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Abstract: The effects of low-level laser therapy (LLLT) on tumor growth are inconsistent. In this study,
we investigated the effects of LLLT on melanoma tumor growth and angiogenesis. C57/BL6 mice
were challenged with B16F10 melanoma cells and treated with LLLT for 5 consecutive days; untreated
mice were used as controls. Tumor weight, angiogenesis, immunohistochemistry, and protein levels
were compared between the treated and untreated mice. In an in vitro experiment, B16F10 cells
were treated with LLLT. Proteins were extracted and subjected to Western blot analysis for analyzing
signaling pathways. Compared with the findings in the untreated mice, tumor weight substantially
increased in the treated mice. Both immunohistochemical and Western blot analyses revealed
markedly increased levels of CD31, a biomarker of vascular differentiation, in the LLLT group. In
B16F10 cells, LLLT considerably induced the phosphorylation of extracellular signal-regulated kinase
(ERK), which, in turn, phosphorylated p38 mitogen-activated protein kinase (MAPK). Furthermore,
LLLT induced the expression of vascular endothelial growth factor, but not hypoxia-inducible factor-
1α, through the ERK/p38 MAKP signaling pathways. Our findings indicate that LLLT induces
melanoma tumor growth by promoting angiogenesis. Therefore, it should be avoided in patients
with melanoma.
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1. Introduction

Low-level laser therapy (LLLT), also called photobiomodulation therapy, refers to the
use of light (power density < 100 mW/cm2; wavelength, 400–980 nm) for physiotherapy.
In contrast to other medical laser procedures, this noninvasive therapy exerts its effects
through photomodulation rather than through thermal mechanisms. In medicine, LLLT
is used to reduce inflammation, relieve pain, accelerate wound healing, and manage soft-
tissue injuries [1–8]. However, the safety of LLLT, particularly when targeting areas with
tumors, remains debatable. Several in vitro and in vivo studies have reported that LLLT
can be harmful in patients receiving treatment for tumors. In urothelial carcinoma (J82)
and normal urothelial (HCV29) cells, blue (410 nm), red (635 nm), and infrared (805 nm)
light stimulated cell mitosis in vitro; however, the increased irradiation slightly reduced
the mitotic rate in mamma adenocarcinoma (MCF7), glioblastoma (U373MG), and gingival
mucosa (ZMK1) cells [9]. The exposure (twice) of acute myeloid leukemia (KG-1a) cells to
light with an energy density of 20 J/cm2 promoted cell growth [10]. However, LLLT with
an energy density of 600 J/cm2 inhibited the growth of squamous cell carcinoma (VX2)
and murine colon carcinoma (CT26) cells in vitro [11]. These findings indicate that the
mitogenic effects of light are dependent on the cell type and energy level [12]. At a high
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dose (1050 J/cm2), LLLT (600 nm) markedly increased melanoma tumor volume, blood
vessels, and cellular abnormalities compared with the findings in the control group [13]. In
an in vivo study that was conducted using nude mice, LLLT promoted the proliferation and
angiogenesis of anaplastic thyroid carcinoma cells through the protein kinase B/hypoxia-
inducible factor (HIF)-1α pathway [14]. In contrast, LLLT reduced tumor growth in animal
studies [15,16] and improved the survival rate in patients with cancer [17].

Several mechanisms have been proposed to explain the effects of LLLT on mitochon-
dria [18,19]. It can alter cell and tissue functions, including the prevention of inflammation-
induced apoptosis [20], stimulation of collagen production [21], promotion of DNA syn-
thesis [22], and elevation of ATP levels [23]. In addition, LLLT promotes cell proliferation,
vascular endothelial growth factor (VEGF) expression, and angiogenesis [24,25]. Angiogen-
esis is the growth and development of new capillaries from pre-existing vasculature, and
in therapeutic angiogenesis, this phenomenon is employed to alleviate inadequate tissue
perfusion [26]. Although LLLT is useful for treating various human diseases, its effects on
cellular proliferation remain debatable; it may even induce tumor growth [13].

