: GAGTAATGTCGGGGCATTCA | 152 | 55 | ||
R: CGCGCCAACAAAGTATTACG | |||||
Genotyping | |||||
ERIC | F: ATGTAAGCTCCTGGGGATTCAC | * | 52 | Enterobacterial Repetitive Intergenic Consensus | [40] |
R: AAGTAAGTGACTGGGGTGAGCG |
2.10. E.coli Molecular Typing by ERIC-PCR
2.11. Statistical Analysis
3. Results
3.1. Collected E. coli Isolates
3.2. Antimicrobial Susceptibility Testing and Screening for ESBL Production
3.3. MIC of Colistin and Detection of Resistance Genes
3.4. Biofilm Formation Assay
3.5. Detection Genes Encoding ESBL Enzymes and Other Resistance Markers
3.6. Detection of Virulence and Biofilm Encoding Genes in CREC Isolates
3.7. E. coli Phylogenetic Typing in CREC Isolates
3.8. CREC Molecular Typing by ERIC-PCR
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wirth, T.; Falush, D.; Lan, R.; Colles, F.; Mensa, P.; Wieler, L.H.; Karch, H.; Reeves, P.R.; Maiden, M.C.; Ochman, H.; et al. Sex and virulence in Escherichia coli: An evolutionary perspective. Mol. Microbiol. 2006, 60, 1136–1151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tenaillon, O.; Skurnik, D.; Picard, B.; Denamur, E. The population genetics of commensal Escherichia coli. Nat. Rev. Microbiol. 2010, 8, 207–217. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.R.; Russo, T.A. Extraintestinal pathogenic Escherichia coli: “the other bad E. coli”. J. Lab. Clin. Med. 2002, 139, 155–162. [Google Scholar] [CrossRef]
- Kaper, J.B.; Nataro, J.P.; Mobley, H.L. Pathogenic Escherichia coli. Nature reviews. Microbiology 2004, 2, 123–140. [Google Scholar] [CrossRef] [PubMed]
- Hogeveen, H.; Huijps, K.; Lam, T. Economic aspects of mastitis: New developments. N. Z. Vet. J. 2011, 59, 16–23. [Google Scholar] [CrossRef]
- Lorenz, I.; Fagan, J.; More, S.J. Calf health from birth to weaning. II. Management of diarrhoea in pre-weaned calves. Ir. Vet. J. 2011, 64, 9. [Google Scholar] [CrossRef] [Green Version]
- Guabiraba, R.; Schouler, C. Avian colibacillosis: Still many black holes. FEMS Microbiol. Lett. 2015, 362, fnv118. [Google Scholar] [CrossRef]
- Da Silva, G.J.; Mendonça, N. Association between antimicrobial resistance and virulence in Escherichia coli. Virulence 2012, 3, 18–28. [Google Scholar] [CrossRef] [Green Version]
- Mainil, J.G.; Fairbrother, J. Pathogenic Escherichia coli in domestic mammals and birds. In Pathogenic Escherichia coli. Molecular and Cellular Microbiology, 1st ed.; Morabito, S., Ed.; Caister Academic Press: Norfolk, UK, 2014; pp. 19–44. [Google Scholar]
- Nüesch-Inderbinen, M.; Käppeli, N.; Morach, M.; Eicher, C.; Corti, S.; Stephan, R. Molecular types, virulence profiles and antimicrobial resistance of Escherichia coli causing bovine mastitis. Vet. Rec. Open 2019, 6, e000369. [Google Scholar] [CrossRef] [Green Version]
- Suojala, L.; Pohjanvirta, T.; Simojoki, H.; Myllyniemi, A.L.; Pitkälä, A.; Pelkonen, S.; Pyörälä, S. Phylogeny, virulence factors and antimicrobial susceptibility of Escherichia coli isolated in clinical bovine mastitis. Vet. Microbiol. 2011, 147, 383–388. [Google Scholar] [CrossRef]
- Johnson, T.J.; Wannemuehler, Y.; Johnson, S.J.; Stell, A.L.; Doetkott, C.; Johnson, J.R.; Kim, K.S.; Spanjaard, L.; Nolan, L.K. Comparison of extraintestinal pathogenic Escherichia coli strains from human and avian sources reveals a mixed subset representing potential zoonotic pathogens. Appl. Environ. Microbiol. 2008, 74, 7043–7050. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Terlizzi, M.E.; Gribaudo, G.; Maffei, M.E. UroPathogenic Escherichia coli (UPEC) infections: Cirulence factors, bladder responses, antibiotic, and non-antibiotic antimicrobial strategies. Front. Microbiol. 2017, 8, 1566. [Google Scholar] [CrossRef] [Green Version]
