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Abstract: This work aims to determine the impact of dietary supplementation of polysaccharide,
extracted from brown seaweeds Sargassum dentifolium on growth indices, feed utilization, biochemical
compositions, microbial abundance, expressions of growth and immunity-related genes, and stress
genes of the Pacific Whiteleg shrimp Litopenaeus vannamei. A total of 360 post-larvae of L. vannamei
were randomly distributed into a 12-glass aquarium (40 L of each) at a stocking density of 30 shrimp
with an initial weight of (0.0017 ± 0.001 g). During the 90-day experiment trial, all shrimp larvae
were fed their respective diets at 10% of total body weight, three times a day. Three experimental
diets were prepared with different seaweed polysaccharide (SWP) levels. The basal control diet
had no polysaccharide level (SWP0), while SWP1, SWP2, and SWP3 contained polysaccharides at
concentrations of 1, 2, and 3 g kg−1 diet, respectively. Diets supplemented with polysaccharide levels
showed significant improvements in weight gain and survival rate, compared to the control diet.
Whole-body biochemical composition and the microbial abundance (the total count of heterotrophic
bacteria and Vibrio spp.) of L. vannamei showed significant differences among polysaccharide-treated
diets compared to the control. At the end of the feeding experiment, the dietary supplementation of
polysaccharide levels enhanced the expression of growth-related genes (Insulin-like growth factors
(IGF-I, IGF-II), immune-related genes (β -Glucan-binding protein (β-Bgp), Prophenoloxidase (ProPO),
Lysozyme (Lys), and Crustin), and stress genes (Superoxide dismutase (SOD) and Glutathione
peroxidase (GPx) in the muscle tissue of L. vannamei. However, the current study concluded that
the inclusion rate of 2 g kg–1 of polysaccharide as a dietary additive administration enhanced both
weight gain and survival rate of L. vannamei, while the incorporation level of 3 g kg–1 reduces the
abundance of pathogenic microbes and enhances the growth-, immunity- and stress-related gene
expressions of L. vannamei.

Keywords: Sargassum dentifolium; feed additives; shrimp industry; growth performances; growth-
related genes; immune-related genes; stress genes

1. Introduction

The shrimp aquaculture industry has experienced rapid growth and has become the
most significant and leading aquaculture sector [1,2]. Although the shrimp industry has
developed rapidly, the challenges faced by farmers are obtaining an increase in growth rate,
low-price diets, and reducing disease outbreaks [3,4]. Furthermore, the world’s shrimp
consumption has risen over the previous ten years, forcing nutrition experts to incorporate
a lot of substances derived from agriculture in aquatic animal diets [1,5,6]. The Pacific
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Whiteleg shrimp (Litopenaeus vannamei) is most frequently grown worldwide, achieving
more than 70% of all worldwide shrimp cultivation [7,8]. To sustain the shrimp industry
worldwide, many issues must be resolved, such as poor water quality, low survivability,
and diet industry improvement [9–14]. Moreover, climate change and the negative im-
pact of environmental pollution are significant problems restricting the sustainability of
aquaculture, fisheries, aquatic ecosystems, and aquatic animals so far [15–20].

Hence, shrimp diets have been expanded using several strategies to deal with such
global development in the shrimp farming sector [10,21]. One of the most fundamental
strategies is feed additive supplementation, which has grown to be very important for many
shrimp species as a growth stimulus, immunological booster, and alternative disease resis-
tance approach [22,23]. Aquatic plants (microalgae and seaweeds) are still widely employed
in many important sectors, such as aqua-feed additives [24], plant growth enhancers [25],
phytoremediation [26–30], human food supplement [31,32], pharmaceuticals [33,34], cos-
metics substances [35,36], antimicrobial activities [37,38], and bioenergy [39,40]. As re-
ported in 2018, the global production of seaweeds (wild captured and farmed) was about
34.4 Million Tonnes, with an industrial value of about USD 13.3 Billion [41]. This production
comes from about 35 countries, while the largest producer, which produces more than 99%,
is China [42]. Seaweeds have high levels of proteins, fibers, vitamins, fatty acids, minerals,
pigments, and several bioactive compounds [43–46]. Among seaweed families, brown
seaweeds are known as a high source of sugars, which can protect aquatic organisms from
several harmful impacts while their polysaccharide has been successively used as a feed
additive for Nile tilapia [47] and red tilapia [2]. The available literature has demonstrated
that the polysaccharide extracted from seaweed could promote innate immunity, and en-
hance the resistance against pathogen infection of shrimp [48–50] due to its polysaccharide
composition and structure (degree of branching, substituents, sulphation, and type of
linkages) which are quite different from terrestrial plants [51,52] Sargassum dentifolium,
brown seaweed is found to contain abundant polysaccharide which is a rich resource in
Egypt, has been confirmed to exert multiple pharmacological properties, such as antitumor,
antioxidation, hematopoiesis, immunomodulation, and gastrointestinal protection, while
the dietary administration was reported to improve the non-specific immune responses
in fishes [2].