In tumor cells, the VEGF pathway is the key regulator of angiogenesis and may
include angiogenic switches [27]. Tumor cells release angiogenic growth factors, which
promote angiogenesis; the activation of angiogenic growth factor signaling pathways,
such as the VEGF/VEGF receptor pathway, mediates a network of signaling processes
that attract endothelial cells toward the tumor mass, thus promoting endothelial cell
growth and migration and angiogenesis [27]. The extracellular signal-regulated kinase
(ERK)/p38 mitogen-activated protein kinase (MAPK) pathway is essential for the VEGF-
mediated proliferation and migration of cancer cells. In cancer cells, hypoxia upregulates
the expression of many angiogenic growth factors, partly through the transcriptional
activity of the HIF-1α pathway [28,29].

Melanoma is the least common but the most fatal type of skin cancer [30]. It involves
the formation of angiogenic tumors. Angiogenesis facilitates the supply of key nutrients
to cancer cells, thus promoting cancer progression and metastasis [31,32]. LLLT, in which
the skin is exposed to laser light, may be harmful, particularly for patients with skin
cancer. However, the mechanisms underlying the effects of LLLT on tumor growth and
angiogenesis are unclear. Therefore, in this study, we investigated the effects of LLLT on
tumor growth and angiogenesis in a mouse model of melanoma.

2. Materials and Methods
2.1. Animal Model and Cell Culture

A total of 20 male C57/BL6 mice (age, 8 weeks) were obtained from the National
Laboratory Animal Center, Taipei, Taiwan. The mice were provided with standard lab-
oratory chow and water ad libitum and maintained (in cages) under a 12 h dark/light
cycle at 23 ◦C ± 2 ◦C in the animal facility of our institute. This study was approved by
the Institutional Animal Care and Use Committee of China Medical University (approval
number: IACUC# 2017-172). All experiments were performed in accordance with the
National Institutes of Health Guide for the Care and Use of Laboratory Animals.

B16F10 melanoma cells were obtained from the Bioresource Collection and Research
Center (Hsinchu, Taiwan). The cells were cultured in Dulbecco’s Modified Eagle Medium
(DMEM 11995065; Gibco; Thermo Fisher Scientific, Inc., Waltham, MA, USA) supplemented
with 10% fetal bovine serum (Hyclone, Logan, UT, USA) and 1% penicillin/streptomycin
(Thermo Fisher Scientific, Inc.) at 37 ◦C in a humidified atmosphere of 5% CO2. Before the
experiments, the cells were dissociated using 0.25% trypsin–ethylenediaminetetraacetic
acid (EDTA; Thermo Fisher Scientific, Inc.). Cell density was evaluated by manual counting
using a hemocytometer under a microscope. For animal experiments, B16F10 melanoma
cells (5 × 105) were resuspended in 0.1 mL of phosphate-buffered saline and inoculated
subcutaneously into the backs of C57/BL6 mice. After inoculation, the mice were randomly
divided into LLLT (n = 10) and control (no treatment; n = 10) groups. For in vitro experi-
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ments, B16F10 cells were seeded in 10-mm plates at a density of 3 × 105 cells/mL and were
incubated for 24 h before LLLT.

2.2. Laser Irradiation

After 14 days from the date of tumor cell implantation, the mice were anesthetized
with isoflurane. Their fur was removed using a hair removal cream. The tumors were
exposed to laser light (AlGaInP diode laser; AM-800; Konftec Co., Taipei, Taiwan) for
5 consecutive days. The probe of the laser device was fixed vertically 30 cm above the mice.
Laser irradiation (wavelength, 660 nm) was performed at an output power of 50 mW/cm2

for 10 min. The daily average of energy density was 1.91 J/cm2. We previously [33] found
that 1.91 J/cm2 LLLT at 660 nm is sufficient for inducing photomodulation. The mice were
anesthetized with isoflurane and euthanized though cervical dislocation 24 h after the last
laser irradiation session. Tumor samples were collected for further analysis.