- Vysakh, A.; Midhun, S.J.; Jayesh, K.; Jyothis, M.; Latha, M.S. Studies on biofilm formation and virulence factors associated with uropathogenic Escherichia coli isolated from patient with acute pyelonephritis. Pathophysiol. Off. J. Int. Soc. Pathophysiol. 2018, 25, 381–387. [Google Scholar] [CrossRef]
- Manges, A.R.; Harel, J.; Masson, L.; Edens, T.J.; Portt, A.; Reid-Smith, R.J.; Zhanel, G.G.; Kropinski, A.M.; Boerlin, P. Multilocus sequence typing and virulence gene profiles associated with Escherichia coli from human and animal sources. Foodborne Pathog. Dis. 2015, 12, 302–310. [Google Scholar] [CrossRef] [PubMed]
- Menge, C.; Wieler, L.H.; Schlapp, T.; Baljer, G. Shiga toxin 1 from Escherichia coli blocks activation and proliferation of bovine lymphocyte subpopulations in vitro. Infect. Immun. 1999, 67, 2209–2217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Constable, P.D. Antimicrobial use in the treatment of calf diarrhea. J. Vet. Intern. Med. 2004, 18, 8–17. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.Y.; Wang, Y.; Walsh, T.R.; Yi, L.X.; Zhang, R.; Spencer, J.; Doi, Y.; Tian, G.; Dong, B.; Huang, X.; et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: A microbiological and molecular biological study. Lancet Infect. Dis. 2016, 16, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Saidani, M.; Messadi, L.; Soudani, A.; Daaloul-Jedidi, M.; Châtre, P.; Ben Chehida, F.; Mamlouk, A.; Mahjoub, W.; Madec, J.Y.; Haenni, M. Epidemiology, Antimicrobial Resistance, and Extended-Spectrum Beta-Lactamase-Producing Enterobacteriaceae in Clinical Bovine Mastitis in Tunisia. Microb. Drug Resist. 2018, 24, 1242–1248. [Google Scholar] [CrossRef] [PubMed]
- Dhaouadi, S.; Soufi, L.; Hamza, A.; Fedida, D.; Zied, C.; Awadhi, E.; Mtibaa, M.; Hassen, B.; Cherif, A.; Torres, C.; et al. Co-occurrence of mcr-1 mediated colistin resistance and β-lactamase-encoding genes in multidrug-resistant Escherichia coli from broiler chickens with colibacillosis in Tunisia. J. Glob. Antimicrob. Resist. 2020, 22, 538–545. [Google Scholar] [CrossRef]
- Jouini, A.; Klibi, A.; Elarbi, I.; Chaabene, M.B.; Hamrouni, S.; Souiai, O.; Hanachi, M.; Ghram, A.; Maaroufi, A. First Detection of Human ST131-CTX-M-15-O25-B2 Clone and High-Risk Clonal Lineages of ESBL/pAmpC-Producing E. coli Isolates from Diarrheic Poultry in Tunisia. Antibiotics 2021, 10, 670. [Google Scholar] [CrossRef]
- Hassen, B.; Saloua, B.; Abbassi, M.S.; Ruiz-Ripa, L.; Mama, O.M.; Hassen, A.; Hammami, S.; Torres, C. mcr-1 encoding colistin resistance in CTX-M-1/CTX-M-15- producing Escherichia coli isolates of bovine and caprine origins in Tunisia. First report of CTX-M-15-ST394/D E. coli from goats. Comp. Immunol. Microbiol. Infect. Dis. 2019, 67, 101366. [Google Scholar] [CrossRef] [PubMed]
- Hassen, B.; Abbassi, M.S.; Ruiz-Ripa, L.; Mama, O.M.; Hassen, A.; Torres, C.; Hammami, S. High prevalence of mcr-1 encoding colistin resistance and first identification of bla(CTX-M-55) in ESBL/CMY-2-producing Escherichia coli isolated from chicken faeces and retail meat in Tunisia. Int. J. Food Microbiol. 2020, 318, 108478. [Google Scholar] [CrossRef] [PubMed]
- Jouini, A.; Vinué, L.; Slama, K.B.; Sáenz, Y.; Klibi, N.; Hammami, S.; Boudabous, A.; Torres, C. Characterization of CTX-M and SHV extended-spectrum beta-lactamases and associated resistance genes in Escherichia coli strains of food samples in Tunisia. J. Antimicrob. Chemother. 2007, 60, 1137–1141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Disk Susceptibility Tests, 12th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2017. [Google Scholar]
- The European Committee on Antimicrobial Susceptibility Testing (EUCAST). Breakpoint Tables for Interpretation of MICs and Zone Diameters, v7.1. 2017. Available online: http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_7.1_Breakpoint_Tables.pdf (accessed on 16 October 2021).