Despite the importance of feed additives applied for the Pacific whiteleg shrimp, little
is known about the application of polysaccharides prepared from brown seaweeds in the
shrimp feed additive industry [53,54]. Immunostimulants have importance as synthetic
substances that boost the immune system’s capacity to combat infections and diseases by
stimulating immunological responses. Bacteria and bacterial products, complex carbo-
hydrates, dietary factors, animal extracts, cytokines, lectins, plant extracts, and synthetic
medications such as levamisole are all examples of immunostimulants that are presently
available [55]. Antibiotics in the diets of cultured fish and crustaceans have been commonly
used to control disease infection as well as to improve both survival and growth. However,
it has been widely criticized due to the drug resistance and accumulation of chemicals in
aquatic animal tissues, which can be possibly dangerous to public health. Alternatively,
natural immune stimulants such as probiotics, and prebiotics are generally suggested to use
in feeds to effectively promote growth and immune response, and control various diseases
in aquatic animals [56].

The stimulatory effects of immunostimulants such as glucan, chitosan, nucleotides,
lipopolysaccharide (LPS), sodium alginate, and other polysaccharides have been the subject
of several works on fish and crustaceans [55,57].

Recently, special attention has been paid to the use of prebiotics as natural alternatives
to antibiotics and immune stimulants in aquaculture. Functional polysaccharides are
non-digestible ingredients because of their β-1, 3 or β-1, 4 linkages. Consumption of
functional polysaccharides can reportedly improve growth performance and enhance the
immune response and disease resistance of aquatic animals [58]. According to previous
studies, diets containing certain polysaccharides, including medicinal plants and marine-
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derived polysaccharides, may improve growth rate in respect of the immune system and
gastrointestinal condition in fishes and shrimps [59–61].

Disease resistance has been linked to an increase in cellular and humoral responses,
including phagocytosis, bactericidal activity, phenoloxidase (PO) activity, respiratory burst,
superoxide dismutase (SOD), and lysozyme activities in crustaceans [62]. Essential infor-
mation regarding immune system activation and regulation is revealed by the expression
of immune-related genes in shrimp [63]. Pattern recognition proteins (PRPs), which attach
to molecules on the microbial surface, mediate the detection of invading organisms as an
important step in the shrimp immune response [64].

PRP recognition of invading pathogens is a crucial intermediate step in prophenoloxidase-
activating system (ProPO) system activation [65]. Peptidoglycan recognition proteins [66],
C-type lectins [67], β-glucan-binding proteins (β-Bgps) [68], and lipopolysaccharide (LPS)
and 1,3-glucan binding proteins (1,3-Lgp) [69] have all been described as PRPs in the
ProPO system. The Prophenoloxidase (ProPO)-activating mechanism, which is triggered by
PRPs binding to a microorganism’s cell wall components, is known to activate the host’s
immune system [70]. Stress activates the glycolytic reactions which in turn increases the
consumption of O2, and enhances the release of reactive oxygen species (ROS) (as hydroxyl
radical, hydrogen peroxide, and superoxide anions) [71]. However, the ROS can eliminate
the stressor; the increase in the ROS will cause severe destruction. Therefore, the rapid
removal of excessive ROS is critical for the appropriate function of the cell. This is achieved
by increasing the expression of antioxidant enzymes [72]. Superoxide dismutase (SOD) are
antioxidant enzyme that relies on superoxide anions. Superoxide radicals are detoxified by
SOD by being transformed into oxygen and hydrogen peroxide, which are subsequently
changed into H2O and O2 by catalase and supplied to the cell as safe composites [73,74].

The copper–zinc superoxide dismutase CuZnSOD gene and other immune genes are
also implicated in the indirect immunity of shrimp-like Crustin, which is essential for
immunity to infections [75,76]. In L. vannamei, the dietary Panax ginseng polysaccharide
extract reduces inflammation, boosts immune enzyme activity, and modifies immune gene
expression [77]. A large number of genes regulate development characteristics, including
growth hormone (GH), and insulin-like growth factors (IGF-I and IGF-II) [78]. The fast
growth of L. vannamei aquaculture demands the creation of rapid genetic lines [79]. To
the best of our knowledge, little is known about the influences of dietary polysaccharides
supplementation of Sargassum dentifolium on shrimp growth, immunity, and stress-related
gene expressions. Therefore, this study was undertaken to evaluate the effect of dietary
administration of polysaccharide derived from brown seaweed (S. dentifolium) on growth
performances, feed utilization, body composition, microbial communities, and growth,
immunity, and stress genes expressions of the Whiteleg shrimp Litopenaeus vannamei.