For in vitro experiments, B16F10 cells were irradiated using the same apparatus. The
probe of the laser device was fixed vertically 30 cm above the cells inside a laminar flow
hood. Laser irradiation (660 nm) was performed at an output power of 50 mW/cm2 for
10 min and repeated after 24 h. The daily average of energy density was 1.91 J/cm2.

2.3. Cell Proliferation Assay

To investigate the effects of LLLT on the proliferation and viability of B16F10 cells,
these cells were seeded at a density of 2 × 103 cells/mL in the wells (containing 100 µL
of medium) of a 96-well plate. After 24 h incubation, the cells were exposed to LLLT for
10 min; the treatment was repeated after 24 h. Cell viability and proliferation were assessed
through an MTT assay [34]. Briefly, after 24 h of second low level LASER irradiation, 10 µL
of 5 mg/mL MTT solution was added. After incubation for 4 h at 37 ◦C, 150 µL DMSO was
added to dissolve the purple crystal sediment. The solution was transfer to a new 96-well
plate and read with an ELISA reader at 540 nm. The relative cell number was estimated by
absorbance value.

2.4. Tissue Collection

After the mice were euthanized, the tumors were carefully excised from their backs
and weighed. Tumor tissues were divided into three samples that were separately stored
at −80 ◦C for protein analysis, fixed with 10% paraformaldehyde, and embedded in an
optimal cutting temperature (O.T.C.) compound and snap-frozen in liquid nitrogen for
cryostat sectioning, or fixed with 10% buffered-formalin for paraffin sections.

2.5. Immunohistochemical Analysis

To investigate angiogenesis, the tumor tissues were immunohistochemically stained
following a previously described method [35]. In brief, tumor tissues that were collected
from three mice of each group were soaked in 10% formalin paraformaldehyde. The
paraffin-embedded tumor tissues were cut into 4-µm-thick sections. The tissue sections
were deparaffinized, hydrated, boiled in Trilogy solution (Cell Marque, Rocklin, CA, USA)
for 20 min, and then oxidized in 3% H2O2. Next, all the tumor sections were stained with
CD31/PECAM-1 (ab28364; Abcam, Cambridge, MA, USA) and a rabbit antibody enhancer
(D39; Polink-2 Plus HRP Rabbit DAB Detection Kit; GBI LABS). Immunohistochemical
analysis was performed using the Polink-2 Plus HRP Rabbit DAB Detection Kit and DAB
Quanto Chromogens (TA-060-QHSX and TA-002-QHCX) following the manufacturer’s
instructions. CD31-stained areas were observed and photographed using a light microscope
(BX43; Olympus, Tokyo, Japan) and were analyzed using ImageJ (National Institutes
of Health, Bethesda, MD, USA) to evaluate the density and length to blood vessels in
tumor tissues.
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2.6. Immunofluorescence Analysis

Immunofluorescence analysis was performed as described previously [33]. O.T.C.
compound–embedded tissues were cut into 7-µm-thick cryostat sections. Tissue slides
were fixed with ice-cold methanol and blocked with 5% normal goat serum. CD31 and
collage type IV primary antibodies were used to visualize blood vessels. The secondary
antibodies that were used in this experiment were goat anti-rabbit immunoglobulin G
(Ig G) conjugated with Alexa Fluor 488 and donkey anti-rat IgG conjugated with Alexa
Fluor 594 (Molecular Probes, Eugene, OR, USA). The tissue sections were analyzed and
photographed using a fluorescence microscope (BX41M-ESD, Olympus).