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2012, 18, 268–281. [Google Scholar] [CrossRef] [Green Version]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Third Information Supplement CLSI Document M100-S23; CLSI: Philadelphia, PA, USA, 2013. [Google Scholar]
- Xavier, B.B.; Lammens, C.; Ruhal, R.; Kumar-Singh, S.; Butaye, P.; Goossens, H.; Malhotra-Kumar, S. Identification of a novel plasmid-mediated colistin-resistance gene, mcr-2, in Escherichia coli, Belgium, June 2016. Eurosurveillance 2016, 21, 30280. [Google Scholar] [CrossRef] [Green Version]
- Yin, W.; Li, H.; Shen, Y.; Liu, Z.; Wang, S.; Shen, Z.; Zhang, R.; Walsh, T.R.; Shen, J.; Wang, Y. Novel Plasmid-Mediated Colistin Resistance Gene mcr-3 in Escherichia coli. mBio 2017, 8, e00543-17. [Google Scholar] [CrossRef] [Green Version]
- Carattoli, A.; Villa, L.; Feudi, C.; Curcio, L.; Orsini, S.; Luppi, A.; Pezzotti, G.; Magistrali, C.F. Novel plasmid-mediated colistin resistance mcr-4 gene in Salmonella and Escherichia coli, Italy 2013, Spain and Belgium, 2015 to 2016. Eurosurveillance 2017, 22, 30589. [Google Scholar] [CrossRef] [Green Version]
- Sáenz, Y.; Briñas, L.; Domínguez, E.; Ruiz, J.; Zarazaga, M.; Vila, J.; Torres, C. Mechanisms of resistance in multiple-antibiotic-resistant Escherichia coli strains of human, animal, and food origins. Antimicrob. Agents Chemother. 2004, 48, 3996–4001. [Google Scholar] [CrossRef] [Green Version]
- Bean, D.C.; Livermore, D.M.; Hall, L.M. Plasmids imparting sulfonamide resistance in Escherichia coli: Implications for persistence. Antimicrob. Agents Chemother. 2009, 53, 1088–1093. [Google Scholar] [CrossRef] [Green Version]
- Kwasny, S.M.; Opperman, T.J. Static biofilm cultures of Gram-positive pathogens grown in a microtiter format used for anti-biofilm drug discovery. Curr. Protoc. Pharmacol. 2010, 50, 13A.8.1–13A.8.23. [Google Scholar] [CrossRef]
- Stepanović, S.; Vuković, D.; Hola, V.; Di Bonaventura, G.; Djukić, S.; Cirković, I.; Ruzicka, F. Quantification of biofilm in microtiter plates: Overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS Acta Pathol. Microbiol. Et Immunol. 2007, 115, 891–899. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, J.; Simon, K.; Horcajada, J.P.; Velasco, M.; Barranco, M.; Roig, G.; Moreno-Martínez, A.; Martínez, J.A.; Jiménez de Anta, T.; Mensa, J.; et al. Differences in virulence factors among clinical isolates of Escherichia coli causing cystitis and pyelonephritis in women and prostatitis in men. J. Clin. Microbiol. 2002, 40, 4445–4449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Contreras, C.A.; Ochoa, T.J.; Ruiz, J.; Lacher, D.W.; Rivera, F.P.; Saenz, Y.; Chea-Woo, E.; Zavaleta, N.; Gil, A.I.; Lanata, C.F.; et al. Phylogenetic relationships of Shiga toxin-producing Escherichia coli isolated from Peruvian children. J. Med. Microbiol. 2011, 60, 639–646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clermont, O.; Bonacorsi, S.; Bingen, E. Rapid and simple determination of the Escherichia coli phylogenetic group. Appl. Environ. Microbiol. 2000, 66, 4555–4558. [Google Scholar] [CrossRef] [Green Version]
- Escobar-Páramo, P.; Le Menac’h, A.; Le Gall, T.; Amorin, C.; Gouriou, S.; Picard, B.; Skurnik, D.; Denamur, E. Identification of forces shaping the commensal Escherichia coli genetic structure by comparing animal and human isolates. Environ. Microbiol. 2006, 8, 1975–1984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bilung, L.M.; Pui, C.F.; Su’ut, L.; Apun, K. Evaluation of BOX-PCR and ERIC-PCR as Molecular Typing Tools for Pathogenic Leptospira. Dis. Mrk. 2018, 2018, 1351634. [Google Scholar] [CrossRef] [Green Version]
- Tenover, F.C.; Arbeit, R.D.; Goering, R.V.; Mickelsen, P.A.; Murray, B.E.; Persing, D.H.; Swaminathan, B. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: Criteria for bacterial strain typing. J. Clin. Microbiol. 1995, 33, 2233–2239. [Google Scholar] [CrossRef] [Green Version]