2. Materials and Methods
2.1. Brown Seaweed, Sargassum dentifolium

Brown seaweed, S. dentifolium, was collected from Abu-Qir Bay, Alexandria, Egypt
(31.3000 N and 30.1667 E) [2]. The epiphytes were removed from the obtained samples, as
previously described [80]. Before use, the samples were then washed, cleaned, air-dried,
powdered, and stored in plastic bags at room temperature [29]. The procedures outlined
by [81] were used to extract the polysaccharide from the brown seaweed S. dentifolium.

2.2. Investigation of Water Quality

Throughout the feeding experiment, we made sure that the levels of NH3
− (mg L−1),

NO2
− (mg L−1), NO3

− (mg L−1), alkalinity (mg L−1), and PO4
− (mg L−1) were within the

ranges suggested for shrimp [82] and the guidelines of APHA [83]. In addition, daily mea-
surements of temperature (◦C), salinity (ppt), and pH were taken at 1 p.m. A thermometer
hung at a depth of 30 cm was used to get an accurate reading of the water’s temperature,
and a pH meter and a refractometer (Orion, Ipswich, MA, USA) were used to get accurate
readings of the water’s acidity and alkalinity daily at 9.00 h.



Life 2023, 13, 344 4 of 17

2.3. The Pacific Whiteleg Shrimp (Litopenaeus vannamei)
2.3.1. Animal Experiment

A private hatchery supplied post larvae (PLs) of Pacific Whiteleg shrimp L. vannamei to
the Invertebrates Laboratory, Aquaculture Division, Suez-Branch of NIOF, Egypt. PLs were
then acclimatized for 15 days in two 500-L fibreglass tanks under controlled conditions
(28.0 ± 1.0 ◦C and salinity 29 ± 3.0 ppt) The Research Committee of the NIOF, Egypt, ap-
proved the experimental design and the adherence to ethical standards of shrimp handling.

2.3.2. Experimental Design and Facilities

The current feeding trial was conducted using a completely randomized design, with
triplicates. A total of 360 PLs (with an initial weight of 0.0017 ± 0.001 g) were stocked at
a density of 30 shrimp in 12 glass aquariums (each with a 40 L capacity). For the 90-day
feeding trial, PLs were given 10% of the total shrimp body weight three times a day (at
6:00 a.m., 12:00 p.m., and 6:00 p.m.). Each aquarium was emptied of waste and uneaten
food every morning and cleaned with a siphon and 10% of the water volume was replaced
with fresh, oxygenated, and filtered seawater daily [82].

2.3.3. Experimental Diet

Four diets were provided to shrimp: SWP0: commercial shrimp diet (Aller-Aqua,
Egypt, as a control basal diet, crude protein of 40% and crude lipid of 9%). The remaining
three experimental diets (SWP1, SWP2, and SWP3) are commercial shrimp diets supple-
mented with 1, 2, and 3 g kg−1 of S. dentifolium polysaccharide, respectively. The additions
of polysaccharide levels were performed, as previously described by Abdelrhman et al. [2].
Briefly, the commercial shrimp diet was first milled and split into three equal portions.
Each polysaccharide level (1, 2, and 3 g kg−1) was dissolved in distilled water and then
sprayed on the diet surface until complete absorption and the same adequate volume
of distilled water was sprayed on the control diet (SWP0) without polysaccharide [84].
The sunflower oil (5 mL kg−1) was then sprayed over diets to cover the polysaccharide
solution [85]. Finally, the diets were homogenized and re-pelletized into pellets, air-dried,
placed in cellophane bags, and refrigerated at 4 ◦C until use.

2.4. Tested Parameters
2.4.1. Growth Performances

At the end of the trial, the number of shrimps and weights were recorded, after 24 h of
fasting, to determine the different growth indices and feed utilization using the following
formulas:

Weight Gain (WG, g) = FW − IW (1)

where IW & FW are initial and final body weight (g), respectively.

Specific growth rate (SGR, %/day) = 100 ×
(

Ln FW − Ln IW
t

)
(2)

where Ln and t are t natural logarithmic and time in days, respectively.

Survival Rate (%) = 100 × Final number of shrimp
Initial number of shrimp

(3)

Feed conversion ratio (FCR) =
Feed intake (g)

Body weight gain (g)
(4)

2.4.2. Biochemical Composition Analysis

Both experimental diets and shrimp were subjected to proximate analysis for estimat-
ing their biochemical content according to AOAC [86] guidelines prepared as detailed in
the prior article [87]. To estimate the whole-body constituent (dry matter, crude fat, crude
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protein, and crude ash), 5 shrimp were obtained randomly from each replicate after the
feeding session was completed. Shrimp were then pulverized, blended until smooth, and
stored at −20 ◦C for further examination.