2.7. Western Blot Analysis

Tumor tissues were homogenized; the cells were lysed in ice-cold buffer (pH 7.5;
composition: 25 mM HEPES, 300 mM NaCl, 1.5 mM MgCl2, 0.2 mM EDTA, 0.1% Triton
X-100, 20 mM β-glycerophosphate, 0.1 mM sodium orthovanadate, 0.5 mM dithiothreitol,
100 g/mL phenylmethylsulfonyl fluoride, and 2 g/mL leupeptin). The protein concentra-
tion was measured using the Bradford method (Bio-Rad Laboratories, Hercules, CA, USA).
Approximately 40 µg of protein was separated through electrophoresis on a 10% sodium
dodecyl sulfate–polyacrylamide gel. Then, the protein bands were transferred onto a
polyvinylidene fluoride membrane (pore size, 0.45 µm; Millipore, Bedford, MA, USA)
using a transfer apparatus (Bio-Rad Laboratories). Next, the membrane was blocked with
5% nonfat evaporated milk powder dissolved in Tris-buffered saline–Tween 20 buffer
(pH 7.6; 25 mM Tris-HCl, 150 mM NaCl, and 20, 0.1% Tween) and was incubated with
primary antibodies against CD31, HIF-1α, VEGF, GAPDH, phospho-p38, p38, phospho-
ERK, ERK, and β-actin. Table 1 lists the sources of these primary antibodies. After probing
with horseradish peroxidase–conjugated secondary antibodies, the protein bands were
visualized using an enhanced chemiluminescence reagent (Merck Millipore, Bedford) and
analyzed using ImageJ.

Table 1. Antibodies for Western blot analysis.

ERK Cell Signaling #9102

p-ERK Cell Signaling #9101

P38 MAPK Cell Signaling #9212

p-p38 MAPK Cell Signaling #9211

CD31 Invitrogen #PA5-16301

HIF-1α Invitrogen # MA1-516

β-actin GeneTex #GTX109639

2.8. Statistical Analysis

The data are presented as the mean ± standard error. Statistical analyses were per-
formed using SPSS Statistics (version 20.0; IBM Corporation, Armonk, NY, USA). Between-
group comparisons were performed using a nonparametric Mann–Whitney U test. p < 0.05
indicated statistical significance.

3. Results
3.1. LLLT Enhanced Tumor Progression In Vivo, but Not Cell Proliferation In Vitro

To investigate the effects of LLLT on tumor growth, we assessed the progression of
B16F10 melanoma in vivo. Figure 1A depicts treated and untreated tumors on Days 1 and 5.
Changes in the tumor area at Day 5 from Day 1, and tumor weight at Day 5 are presented
using bar graphs (Figure 1B,C). No prominent differences were noted between the treatment
and control groups in terms of changes in the tumor area (238.8± 42.13 and 204.3± 16.56%).
By contrast, the tumor weight markedly increased in the treatment group compared with
that in the control group (0.2703 ± 0.1628 and 0.7639 ± 0.2373 g). The actual tumor size
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cannot be measured simply using photographs because the three-dimensional structure
of tumors cannot be captured in photographs. To further investigate the effects of LLLT
on cell proliferation of B16F10 in vitro, MTT cell viability assays were used. As shown in
Figure 1D, LLLT did not enhance the in vitro proliferation of B16F10 cells.
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Figure 1. The effects of LLLT on the development of melanoma cell–induced tumors in the exper-
imental mice. (A) Representative images of laser-treated (for 5 consecutive days) and untreated
tumors. (B) Changes in the average tumor area after 5 days. (C) Changes in the average tumor weight
after 5 days. (D) Effects of LLLT on the proliferation of B16-F10 cells assessed through the MTT assay.
The data are presented in terms of the mean ± standard error values; * p < 0.05 indicates significant
differences between the treatment and control groups. LLLT, low-level laser therapy.