- Yu, Z.N.; Wang, J.; Ho, H.; Wang, Y.T.; Huang, S.N.; Han, R.W. Prevalence and antimicrobial-resistance phenotypes and genotypes of Escherichia coli isolated from raw milk samples from mastitis cases in four regions of China. J. Glob. Antimicrob. Resist. 2020, 22, 94–101. [Google Scholar] [CrossRef]
- Srivani, M.; Reddy, Y.N.; Subramanyam, K.V.; Reddy, M.R.; Rao, T.S. Prevalence and antimicrobial resistance pattern of Shiga toxigenic Escherichia coli in diarrheic buffalo calves. Vet. World 2017, 10, 774–778. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Jiang, M.; Wang, Z.; Chen, R.; Zhuge, X.; Dai, J. Characterization of antimicrobial resistance in chicken-source phylogroup F Escherichia coli: Similar populations and resistance spectrums between E. coli recovered from chicken colibacillosis tissues and retail raw meats in Eastern China. Poult. Sci. 2021, 100, 101370. [Google Scholar] [CrossRef]
- Johar, A.; Al-Thani, N.; Al-Hadidi, S.H.; Dlissi, E.; Mahmoud, M.H.; Eltai, N.O. Antibiotic Resistance and Virulence Gene Patterns Associated with Avian Pathogenic Escherichia coli (APEC) from Broiler Chickens in Qatar. Antibiotics 2021, 10, 564. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Ali, T.; Gao, J.; Ur Rahman, S.; Yu, D.; Barkema, H.W.; Huo, W.; Xu, S.; Shi, Y.; Kastelic, J.P.; et al. Co-Occurrence of Plasmid-Mediated Colistin Resistance (mcr-1) and Extended-Spectrum β-Lactamase Encoding Genes in Escherichia coli from Bovine Mastitic Milk in China. Microb. Drug Resist. 2020, 26, 685–696. [Google Scholar] [CrossRef] [PubMed]
- Hassen, B.; Hammami, S.; Hassen, A.; Abbassi, M.S. Molecular mechanisms and clonal lineages of colistin-resistant bacteria across the African continent: A scoping review. Lett. Appl. Microbiol. 2022, 75, 1390–1422. [Google Scholar] [CrossRef] [PubMed]
- Umpiérrez, A.; Bado, I.; Oliver, M.; Acquistapace, S.; Etcheverría, A.; Padola, N.L.; Vignoli, R.; Zunino, P. Zoonotic Potential and Antibiotic Resistance of Escherichia coli in Neonatal Calves in Uruguay. Microbes Environ. 2017, 32, 275–282. [Google Scholar] [CrossRef] [Green Version]
- Parvin, M.S.; Talukder, S.; Ali, M.Y.; Chowdhury, E.H.; Rahman, M.T.; Islam, M.T. Antimicrobial Resistance Pattern of Escherichia coli Isolated from Frozen Chicken Meat in Bangladesh. Pathogens 2020, 9, 420. [Google Scholar] [CrossRef]
- Yue, S.; Zhang, Z.; Liu, Y.; Zhou, Y.; Wu, C.; Huang, W.; Chen, N.; Zhu, Z. Phenotypic and molecular characterizations of multidrug-resistant diarrheagenic E. coli of calf origin. Anim. Dis. 2021, 1, 14. [Google Scholar] [CrossRef]
- Tahar, S.; Nabil, M.M.; Safia, T.; Ngaiganam, E.P.; Omar, A.; Hafidha, C.; Hanane, Z.; Rolain, J.M.; Diene, S.M. Molecular Characterization of Multidrug-Resistant Escherichia coli Isolated from Milk of Dairy Cows with Clinical Mastitis in Algeria. J. Food Prot. 2020, 83, 2173–2178. [Google Scholar] [CrossRef]
- Ramchandani, M.; Manges, A.R.; DebRoy, C.; Smith, S.P.; Johnson, J.R.; Riley, L.W. Possible animal origin of human-associated, multidrug-resistant, uropathogenic Escherichia coli. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2005, 40, 251–257. [Google Scholar] [CrossRef]
- Garofalo, C.; Vignaroli, C.; Zandri, G.; Aquilanti, L.; Bordoni, D.; Osimani, A.; Clementi, F.; Biavasco, F. Direct detection of antibiotic resistance genes in specimens of chicken and pork meat. Int. J. Food Microbiol. 2007, 113, 75–83. [Google Scholar] [CrossRef]
- Fernandes, J.B.; Zanardo, L.G.; Galvão, N.N.; Carvalho, I.A.; Nero, L.A.; Moreira, M.A. Escherichia coli from clinical mastitis: Serotypes and virulence factors. J. Vet. Diagn. Investig. 2011, 23, 1146–1152. [Google Scholar] [CrossRef]
- Goudarztalejerdi, A.; Mohammadzadeh, A.; Niazi, K.; Mohammad Mirzaei, M. High Prevalence of Multidrug Resistance and Biofilm-Formation Ability Among Avian Escherichia coli Isolated from Broilers in Iran. Microb. Drug Resist. 2021, 28, 244–254. [Google Scholar] [CrossRef]