2.4.3. Microbial Communities

The APHA approach [83] was used to determine the richness of microbial communities.
Water (1 mL) and intestine of shrimp (1 g) samples were taken from each replicate (3 shrimp
per replicate, n = 9) once the experiment was completed. Each sample (intestine and water)
was inoculated with 9 mL of sterile distilled water onto plates of Trypticase soy agar (TSA)
and Thio-sulphate-Citrate-Bile salts (TCBS) [88]. Plates of TSA and TCBS were incubated at
37 ◦C, while TCBS plates were incubated at 28 ◦C. Colony-forming units per milliliter were
used to determine the quantity of hetero-trophic bacteria and Vibrio colonies present after
24 h (CFU mL−1) [89].

2.4.4. RNA Extraction and cDNA Synthesis for Genes Expression

Triplicate samples of the shrimp’s abdominal muscles from each replicate were directly
excised with fully sterile dissecting tools under cold conditions. Before performing the
gene expression study, part of the muscles was frozen at −80 ◦C. TRIzol reagent (easy-
RED, iNtRON Biotechnology) was used to extract total RNA from the shrimp’s abdomen
region at the end of the experiment, as directed by the manufacturer. Using a NanoDrop
system (Bio-Drop), the optical density (OD) ratio of RNA purity was determined, and
1 ng L−1 of RNA was used for cDNA synthesis in each reaction when the ratio was ideal
(A260/A280 = 1.8). To determine the quality of the RNA, the 260/280 nm OD ratio was
used. Total RNA that had been processed with DNase I (NEB, USA) was utilized as a
template in a reverse transcriptase kit (RT-PCR beads, Enzynomics, Daejeon, Korea) to
generate first-strand cDNA. The reaction was performed using PCR amplification (using an
American product, an Applied Biosystems Veriti 96-Well Thermal Cycler) and was carried
out following the manufacturer’s instructions. Real-Time PCR (Bico, Thermo-Fisher) was
performed under the following cDNA conditions to detect unique and distinct products:
After an initial denaturation at 95 ◦C for 15 min, the protein was subjected to 40 cycles at
the following conditions: 95 ◦C for 10 s, 58–62 ◦C for 20 s, and 72 ◦C for 30 s; and finally,
after the final cycle, the temperature was raised from 58–62 ◦C to 95 ◦C in increments of
0.5 ◦C. Primers used to probe similar genes are listed in Table 1.

The housekeeping gene (β-actin) was utilized to assess target gene expression or
fold change [90]. When the 2∆∆Ct method is used to normalize the critical threshold (Ct)
quantities of the target genes with quantities of β-actin, the values reveal an n-fold difference
in comparison to the control [91].

2.5. Statistical Analysis

To evaluate water quality, growth performances feed utilization indices, body compo-
sition analysis, microbial communities, and immunity and growth-related gene expression,
a one-way ANOVA was employed to identify significant differences (p < 0.05) in the means
for each variable between the polysaccharide treatments (SWP1, SWP2 and SWP0) and
the control (SWP0). The statistical analysis was performed using GraphPad Prism ver-
sion 9. To examine any correlation between the treatments, Tukey’s tests were utilized.
Before performing the statistical analysis, all data have been checked for the normality
of distribution and homogeneity of variance. Before the analysis, all data (percentages)
were arc-sin transformed [92]. However, to facilitate comparisons, the data were presented
as untransformed.
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Table 1. Oligonucleotide primer sequences applied in RT-PCR for immune-related, antioxidant genes
and growth-related genes.

Genes Sequences Amplicon Size

β-actin (AF300705) F: GCCCATCTACGAGGGATA
R: GGTGGTCGTGAAGGTGTAA 121 bp

Bgp (AY249858) F: ACGAGAACGGACAAGAAGTG
R: TTCAGCATAGAAGCCATCAGG 137 bp

ProPO (AY723296) F: CGGTGACAAAGTTCCTCTTC
R: GCAGGTCGCCGTAGTAAG 122 bp

Crustin (AF430076) F: ACGAGGCAACCATGAAGG
R: AACCACCACCAACACCTAC 141

Lys (AY170126) F: GGACTACGGCATCTTCCAGA
R: ATCGGACATCAGATCGGAAC 97 bp

IGF-I (KP420228) * F: GTGGGCAGGGACCAAATC
R: TCAGTTACCACCAGCGATT 123 bp

IGF-II (XM02739466) * F: CTCTGTACAGTCAGCCCAGC
R: CACACCCAGTCAGTCCCAAG 220 bp

SOD (DQ005531) F: AATTGGAGTGAAAGGCTCTGGCT
R: ACGGAGGTTCTTGTACTGAAGGT 153

GPx (AY973252) F: AGG GACTTC CAC CAG ATG
R: CAA CAACTC CCC TTC GGTA 117

* Designed by NCBI tool.