3.2. LLLT Promoted Angiogenesis and Expanded CD31-Positive Vascular Area in Tumors

Histopathological analysis (hematoxylin–eosin [H&E], immunohistochemical, and
immunofluorescence staining) was performed to investigate angiogenesis. H&E staining
revealed there were small vessels in the tumors of the control group, and vessels with
wide lumen were found in laser light–treated tumors. (Figure 2A). Immunohistochemical
staining revealed elevated CD31 expression in laser light–treated tumor tissues. CD31
and collagen type IV dual staining confirmed enhanced vascularization in laser light–
treated tumors (Figure 2A). Immunohistochemical staining data were analyzed, and the
corresponding bar graphs were constructed (Figure 2B,C). CD31+ area and vessel length
were both increased in the LASER group.
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Figure 2. Effects of low-level laser therapy on the angiogenesis of melanoma tumors. The experimental
mice were treated with laser light for 5 consecutive days. (A) Representative images of tumor tissues
that were subjected to hematoxylin–eosin, immunohistochemical, and immunofluorescence staining.
The asterisk symbol (*) indicates vascular structure, and the arrowhead indicates CD31-positivity. Bar:
50 µm. (B) CD31-positive vascular area that was observed through immunohistochemical staining.
(C) Vascular length (µm). The data are presented in terms of the mean and standard error values.
* p < 0.05 indicates significant differences between the treatment and control groups.

3.3. Angiogenesis-Related Molecules in Tumors

Immunohistochemical and immunofluorescence staining in tumor nodules revealed el-
evated CD31 expression. The protein levels of CD31 was further measured by Western blot-
ting. Similar to the results from immunohistochemical and immunofluorescence staining,
the expression level of CD31 in laser light–treated melanoma tumors was
2.2-fold higher than that in the untreated tumors (p < 0.05; Figure 3A,B). To understand the
effects of LLLT on angiogenic-related signals, the protein levels of HIF-1α and VEGF in the
melanoma tumor tissues were measured. However, similar but not significant increases
were noted in the expression levels of VEGF and HIF-1α in the treatment and control
groups (Figure 3A,B).
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Figure 3. Low-level laser therapy upregulated CD31 expression in melanoma tumors. The experimen-
tal mice were treated with laser light for 5 consecutive days. Melanoma tumors were harvested 5 days
later. (A) Individual mouse melanoma CD31, VEGF, HIF-1α, and GADPH proteins were evaluated
through Western blot analysis. (B) Results of the relative quantification of CD31, VEGF, and HIF-1α
based on GAPDH levels. The data are presented in terms of the mean and standard error values.
* p < 0.05 indicates significant differences between the treatment and control groups. VEGF, vascu-
lar endothelial growth factor. HIF-1α, hypoxia-inducible factor-1α; and GAPDH, glyceraldehyde
3-phosphate dehydrogenase.

3.4. LLLT Induced the Phosphorylation of ERK and p38 MAPK in B16F10 Cells

Western blot analysis revealed substantial increases in the levels of phospho-ERK/ERK
and phospho-p38/p38 in B16F10 cells after two sessions of LLLT (Figure 4A,B). We further
investigated the phosphorylation of ERK and p38 MAPK in the presence of ERK and p38
inhibitors (U0216 and SB203580, respectively). Pretreatment with U0126 markedly reduced
the phosphorylation of ERK from 5.157-fold of the control in the LASER group to 1.25-fold
of the control in the U0126-pretreated LASER group. Unlike U0126, SB203580 pretreatment
did not change the phosphorylation of ERK (Figure 4C,D). By contrast, both U0126 and
SB203580 inhibited the LLLT-induced phosphorylation of p38 MAPK (Figure 4C,E).
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Figure 4. Low-level laser therapy enhanced the phosphorylation of ERK and p38 proteins in B16F10
melanoma cells. The cells were exposed laser light for 10 min for 2 consecutive days. (A) Representa-
tive Western blot of three independent experiments (n = 3) for phospho-ERK, ERK, phospho-p38,
and p38 MAPK proteins. (B) The results of the relative quantification of phospho-ERK/ERK and
phospho-p38/p38 based on β-actin levels (n = 3). (C) B16F10 melanoma cells were exposed to
laser light or left untreated. The cells were pretreated with the ERK inhibitor U0126 or the p38
inhibitor SB203580. The levels of phospho-ERK/ERK and phospho-p38/p38 were evaluated through
Western blot analysis (n = 3). (D) The results of the relative quantification of phospho-ERK/ERK
based on β-actin levels. (E) The results of the relative quantification of phospho-p38/p38 based on
β-actin levels. The data are presented in terms of the mean and standard error values. * p < 0.05 and
# p < 0.05 indicate significant differences between the treatment and control groups. ERK, extracellular
signal-regulated kinase.