- González, M.J.; Robino, L.; Iribarnegaray, V.; Zunino, P.; Scavone, P. Effect of different antibiotics on biofilm produced by uropathogenic Escherichia coli isolated from children with urinary tract infection. Pathog. Dis. 2017, 75, ftx053. [Google Scholar] [CrossRef] [Green Version]
- Bajpai, T.; Varma, M.; Bhatambare, G.; Pandey, M. Escherichia coli biofilms: Accepting the therapeutic challenges. Int. J. Health Allied Sci. 2016, 5, 204–209. [Google Scholar] [CrossRef]
- Tajbakhsh, E.; Ahmadi, P.; Abedpour-Dehkordi, E.; Arbab-Soleimani, N.; Khamesipour, F. Biofilm formation, antimicrobial susceptibility, serogroups and virulence genes of uropathogenic E. coli isolated from clinical samples in Iran. Antimicrob. Resist. Infect. Control 2016, 5, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gruber, C.J.; Lang, S.; Rajendra, V.K.H.; Nuk, M.; Raffl, S.; Schildbach, J.F.; Zechner, E.L. Conjugative DNA Transfer Is Enhanced by Plasmid R1 Partitioning Proteins. Front. Mol. Biosci. 2016, 3, 32. [Google Scholar] [CrossRef] [Green Version]
- Soufi, L.; Abbassi, M.S.; Sáenz, Y.; Vinué, L.; Somalo, S.; Zarazaga, M.; Abbas, A.; Dbaya, R.; Khanfir, L.; Ben Hassen, A.; et al. Prevalence and diversity of integrons and associated resistance genes in Escherichia coli isolates from poultry meat in Tunisia. Foodborne Pathog. Dis. 2009, 6, 1067–1073. [Google Scholar] [CrossRef]
- Elmonir, W.; Shalaan, S.; Tahoun, A.; Mahmoud, S.F.; Remela, E.M.A.; Eissa, R.; El-Sharkawy, H.; Shukry, M.; Zahran, R.N. Prevalence, antimicrobial resistance, and genotyping of Shiga toxin-producing Escherichia coli in foods of cattle origin, diarrheic cattle, and diarrheic humans in Egypt. Gut Pathog. 2021, 13, 8. [Google Scholar] [CrossRef] [PubMed]
- Coura, F.M.; de Araújo Diniz, S.; Mussi, J.M.S.; Silva, M.X.; Lage, A.P.; Heinemann, M.B. Characterization of virulence factors and phylogenetic group determination of Escherichia coli isolated from diarrheic and non-diarrheic calves from Brazil. Folia Microbiol. 2017, 62, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Tanabe, R.H.S.; Vieira, M.A.; Mariano, N.A.B.; Dias, R.C.B.; da Silva, R.V.; Castro, C.M.; Dos Santos, L.F.; Camargo, C.H.; Yamatogi, R.S.; Rall, V.L.M.; et al. Identification and characterization of atypical enteropathogenic and Shiga toxin-producing Escherichia coli isolated from ground beef and poultry breast purchased in Botucatu, Brazil. Braz. J. Microbiol. 2019, 50, 1099–1103. [Google Scholar] [CrossRef]
- Jafari, A.; Aslani, M.M.; Bouzari, S. Enteroaggregative Escherichia coli, a heterogenous, underestimated and under-diagnosed E. coli pathotype in Iran. Gastroenterol. Hepatol. Bed Bench 2013, 6, 71–79. [Google Scholar]
- Aslam, N.; Khan, S.-U.-H.; Usman, T.; Ali, T. Phylogenetic genotyping, virulence genes and antimicrobial susceptibility of Escherichia coli isolates from cases of bovine mastitis. J. Dairy Res. 2021, 88, 78–79. [Google Scholar] [CrossRef] [PubMed]
- Gharieb, R.; Fawzi, E.; Elsohaby, I. Antibiogram, virulotyping and genetic diversity of Escherichia coli and Salmonella serovars isolated from diarrheic calves and calf handlers. Comp. Immunol. Microbiol. Infect. Dis. 2019, 67, 101367. [Google Scholar] [CrossRef] [PubMed]
- Grami, R.; Mansour, W.; Mehri, W.; Bouallègue, O.; Boujaâfar, N.; Madec, J.Y.; Haenni, M. Impact of food animal trade on the spread of mcr-1-mediated colistin resistance, Tunisia, July 2015. Eurosurveillance 2016, 21, 30144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliveira, S.V.; Freitas, E.I.; Scatamburlo, M.M.A. Clonal relationship of Escherichia coli biofilm producer isolates obtained from mastitic milk. Can. J. Microbiol. 2013, 59, 291–293. [Google Scholar] [CrossRef]