3. Results
3.1. Water Quality

Table 2 displays the water quality conditions recorded during feeding experiments.
According to the supplied data (Table 2), the water quality was acceptable (falling under
the permissible limits) for raising shrimp.

Table 2. Water quality parameters of experimental diets.

Tested Parameters SWP0 SWP1 SWP2 SWP3

NH3
− (mg L−1) 0.119 ± 0.001 0.106 ± 0.016 0.123 ± 0.015 0.125 ± 0.004

NO2
− (mg L−1) 0.119 ± 0.016 bc 0.101 ± 0.009 c 0.140 ± 0.001 a 0.132 ± 0.003 ab

NO3
− (mg L−1) 0.222 ± 0.028 0.217 ± 0.008 0.262 ± 0.004 0.257 ± 0.005

PO4
− (mg L−1) 0.485 ± 0.010 0.495 ± 0.018 0.505 ± 0.007 0.485 ± 0.018

Alkalinity (mg L−1) 7.700 ± 0.625 b 7.625 ± 0.050 b 8.563 ± 0.438 ab 9.038 ± 0.763 a

Temperature (◦C) 26.84 ± 0.20 a 26.75 ± 0.07 a 26.46 ± 0.04 b 26.65 ± 0.15 ab

Salinity (ppt) 32.25 ± 0.09 b 32.35 ± 0.03 b 32.46 ± 0.02 a 32.32 ± 0.04 b

pH 7.79 ± 0.02 a 7.82 ± 0.01 a 7.78 ± 0.03 a 7.73 ± 0.08 b

SWP0, SWP1, SWP2, and SWP3: diets supplemented with 0, 1, 2, and 3 g of polysaccharide extracted from
brown seaweed S. dentifolium. The presented data are Means ± SD (n = 3). Different letters in the same
column are significantly different (p < 0.05). The absence of letters in the same row means that there are no
significant differences.

3.2. Growth Performances and Nutrient Utilization Indices

Table 3 demonstrates the impact of polysaccharide dietary supplementation on shrimp
growth, survival, and feed utilization. Compared to SWP0, Table 3 showed that SWP1,
SWP2, and SWP3 demonstrated significant (p < 0.05) increases in WG. Moreover, SWP1
and SWP2 showed significant (p < 0.05) increases in SR, while SWP3 showed significant
(p < 0.05) decreases, compared to SWP0. On the other hand, there were no significant
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differences (p < 0.05) in SGR or FCR across the supplemented diets (SWP0, SWP1, SWP2,
and SWP3), as presented in Table 3.

Table 3. Growth performance and feed utilization of shrimp L. vannamei fed on experimental diets.

Indicator SWP0 SWP1 SWP2 SWP3

IW (g) 0.0017 ± 0.001 0.0017 ± 0.001 0.0017 ± 0.001 0.0017 ± 0.001

WG (g) 10.43 ± 1.15 c 12.75 ± 2.21 b 14.97 ± 1.26 a 15.06 ± 1.28 a

SR (%) 75.56 ± 2.94 b 77.78 ± 4.08 a 83.33 ± 3.74 a 60.00 ± 2.45 c

SGR 7.29 ± 0.55 7.45 ± 0.77 7.59 ± 0.33 7.59 ± 0.41

FCR 1.58 ± 0.05 1.59 ± 0.07 1.59 ± 0.09 1.58 ± 0.15
SWP0, SWP1, SWP2, and SWP3: diets supplemented with 0, 1, 2, and 3 g of polysaccharide extracted from
brown seaweed S. dentifolium. The presented data are Means ± SD (n = 3). Different letters in the same
column are significantly different (p < 0.05). The absence of letters in the same row means that there are no
significant differences.

3.3. Shrimp Body Composition Analysis

The body composition analysis of the content (% of dry weight) of protein, fat, ash,
and dry matter is presented in Table 4. The highest significant (p < 0.05) values of protein
and dry matter were reported by SWP0 followed by SWP1, SWP3, and SWP2, while the
highest significant (p < 0.05) values of fat and ash were reported by SWP2 followed by
SWP3, SWP1, and SWP0 (Table 4).

Table 4. Composition analysis (%) of shrimp L. vannamei fed on different experimental diets.