3.5. LLLT Induced the Expression of VEGF, but Not HIF-1α, through ERK Signaling

LLLT did not induce prominent changes in the expression levels of HIF-1α and
VEGF. We suspected that non-tumor tissues interfered with the results of Western blot
analysis. Thus, we further evaluated the expression levels of HIF-1α and VEGF in vitro. To
understand the roles of ERK and p38 MAPK in the LLLT-mediated induction of HIF-1α
and VEGF expression, B16F10 melanoma cells were pretreated with U0126 and SB203580.
The expression levels of HIF-1α and VEGF were measured through Western blot analysis.
LLLT increased the expression levels of HIF-1α and VEGF in B16F10 melanoma cells
(Figure 5A,B). Compared with the findings that were noted in the control group, HIF-1α
expression was upregulated in the treatment group; pretreatment with U0126 or SB203580
did not inhibit this effect. By contrast, pretreatment with U0216 and SB203580 markedly
reduced LLLT-induced VEGF expression. These findings indicate that LLLT induces the
expression of VEGF, but not HIF-1α, through the ERK/p38 MAPK pathway.
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4. Discussion

In the present study, LLLT did not enhance B16F10 cell proliferation in vitro but
increased B16F10 tumor growth through its angiogenic effects in vivo. This therapy in-
duced the phosphorylation of ERK and p38 MAPK and increased the expression levels of
VEGF in B16F10 cells. It further induced CD31 expression and enhanced vascularization
in subcutaneous tumors. Taken together, our findings suggest that LLLT accelerates tu-
mor progression by promoting angiogenesis and modulating the ERK/p38 MAPK/VEGF
signaling pathway (Figure 6).
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Melanoma is a highly invasive skin cancer that metastasizes at the early stages [32].
The skin is directly exposed to laser light during LLLT. Therefore, investigating the effect
of LLLT on melanoma is crucial. Although LLLT is useful for wound healing, ischemia
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treatment, and antitumor outcomes, the mitogenic potential of LLLT may increase tumor
growth [36]. LLLT at a dose of 150 J/cm2 exerts no strong effect on melanoma tumor
size, but a higher dose (1050 J/cm2) can promote tumor growth with distinct histological
features in vivo; this finding indicates that the LLLT dosage differentially affects tumor cell
proliferation [13]. In cultured B16F10, our results also showed LLLT did not stimulate cell
proliferation, however, we observed that LLLT at a low dose of 1.91 J/cm2 upregulated the
expression of angiogenesis-related signaling molecules and increased the weight of B16F10
melanoma tumors, which implies that LLLT accelerates the progression and aggressiveness
of melanoma through angiogenesis. Frigo et al. also used B16F10 as a melanoma model;
however, they inoculated B16F10 cells into BALB/c mice instead of C57BL/6 mice, which
are the syngeneic model of B16F10 melanoma and highly susceptible to metastasis. As
C57BL/6, but not BALB/c, mice are an immunocompetent syngeneic model for B16F10
melanoma [37], the tumorigenic effects of low-dose LLLT elicited different immune re-
sponses in our study. The inhibitory effects that were reported by Frigo et al. might have
resulted from the LLLT-induced immune response against melanoma. However, human
melanoma may exhibit high immunogenicity through immune evasion [38]. Further studies
are needed to clarify the effects of LLLT on immune responses.