Antibiotic | Class | Mastitis (n = 25) n (%) | Colibacillosis (n = 22) n (%) | Diarrhea (n = 20) n (%) | Total (n = 67) n (%) |
---|---|---|---|---|---|
Ampicillin | β-lactams | 8 (32) | 10 (45.4) | 6 (30) | 24 (35.8) |
Amoxicillin-clavulanic acid | 2 (8) | 10 (45.4) | 5 (25) | 17 (25.4) | |
Aztreonam | 2 (8) | 10 (45.4) | 0 (0) | 12 (17.9) | |
Cefotaxime | 21 (84) | 11 (50) | 17 (85) | 49 (73.1) | |
Cefoxitin | 2 (8) | 1 (4.5) | 15 (75) | 18 (26.8) | |
Ceftiofur | 2 (8) | 6 (27.3) | 0 (0) | 8 (11.9) | |
Cefsulodine | 25 (100) | 22 (100) | 20 (100) | 67 (100) | |
Ceftazidime | 25 (100) | 11 (50) | 20 (100) | 56 (83.6) | |
Cefepime | 0 (0) | 1 (4.5) | 0 (0) | 1 (1.5) | |
Imipenem | Carbapenems | 1 (4) | 1 (4.5) | 0 (0) | 2 (3) |
Meropenem | 4 (16) | 12 (54.5) | 1 (5) | 17 (25.4) | |
Ertapenem | 1 (4) | 1 (4.5) | 0 (0) | 2 (3) | |
Tetracyclines | Tetracyclines | 10 (40) | 19 (86.3) | 15 (75) | 44 (65.7) |
Enrofloxacin | Fluoroquinolones | 1 (4) | 16 (72.7) | 3 (15) | 20 (29.8) |
Nalidixic acid | Quinolones | 3 (12) | 21 (95.4) | 3 (15) | 27 (40.3) |
Gentamycin | Aminoglycosides | 1 (4) | 1 (4.5) | 3 (15) | 5 (7.4) |
Streptomycin | 20 (80) | 21 (95.4) | 14 (70) | 55 (82.1) | |
Trimethoprim-sulfamethoxazole | Dihdrofolatreductase/Sulfonamide | 6 (24) | 15 (68.2) | 8 (40) | 29 (43.3) |
Chloramphenicol | Phenicols | 2 (8) | 15 (68.2) | 2 (10) | 19 (28.3) |
Colistin | Polymyxins | 18 (72) | 12 (54.5) | 6 (30) | 36 (53.7) |
Farm | Strain ID | Origin | Phenotypic Resistance Profile | Colistin MIC (µg/mL) | Biofilm Formation |
---|---|---|---|---|---|
FI | E2 a | AC | AMP/CFZ/CHL/ENR/MEM/NA/STR/SXT/TET/CST b | 8 | SBF |
E3 | AC | ATM/AMC/CAZ/CFZ/CTX/CHL/ENR/MEM/STR/XNL/NA/SXT | 1 | SBF | |
E9 a | AC | AMP/CFZ/CHL/ENR/MEM/NA/STR/SXT/TET/XNL/CST b | 1 | NBF | |
E12 a | AC | AMP/CFZ/NA/STR/SXT/TET/CST b | 8 | SBF | |
E13 a | AC | AMP/CAZ/CFZ/CTX/ENR/CST b | 8 | SBF | |
E15 a | AC | ATM/AMP/AMC/CAZ/CFZ/CTX/CHL/ENR/ETP/MEM/NA/STR/SXT/TET/CST b | 4 | SBF | |
E17 a | AC | ATM/AMP/AMC/CAZ/CFZ/CTX/CHL/ENR/GN/NA/STR/TET/XNL/CST b | 4 | MBF | |
E19 | AC | ATM/AMC/CAZ/CFZ/CTX/CHL/ENR/NA/STR | 0.25 | SBF | |
E22 | AC | CFZ/ENR/NA/STR/SXT | 0.5 | SBF | |
E28 a | AC | AMP/CFZ/CHL/STR/TET/XNL/CST b | 4 | NBF | |
E35 | AC | ATM/AMC/CAZ/CFZ/CTX/CHL/ENR/IMP/MEM/NA/STR/SXT/TET/XNL | 0.5 | SBF | |
E42 | AC | CFZ/CHL/ENR/MEM/STR/NA/SXT/TET | 1 | SBF | |
E46 | AC | AMP/CFZ/CHL/ENR/NA/STR/SXT/TET/CST b | 8 | SBF | |
E22 | AC | CFZ/ENR/NA/STR/SXT | 0.5 | SBF | |
E28 a | AC | AMP/CFZ/CHL/STR/TET/XNL/CST b | 4 | NBF | |
E35 | AC | ATM/AMC/CAZ/CFZ/CTX/CHL/ENR/IMP/MEM/NA/STR/SXT/TET/XNL | 0.5 | SBF | |
E42 | AC | CFZ/CHL/ENR/MEM/STR/NA/SXT/TET | 1 | SBF | |
E46 | AC | AMP/CFZ/CHL/ENR/NA/STR/SXT/TET/CST b | 8 | SBF | |
E47 | AC | CFZ/MEM/NA/STR/TET | 1 | NBF | |
E48 | AC | ATM/AMC/CAZ/CFZ/CTX/NA/STR/TET/CST b | 4 | SBF | |
E50 a | AC | ATM/AMP/AMC/CAZ/CFZ/CTX/ENR/MEM/NA/STR/SXT/TET/CST b | 4 | NBF | |
FII | E18 | AC | CFZ/CHL/ENR/NA/STR/SXT/TET | 0.5 | SBF |
E38 | AC | CFZ/MEM/STR/CHL/NA/SXT/TET | 0.5 | NBF | |
E31 a | AC | CFZ/CHL/MEM/NA/STR/SXT/TET/CST b | 8 | SBF | |
FIII | E20 | AC | ATM/AMC/CAZ/CFZ/CTX/CHL/ENR/MEM/NA/STR/TET | 0.5 | SBF |
E27 | AC | ATM/AMC/CAZ/CFZ/CTX/CHL/ENR/MEM/NA/STR/SXT/TET/XNL | 0.25 | SBF | |
E41 | AC | ATM/AMC/CAZ/CFZ/CTX/ENR/NA/SXT/TET/CST b | 4 | SBF | |
FIV | L1 | BM | CAZ/CFZ/STR/CST b | 32 | SBF |
L3 a | BM | AMP/CAZ/CFZ/CTX/FOX/STR/NA/CST b | 64 | SBF | |
L7 a | BM | AMP/CAZ/CFZ/CTX/STR/CST b | 32 | SBF | |
FIV | L9 a | BM | AMP/CAZ/CFZ/STR/CST b | 64 | SBF |
L11 | BM | CAZ/CFZ/CTX/STR/CST b | 64 | SBF | |
L12 a | BM | AMP/CAZ/CFZ/CTX/STR/CST b | 32 | SBF | |
L13 | BM | CAZ/CFZ/STR/CST b | 128 | SBF | |
L19 | BM | CAZ/CFZ/CTX | 0.5 | SBF | |
L23 | BM | AMC/CAZ/CFZ/CTX/STR/SXT/TET/CST b | 128 | NBF | |
L25 | BM | CAZ/CFZ/CTX/STR/TET/CST b | 64 | SBF | |
L26 a | BM | CAZ/CFZ/CTX | 0.5 | SBF | |