Diets
Composition Analysis (% of Dry Weight)

Dry Matter Protein Fat Ash

SWP0 26.53 ± 0.13 a 23.12 ± 0.03 a 7.79 ± 0.01 d 1.60 ± 0.01 d

SWP1 25.33 ± 0.04 b 22.32 ± 0.03 b 10.61 ± 0.02 c 1.89 ± 0.01 c

SWP2 24.60 ± 0.03 d 21.88 ± 0.02 d 11.00 ± 0.01 a 2.48 ± 0.02 a

SWP3 24.93 ± 0.04 c 22.10 ± 0.01 c 10.78 ± 0.03 b 2.19 ± 0.01 b

SWP0, SWP1, SWP2, and SWP3: diets supplemented with 0, 1, 2, and 3 g of polysaccharide extracted from
brown seaweed S. dentifolium. The presented data are Means ± SD (n = 3). Different letters in the same
column are significantly different (p < 0.05). The absence of letters in the same row means that there are no
significant differences.

3.4. Microbial Communities

Table 5 shows the impact of experimental diets supplemented with different concen-
trations of the polysaccharide (SWP1, SWP2, and SWP3), compared to SWP0, on the total
count of THB and TVC in both the water and intestine of shrimp. The data showed that the
abundance of microbes (THB and TVC) was higher in the intestine than in water. Compared
to SWP0 both THB and TVC count in both water and intestine gradually decreased as
polysaccharide levels increased (Table 5).
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Table 5. Effect of brown seaweed polysaccharide on the bacterial abundance in water and intestine of
L. vannamei, total heterotrophic bacteria (THB), total vibrio count (TVC), and TVC/THB ratio.

Bacterial Count
(CFU mL−1 × 105)

Experimental Diets

SWP0 SWP1 SWP2 SWP3

Water
THB 7.251 ± 0.0033 d 4.200 ± 0.0030 c 2.651 ± 0.0063 b 0.119 ± 0.0066 a

TVC 0.114 ± 0.0005 d 0.068 ± 0.0002 c 0.045 ± 0.0003 b 0.005 ± 0.0004 a

Intestine
THB 80.00 ± 0.0033 d 50.00 ± 0.0035 c 35.00 ± 0.0020 b 3.00 ± 0.0033 a

TVC 0.591 ± 0.4583 d 0.476 ± 0.4041 c 0.282 ± 0.5508 b 0.007 ± 0.0306 a

SWP0, SWP1, SWP2, and SWP3: diets supplemented with 0, 1, 2, and 3 g of polysaccharide extracted from
brown seaweed S. dentifolium. The presented data are Means ± SD (n = 3). Different letters in the same
column are significantly different (p < 0.05). The absence of letters in the same row means that there are no
significant differences.

3.5. Growth, Immunity, and Stress-Related Genes Expressions

At the end of the experiment, the dietary supplementation of polysaccharides en-
hanced the expressions of immune-related, growth-related, and stress genes in the muscle
tissue of L. vannamei. Regarding the expressions of growth-related genes (IGF-I and IGF-II),
their expressions were considerably up-regulated (p < 0.05) in the treatments with the
different polysaccharide concentrations compared to the control (SWP0). The expression
was increased in the SWP3 and found to be higher than the SWP0 with approximately
12 and 11-fold change, respectively (Figure 1A,B). The expressions of immune-related genes
(Bgp, ProPO, Crustin, and Lys) were markedly up-regulated in the SWP3 treatment where
the fold changes were 9.3, 12.4, 10.5, and 8.8, respectively, which were higher than SWP0
(Figure 1C–F).

Compared to the control group (SWP0), the ProPO gene exhibits the highest expression
levels across all treatment concentrations. For the Crustin gene, there is a significant differ-
ence between the SWP3 treatment and the control, while there was no significant difference
between the SWP1 and SWP2 and the control. Furthermore, the expression of stress genes
(SOD and GPx) in SWP3 were considerably increased by 5.2- and 6.9-folds, respectively,
relative to the control (Figure 1G,H). However, there was a significant difference (p < 0.05)
in SOD gene expression among all treatments compared to the control with more increase
in the SWP3 treatment. Meanwhile, there was a significant difference (p < 0.05) in the gene
expression of GPx between SWP3 and SWP2 treatments relative to the control SWP0, but no
significant difference was observed between SWP2 and SWP1 treatments.
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Figure 1. Analysis of gene expressions of growth-related genes [IGF-I (A) and IGF-II (B)], immune-
related genes [Bgp (C), ProPO (D), Crustin (E), and Lys (F)], and stress genes [(SOD (G) and GPx
(H)], compared to the expression of a housekeeping gene (β-actin gene) in the different dietary
supplementation of polysaccharide-extracted from brown seaweed, S. dentifolium. The presented
data are Means ± SD (n = 3). Different letters are significantly different (p < 0.05). In general, the
commercial diet supplemented with 3 g kg−1 of polysaccharide produced from brown seaweed
S. dentifolium resulted in the highest expression of the eight genes (p < 0.05) compared to the other
diets examined.
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4. Discussion