Several mechanisms may mediate the effects of LLLT on angiogenesis. LLLT induces
VEGF expression in various cell and animal models [25,39,40]. Low-level laser light en-
hances ERK phosphorylation and VEGF secretion in human granulosa cells [41]. VEGF is a
major mediator of angiogenesis by binding with receptor-2 (Flk-1/KDR) and activating
the ERK and HIF-1α signaling pathways [42–44]. We previously demonstrated that LLLT
strongly induces the phosphorylation of VEGF, HIF-1α, and ERK [33]. The expression of
both VEGF and ERK is an upstream signal to that of CD31, which is involved in vascu-
logenesis and angiogenesis [45,46]. Accordingly, LLLT partly promotes angiogenesis by
increasing the expression levels of relevant signaling molecules that affect development,
reproduction, and wound repair. Angiogenesis is pivotal to cancer development, specifi-
cally for tumor growth, progression, and metastasis [47]. The surface of endothelial cells
exhibits high levels of CD31, which is a biomarker of vascular differentiation in malignant
tissues. CD31 is also a well-known inducer of angiogenesis and is specifically involved
in cell–cell communication, which is essential for the maturation of blood endothelial
cells [46,48]. Tumors with high CD31 positivity and VEGF positivity indicate early-stage
cancer; a higher number of blood vessels implies a higher rate of relapse [46]. In the present
study, we found that LLLT increased CD31 levels in tumors, whereas it increased VEGF
levels through the ERK/p38 MAPK pathway in B16F10 melanoma cells. Taken together,
the results suggest that LLLT accelerates tumor progression by enhancing VEGF expression
and thus tumor angiogenesis.

Although most studies have reported similar effects of LLLT on angiogenesis, several
studies have indicated the differential effects of LLLT on tumor growth. Ottaviani et al.
demonstrated that three LLLT protocols (660 nm, 50 mW/cm2, and 3 J/cm2; 800 nm,
200 mW/cm2, and 6 J/cm2; and 970 nm, 200 mW/cm2, and 6 J/cm2; once daily for 4 days)
increased the density of α-smooth muscle actin–positive vessels in tumor samples but
decelerated tumor progression [15]. In the present study, we also used the wavelength of
660 nm; however, the fluence is lower than that in the aforementioned study because of
a relatively large beam diameter. Studies that were conducted by Da Xing et al. in China
have revealed that low-power laser irradiation with high fluence can restrict tumor growth
through the photoinactivation of respiratory chain oxidase [49,50]. The inconsistency
in these results might be because of the differences in fluence. In addition, different
wavelengths, power, optical properties, and cell types may lead to different responses to
photochemical stimulation [10,51].

Our study has some limitations. First, the higher expression level of CD31 might
not be a good biomarker to tumor progression. Langenkamp and colleagues found the
vascular morphology shifts from small vessels without lumen in small B16F10 melanoma
to vessels with lager lumen in intermediate/large tumors, and we found similar changes
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in LASER-irradiated tumors. However, they reported that there is no difference of CD31
mRNA expression in different stages of melanoma [52]. Previous studies have also reported
that CD31 is only suitable as a prognostic biomarker for small, but not late stage, laryngeal
squamous cell carcinoma [46]. Thus, the LLLT-induced higher protein expression of CD31
in our model might only happen in the early stage of tumor formation. Second, the in vivo
and in vitro study findings were inconsistent. For instance, although B16F10 cells and
melanoma tumors were irradiated with the same dose, LLLT markedly upregulated the
expression of VEGF and HIF-1α in B16F10 cells, but not in melanoma tissues. Whether
the degrees of LLLT-mediated photomodulation are similar between in vivo and in vitro
experiments must be investigated further. Tumor microenvironments vary across cancer
types and are crucial for tumor growth and immune evasion. The differences between
in vitro and in vivo findings imply that the mitogenic effects of LLLT on B16F10 cells are
not 100% similar to its mitogenic effects on patients with melanoma. Further studies are
needed to validate our findings.

5. Conclusions

In the present study, LLLT (wavelength, 660 nm; power density, 50 mW/cm2; energy
density, 1.91 J/cm2) increased tumor weight and promoted angiogenesis. Distinct histo-
logical features were observed. Thus, LLLT may aggravate melanoma, thereby worsening
disease prognosis. Our in vitro and in vivo study findings indicate that LLLT is unsafe
for patients with skin cancer, particularly those with melanoma. Therefore, clinicians and
physiotherapists must avoid this therapy in patients with skin cancer.
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