D3 | DC | CAZ/CFZ/FOX/TET | 1 | SBF | |
D7 | DC | CAZ/CFZ/CTX//FOX/MEM/TET | 1 | NBF | |
D9 | DC | CAZ/CFZ/CTX/TET | 0.5 | SBF | |
D12 | DC | CAZ/CFZ/CTX/STR/TET/ENR/CHL/GN/SXT | 0.5 | MBF | |
D13 | DC | AMC/CAZ/CFZ/CTX/FOX/NA/STR/SXT/TET | 0.5 | SBF | |
D14 | DC | AMC/CAZ/CFZ/ENR/FOX/NA/STR/SXT/TET | 0.5 | MBF | |
D18 | DC | AMC/CAZ/CFZ/FOX/STR/SXT/TET | 1 | NBF | |
D22 a | DC | AMP/AMC/CAZ/CFZ/CTX/CHL/ENR/GN/STR/SXT/TET/CST b | 32 | NBF | |
FV | L31 | BM | CAZ/CFZ/CTX/CST b | 64 | SBF |
L37 | BM | CAZ/CFZ/CTX/STR/TET/CST b | 32 | NBF | |
L39 a | BM | CAZ/CFZ/CST b | 64 | SBF | |
L49 | BM | CAZ/CFZ/CTX/GN/CST b | 32 | SBF | |
D24 | DC | CAZ/CFZ/CTX/FOX/GN/STR/TET | 1 | SBF | |
D29 a | DC | AMP/CAZ/CFZ/CTX/TET | 0.5 | SBF | |
D34 | DC | CAZ/CFZ/CTX/FOX/SXT/TET | 0.5 | NBF | |
D35 | DC | AMP/CAZ/CFZ/CTX/FOX/STR/CST b | 32 | SBF | |
D38 | DC | CAZ/CFZ/CTX/STR/SXT/TET/CST b | 32 | NBF | |
D41 | DC | CAZ/CFZ/CTX/FOX/TET | 0.25 | MBF | |
L58 | BM | CAZ/CFZ/CTX/STR | 1 | NBF | |
L61 | BM | AMP/CAZ/CFZ/CTX/CHL/ENR/MEM/STR/SXT/TET/XNL/CST b | 128 | SBF | |
L62 | BM | CAZ/CFZ/CTX//CHL/IMP/MEM/STR/SXT/TET | 1 | NBF | |
L64 | BM | AMP/CAZ/CFZ/CTX/MEM/STR/SXT/TET/CST b | 64 | SBF | |
L78 | BM | ATM/AMP/AMC/CAZ/CFZ/CTX/ETP/MEM/STR/XNL/CST b | 128 | SBF | |
L79 | BM | ATM/CAZ/CFZ/CTX/STR/SXT/TET | 1 | SBF | |
L82 a | BM | AMP/CAZ/CFZ/CTX/STR | 0.25 | SBF | |
L94 | BM | CAZ/CFZ/CTX/STR/TET | 0.25 | NBF | |
L129 | BM | CAZ/CFZ/CTX/STR/TET/CST b | 64 | SBF | |
D43 | DC | AMC/CAZ/CFZ/CTX/SXT/STR/TET/FOX/CST b | 32 | NBF | |
D45 | DC | AMP/CAZ/CFZ/CTX/FOX/STR/CST b | 64 | SBF | |
D46 | DC | CAZ/CFZ/CTX/STR/CST b | 32 | NBF | |
D50 | DC | CAZ/CFZ/CTX/FOX/STR/TET | 1 | SBF | |
D52 a | DC | AMP/CAZ/CFZ/CTX/FOX/STR | 0.5 | MBF | |
D53 | DC | CAZ/CFZ/CTX/CST b | 0.5 | NBF |
Strain ID | Farm | Animal Pathology | Resistance Phenotypic Profile | Resistance Genes | Virulence Genes | Biofilm Formation | Phylo-Group | ERIC Profile |
---|---|---|---|---|---|---|---|---|
E12 a | FI | AC | AMP/CFZ/NA/STR/SXT/TET/CST b | mcr-1, blaTEM, blaCTX-M-g-1, aadA, tetA, dfrAI | fimA, stx1, aer | SBF | A1 | J |
E13 a | FI | AC | AMP/CAZ/CFZ/CTX/ENR/CST b | mcr-1, blaCTX-M-g-1, floR | fimA, stx2 | SBF | B23 | F |
E15 a | FI | AC | ATM/AMP/AMC/CAZ/CFZ/CTX/CHL/ENR/ETP/MEM/NA/STR/SXT/TET/CST b | mcr-1, blaCTX-M-g-1, tetA, aadA, floR, strA, dfrAI | fimA | SBF | D2 | C |
E17 a | FI | AC | ATM/AMP/AMC/CAZ/CFZ/CTX/CHL/ENR/GN/NA/STR/TET/XNL/CST b | mcr-1, tetA, blaCTX-M-g-1 | --- | MBF | A1 | F |
E2 a | FI | AC | AMP/CFZ/CHL/ENR/MEM/NA/STR/SXT/TET/CST b | mcr-1, blaTEM, blaCTX-M-1, cmlA | fimA, stx1, stx2, aer, papC | SBF | B23 | G |
E28 a | FI | AC | AMP/CFZ/CHL/STR/TET/XNL/CST b | mcr-1, blaTEM, blaCTX-M-g-1, aadA, tetA, strA | fimA, aer | NBF | B23 | G |
E46 a | FI | AC | AMP/CFZ/CHL/ENR/NA/STR/SXT/TET/CST b | mcr-1, blaCTX-M-1 | fimA, aer | SBF | B23 | E |
E48 | FI | AC | ATM/AMC/CAZ/CFZ/CTX/NA/STR/TET/CST b | dfrAI, aadA | aer | SBF | B23 | F |
E50 a | FI | AC | ATM/AMP/AMC/CAZ/CFZ/CTX/ENR/MEM/NA/STR/SXT/TET/CST b | mcr-1, blaCTX-M-g-1, floR, strA, dfrAI | fimA, aer | NBF | B23 | G |
E31 a | FII | AC | CFZ/CHL/MEM/NA/STR/SXT/TET/CST b | mcr-1 | fimA, aer | SBF | B22 | F |
E41 | FIII | AC | ATM/AMC/CAZ/CFZ/CTX/ENR/NA/SXT/TET/CST b | tetA | --- | SBF | D1 | C |
E9 a | FIII | AC | AMP/CFZ/CHL/ENR/MEM/NA/STR/SXT/TET/XNL/CST b | mcr-1, blaTEM, blaSHV, blaCTX-M-1, aadA, floR, strB, dfrAI | fimA | NBF | B22 | G |
D22 a | FIV | DC | AMP/AMC/CAZ/CFZ/CTX/CHL/ENR/GN/STR/SXT/TET/CST b | blaTEM, aadA, tetA, sul1, dfrAI | --- | NBF | A1 | K |
L1 | FIV | BM | CAZ/CFZ/STR/CST b | aadA | fimA, cnf1, papC | SBF | A1 | A |
L7 a | FIV | BM | AMP/CAZ/CFZ/CTX/STR/CST b | blaTEM, aadA | fimA, cnf1, papC | SBF | A1 | A |
L9 a | FIV | BM | AMP/CAZ/CFZ/STR/CST b | blaTEM, aadA | fimA, cnf1, papC | SBF | A1 | A |