Seaweed polysaccharides are recognized as high-value active molecules that improve
growth performances, enhance the immune system response, and have many health bene-
fits for aquaculture organisms [2,54,93–97]. In the present study, we hypothesized that the
dietary administration of polysaccharide derived from brown seaweed (Sargassum denti-
folium) ameliorates the growth performances, feed utilization, body composition, microbial
communities, and growth, immunity, and stress genes expressions of the Whiteleg shrimp
L. vannamei. The current feeding trial demonstrated that the weight gain of L. vannamei
was improved significantly with increasing polysaccharide levels in the commercial diet
compared to the control diet. The present findings are parallel to the previous studies
conducted on different shrimp and fish species. For example, Lee et al. [98] reported that
the hot-water extract of the brown seaweed Sargassum horneri significantly improves growth
performances, stimulates innate immunities, and enhances immune gene expressions of
shrimp L. vannamei and recommended that the ideal inclusion level is 5 g kg–1. Additionally,
the study by Liu et al. [99] investigated the impact of different inclusion levels (0, 1, 2, and
3 g kg–1) of polysaccharides extracted from green seaweed (Enteromorpha) into the diet of
banana shrimp F. merguiensis and concluded that 1 g kg–1 significantly enhances growth
performance, improves nonspecific immunity, and modulates the intestinal function of
F. merguiensis, while Abdelrhman et al. [2] investigated the effect of different dietary in-
clusion rates (0, 10, 20, and 30 g kg–1) of polysaccharides obtained from brown seaweed
S. dentifolium on the hybrid red tilapia, and concluded that the 30 g kg–1 level achieved the
highest significant growth performance, FCR, and hematological indices. However, the
inconsistency in the inclusion levels among these studies may be due to the different initial
weight, seaweed species, species (fish and shrimp species), age, etc.

Gut microbiota abundance rapidly responds to variations in dietary intake, composi-
tion, and components. Therefore, it has a huge impact on the health benefits of all aquatic
organisms such as food consumption, digestion, nutrient utilization, absorption, and immu-
nity responses [22,87,100,101]. At present, the evaluation of disease resistance is important
in the aquaculture industry, the blood antioxidant and immune factor activity is a good
health status indicator for investigating the immune response and disease resistance in
L. vannamei such as white spot syndrome virus (WSSV) [49] and Vibrio alginolyticus [102].
Reactive oxygen species (ROS) are chemically reactive molecules containing oxygen, such
as oxygen ions and peroxides. Excessive amounts of ROS can affect the structure and
stability of functional proteins, unsaturated fatty acids, and nucleic acids, causing oxida-
tive damage to the immune system of the organism and increasing the susceptibility to
pathogens in shrimp [73]. Hence, the health of aquatic organisms depends on the balance
between the production of ROS and antioxidant enzymes such as SOD and GPx which
protect the animal cells against free radicals. The current findings showed that dietary
polysaccharides derived from brown seaweed (S. dentifolium) effectively improved the
activities of antioxidant enzymes, including SOD and GPx. Similarly, the SOD and GPx
activities of different crustaceans were increased after feeding diets supplemented with
Angelica sinensis polysaccharides in whiteleg shrimp [60] and β-glucan [103], and Rhodiola
rosea polysaccharides in red swamp crayfish [104].

The current work reported that, compared to SWP0, the THB and TVC counts were
significantly (p > 0.05) decreased with the increase in the inclusion levels of polysaccharides
(SWP1, SWP2, and SWP3). These results are in agreement with those reported in the study
by Mansour et al. [87] who found that the increasing levels of astaxanthin, extracted from
the cyanobacterium strain, Arthrospira platensis NIOF17/003, in L. vannamei diet significantly
(p > 0.05) decreased the counts of THB and TVC. However, the action mechanism of how
seaweed-polysaccharide affected the abundance of microbiota is still not clear and requires
further studies [87,101].

Several genes involved in immunological response were the focus of the current
investigation. In SWP3 treatment, the up-regulatory gene expression was noticeably higher.
Results showed increased expression with the treatments compared to the control (SWP0),
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suggesting that the polysaccharide can improve the immune status of shrimp through
microbial cell walls composed of peptidoglycans, lipopolysaccharides (LPS), and β-1,
3-glucans, which can activate the shrimp immune response by triggering the main non-
specific defense mechanism [22,87,105,106].

Prophenoloxidase is a crucial enzyme in invertebrate humoral immunity that promotes
melanization to get rid of invasive pathogens [107], and is linked to cuticle sclerotization
and wound healing [108]. Invertebrates have a non-self-recognition system called the
ProPO activation system, which may detect and react to intruders using peptidoglycan
or lipopolysaccharides from bacteria and β-1, 3-glucans from fungi [109]. The mRNA
expression of the ProPO gene was shown to be considerably higher across all treatments
compared to the control group, and this expression was found to be the greatest among
all the investigated genes as seaweed polysaccharide content was increased (3 g kg–1 diet).
Feeding P. monodon shrimp a diet that included the polysaccharide fucoidan from the brown
seaweed S. wightii increased the expression of the ProPO gene [110]. Some other dietary
supplements derived from microalgae and seaweeds raised the shrimp’s ProPO system and
improved the humoral immune response. Our findings are consistent with prior studies
conducted on L. vannamei [22,87].

Crustin, defined as part of the innate immune system [111], is a protein found in
the hemocyte granules of crustaceans and is effective against several microorganisms. In
this study, supplemented diets of the extracted polysaccharide increased Crustin gene
expression, and there was a clear difference between the three treatments. Significant
elevation of Crustin mRNA levels in Marsupenaeus japonicus has been observed after the
administration of peptidoglycan [112]. The Crustin gene was upregulated (p < 0.05) in
Pacific white shrimp L. vannamei administered supplemental astaxanthin [87,113]. As a
protein found in eukaryotes and prokaryotes, lysozyme has been around for quite some
time and is considered to be one of the earliest known antibacterial proteins [114]. Non-
specific innate immunity relies on its ability to break down the b -1,4 glycosidic link between
N-acetylmuramic acid and N-acetylglucosamine in bacterial cell wall peptdoglycan [115].

In the current investigation, Lys gene expression was shown to be considerably greater
in the treatment groups (SWP1, SWP2, and SWP3) than in the control group (SWP0).
Another transcriptome investigation using species that face environmental challenges
also produced similar findings [116,117]. These findings demonstrated that lysozyme is a
crucial part of the shrimp’s anti-bacterial defense mechanism and is evoked by a variety
of immunostimulating substances. The antioxidant enzymes catalase and glutathione
peroxidase convert hydrogen peroxide into oxygen and water, while SOD, one of the
stress genes, is involved in the elimination of superoxide anions by converting them
into hydrogen peroxide and water [118]. Consequently, these antioxidant enzymes give
post-phagocytosis self-protection to the hemocytes of oxygen-respiring animals, hence
preserving the organisms’ health and viability [119,120]. Compared to the control, the
expression of the SOD gene was elevated in the three experimental conditions, and previous
research [22,87,113,116] indicated that the feeding additive increased the expression of the
SOD gene, which is involved in the antioxidant enzyme system in L. vannamei.

In the glutathione defense system, GPx is responsible for the reduction of hydrogen
peroxide to water [117,121]. In our investigation, the expression of GPx was found to be
higher in the SWP3 treatment where a higher concentration of seaweed polysaccharides was
used. Thus, both stress genes in this study are significantly upregulated in comparison to
the control group, and the activities of the SOD and GPx increase together with an increase
in superoxide anion (O2

−) and hydrogen peroxide (H2O2), which may indicate increases in
the activity of NADPH-oxidase and the production of a mass of reactive oxygen species
(ROS) that can represent as a defense mechanism against microbial infection [73,122]. Recent
research has evaluated the expression of genes involved in immunity in shrimp [123,124]
and has concentrated on ways to boost their natural defenses.

There are two types of insulin-like growth factor (IGF) peptide hormones, IGF-I and
IGF-II; there are also cell surface receptors and circulating binding proteins. IGF-II, like IGF-
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I, has a role in protein metabolism, cellular differentiation, cell proliferation, and somatic
growth. Based on the findings of the current study, it appears that seaweed polysaccharide
extraction may increase the expression of growth-related genes at the mRNA level, hence
boosting growth capacity indirectly. Other studies examining the impact of employing
different carbon sources for boosting IGF-I and IGF-II gene expression revealed similar
outcomes [123]. Furthermore, utilizing the green microalga, T. suecica, and A. platensis
nanoparticles as the supplementary feeds for L. vannamei greatly increased the expression
of both genes and improved growth [22,100].

5. Conclusions

Globally, shrimp diets have expanded by using several strategies to deal with the devel-
opment in the farming of the Pacific whiteleg shrimp L. vannamei. Despite the importance of
feed additives for L. vannamei, little is known about the application of polysaccharides pre-
pared from brown seaweeds in the L. vannamei feed additive industry. In the current work,
the inclusion rate of 2 g kg–1 of polysaccharides, a high-value active molecule prepared from
brown seaweed Sargassum dentifolium, as dietary additive administration enhances final
weight gain and survival rate of the Pacific Whiteleg shrimp, L. vannamei, while incorpora-
tion level of 3 g kg–1 reduces the abundance of pathogenic microbes, moreover, enhances
the immunity and stress-related gene expressions of L. vannamei. However, further studies
should be conducted to maximize the benefits of polysaccharides prepared from seaweed
species as additive administrations to the Pacific whiteleg shrimp L. vannamei.
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