L12 a | FIV | BM | AMP/CAZ/CFZ/CTX/STR/CST b | blaTEM, aadA | fimA | SBF | A1 | B |
L25 | FIV | BM | CAZ/CFZ/CTX/STR/TET/CST b | aadA | fimA | SBF | D2 | C |
L11 | FIV | BM | CAZ/CFZ/CTX/STR/CST b | aadA, tetA | fimA, aer | SBF | A1 | D |
L13 | FIV | BM | CAZ/CFZ/STR/CST b | aadA | fimA, aer | SBF | D1 | M |
L23 | FIV | BM | AMC/CAZ/CFZ/CTX/STR/SXT/TET/CST b | aadA, tetA, sul1, dfrAI | fimA | NBF | B23 | E |
L3 a | FIV | BM | AMP/CAZ/CFZ/CTX/FOX/STR/NA/CST b | blaTEM, aadA | fimA | SBF | D1 | L |
D35 | FV | DC | AMP/CAZ/CFZ/CTX/FOX/STR/CST b | blaTEM, aadA | --- | SBF | A1 | B |
D38 | FV | DC | CAZ/CFZ/CTX/STR/SXT/TET/CST b | aadA, tetA, sul1, dfrAI | --- | NBF | A1 | B |
L31 | FV | BM | CAZ/CFZ/CTX/CST b | --- | fimA, cnf1 | SBF | A1 | A |
L37 | FV | BM | CAZ/CFZ/CTX/STR/TET/CST b | aadA, tetA | -- | NBF | A1 | A |
L49 | FV | BM | CAZ/CFZ/CTX/GN/CST b | --- | fimA, cnf1 | SBF | A1 | A |
L39 a | FV | BM | CAZ/CFZ/CST b | --- | fimA | SBF | A1 | I |
D45 | FVI | DC | AMP/CAZ/CFZ/CTX/FOX/STR/CST b | blaTEM, aadA | --- | SBF | A1 | B |
D43 | FVI | DC | AMC/CAZ/CFZ/CTX/SXT/STR/TET/FOX/CST b | aadA, tetA, sul1, dfrAI | --- | NBF | D1 | N |
D46 | FVI | DC | CAZ/CFZ/CTX/STR/CST b | aadA | --- | NBF | A1 | H |
L78 | FVI | BM | ATM/AMP/AMC/CAZ/CFZ/CTX/ETP/MEM/STR/XNL/CST b | blaTEM, aadA | fimA, cnf1 | SBF | A1 | A |
L129 | FVI | BM | CAZ/CFZ/CTX/STR/TET/CST b | aadA, tetA | fimA | SBF | A1 | B |
L51 | FVI | BM | CAZ/CFZ/CTX/STR/SXT/TET/CST b | strA, tetA, sul1, dfrAI | fimA, aer | SBF | A1 | D |
L61 | FVI | BM | AMP/CAZ/CFZ/CTX/CHL/ENR/MEM/STR/SXT/TET/XNL/CST b | blaTEM, strA, floR, tetA, sul1, dfrAI | fimA, aer | SBF | A1 | D |
L64 | FVI | BM | AMP/CAZ/CFZ/CTX/MEM/STR/SXT/TET/CST b | blaTEM, strA, tetA, sul1 | fimA, aer | SBF | B23 | E |
Mastitis (n = 25) n (%) | Colibacillosis (n = 22) n (%) | Diarrhea (n = 20) n (%) | Total (n = 67) n (%) | p-Value | |
---|---|---|---|---|---|
Colistin resistance | 18 (72) | 12 (54.5) | 6 (30) | 36 (53.7) | 0.000 * |
mcr-1 gene | 0 (0) | 10 (27.7) | 0 (0) | 10 (14.9) | 0.000 * |
ESBL production | 7 (28) | 9 (40) | 3 (15) | 19 (28.3) | 0.004 * |
Biofilm formation | 20 (80) | 17 (77.3) | 12 (60) | 49 (73.1) | 0.049 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dhaouadi, S.; Romdhani, A.; Bouglita, W.; Chedli, S.; Chaari, S.; Soufi, L.; Cherif, A.; Mnif, W.; Abbassi, M.S.; Elandoulsi, R.B. High Biofilm-Forming Ability and Clonal Dissemination among Colistin-Resistant Escherichia coli Isolates Recovered from Cows with Mastitis, Diarrheic Calves, and Chickens with Colibacillosis in Tunisia. Life 2023, 13, 299. https://doi.org/10.3390/life13020299
Dhaouadi S, Romdhani A, Bouglita W, Chedli S, Chaari S, Soufi L, Cherif A, Mnif W, Abbassi MS, Elandoulsi RB. High Biofilm-Forming Ability and Clonal Dissemination among Colistin-Resistant Escherichia coli Isolates Recovered from Cows with Mastitis, Diarrheic Calves, and Chickens with Colibacillosis in Tunisia. Life. 2023; 13(2):299. https://doi.org/10.3390/life13020299
Chicago/Turabian StyleDhaouadi, Sana, Amel Romdhani, Wafa Bouglita, Salsabil Chedli, Soufiene Chaari, Leila Soufi, Ameur Cherif, Wissem Mnif, Mohamed Salah Abbassi, and Ramzi Boubaker Elandoulsi. 2023. "High Biofilm-Forming Ability and Clonal Dissemination among Colistin-Resistant Escherichia coli Isolates Recovered from Cows with Mastitis, Diarrheic Calves, and Chickens with Colibacillosis in Tunisia" Life 13, no. 2: 299. https://doi.org/10.3390/life13020299
APA StyleDhaouadi, S., Romdhani, A., Bouglita, W., Chedli, S., Chaari, S., Soufi, L., Cherif, A., Mnif, W., Abbassi, M. S., & Elandoulsi, R. B. (2023). High Biofilm-Forming Ability and Clonal Dissemination among Colistin-Resistant Escherichia coli Isolates Recovered from Cows with Mastitis, Diarrheic Calves, and Chickens with Colibacillosis in Tunisia. Life, 13(2), 299. https://doi.org/10.3390/life13020299