

Systematic Review Severe Acute Respiratory Syndrome and Particulate Matter Exposure: A Systematic Review

Sanjiti Podury ^{1,†}, Sophia Kwon ^{1,†}, Urooj Javed ¹, Muhammad S. Farooqi ¹, Yiwei Li ², Mengling Liu ^{2,3}, Gabriele Grunig ³ and Anna Nolan ^{1,3,*}

- ¹ Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, New York University Grossman School of Medicine (NYUGSOM), New York, NY 10016, USA
- ² Department of Population Health, Division of Biostatistics, New York University Grossman School of Medicine (NYUGSoM), New York, NY 10016, USA
- ³ Department of Medicine, Division of Environmental Medicine, New York University Grossman School of Medicine (NYUGSoM), New York, NY 10016, USA
- * Correspondence: anna.nolan@nyulangone.org
- † These authors contributed equally to this work.

Abstract: Background: Particulate matter (PM) exposure is responsible for seven million deaths annually and has been implicated in the pathogenesis of respiratory infections such as severe acute respiratory syndrome (SARS). Understanding modifiable risk factors of high mortality, resource burdensome C19 and exposure risks such as PM is key to mitigating their devastating effects. This systematic review focuses on the literature available, identifying the spatial and temporal variation in the role of quantified PM exposure in SARS disease outcome and planning our future experimental studies. Methods: The systematic review utilized keywords adhered to the PRISMA guidelines. We included original human research studies in English. Results: Initial search yielded N = 906, application of eligibility criteria yielded N = 46. Upon analysis of risk of bias N = 41 demonstrated high risk. Studies found a positive association between elevated PM_{2.5}, PM₁₀ and SARS-related outcomes. A geographic and temporal variation in both PM and C19's role was observed. Conclusion: C19 is a high mortality and resource intensive disease which devastated the globe. PM exposure is also a global health crisis. Our systematic review focuses on the intersection of this impactful disease-exposure dyad and understanding the role of PM is important in the development of interventions to prevent future spread of viral infections.

Keywords: particulate matter; COVID-19; SARS; systematic review; mortality; incidence; prevalence; morbidity

1. Introduction

Coronaviruses (CoV) are a common cause of respiratory disease. However, at least two novel CoVs have plagued humanity [1,2]. In 2003, the severe acute respiratory syndrome-CoV-1 (SARS-CoV-1) virus caused SARS, which affected over 8000 people worldwide and caused the death of over 700. In 2019, the latest novel CoV was identified in Wuhan, China, and was named SARS-CoV-2 [1]. By early 2020 the spread of SARS-CoV-2 was declared a pandemic [3]. Coronavirus disease 2019 (COVID-19; C19) was the official name given by the World Health Organization (WHO) to the disease caused by SARS-CoV-2 [3]. In addition, to the clinical signs and symptoms of cough and fever, radiographic findings in severe cases include lung infiltrates that require hospitalization. The COVID-19 pandemic is the third leading cause of death since 2020, and continues to threaten the health and well-being of humanity [4]. Therefore, it is imperative that we further evaluate exacerbating factors such as particulate matter (PM) that may allow us to mitigate morbidity and mortality.

Elevated PM exposure is associated with cancer, obstructive airway disease, ischemic heart disease, stroke, and respiratory infections resulting in 7-million deaths annually [5–7]. PM-induced pulmonary inflammation causes acute exacerbation of cardiovascular disease

Citation: Podury, S.; Kwon, S.; Javed, U.; Farooqi, M.S.; Li, Y.; Liu, M.; Grunig, G.; Nolan, A. Severe Acute Respiratory Syndrome and Particulate Matter Exposure: A Systematic Review. *Life* **2023**, *13*, 538. https://doi.org/10.3390/life13020538

Academic Editor: Daniele Focosi

Received: 12 January 2023 Revised: 30 January 2023 Accepted: 3 February 2023 Published: 15 February 2023 Corrected: 13 September 2023

Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). due to hypercoagulability [8]. PM_{2.5} is known to activate tumor-associated signaling pathways by microRNA dysregulation, DNA methylation and by increasing the levels of inflammatory cells, cytokines. Altered macrophage-mediated inflammatory response to viral infections due to PM exposure has been hypothesized to play a role in these adverse outcomes [9]. Exposure to PM₁₀ increases RNA viral replication and worsens infections in human lung epithelial cells [10]. PM is a known carrier for several viruses and increased the transportation of avian influenza virus H5N1 across long distances during dust storms in Beijing, China [11]. A $10 \,\mu g/m^3$ increase in PM_{2.5} concentration per day was associated with a significant rise in the incidence of measles [12]. A high incidence of influenza, hospitalization with culture negative pneumonia and respiratory syncytial virus spread in children was observed with increased PM exposure [13–15]. These PM-associated end-organ effects are biologically plausible mediators of C19-related morbidity. Transmissibility, severity, and mortality of COVID infection was variable throughout the pandemic, likely from innate, genetic, socioeconomic, and environmental contributors such as PM. With growing exposures due to wildfires, dust storms, and domestic cooking, it is important to further understand the role of PM in susceptibility, severity, and mortality due to viral respiratory illnesses like SARS [16–18].

Prior reviews investigating SARS and PM have focused on acute vs. chronic duration of exposure to air pollution, including PM and other ambient exposures such as NO₂, SO₂, O₃ [19] and PM as a transmitting vector [20]. Several studies have implicated PM as a severity risk of C19 [21–24]. Specifically, mortality doubled in regions with higher pollution compared to less polluted areas despite similar ICU admission rates [25]. Each 1 ng/m³ increase in PM was associated with 8% higher C19 confounder adjusted deaths [22,23]. These reviews were limited in terms of quantifying exposure levels of PM, lack of analysis of spatial/temporal variation and inadequate assessment of bias. Our systematic review focuses on the literature available, identifying the spatial, temporal variation and thereby laying the foundation for planning our future experimental studies that will quantify the adverse effects of PM exposure in SARS disease susceptibility, severity and mortality.

2. Materials and Methods

Details of our systematic review were registered with PROSPERO (CRD42022316121; https://www.crd.york.ac.uk/prospero/#myprospero, accessed on 15 April 2022). A systematic review of the literature was performed adhering to the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) guidelines (Figure 1) [26]. Our Population, Exposure, Outcome (PEO) question was "In the adult population (P) with diagnosed SARS infection we performed a systematic review to identify the role of quantifiable particulate matter exposure (E) in disease susceptibility, severity and mortality (O)".

2.1. Search Terms

A PUBMED Medical Subject Headings (MeSH) search was performed and the following entry terms were identified: (Severe Acute Respiratory Syndrome Virus OR SARS-Related Coronavirus OR SARS Related Coronavirus OR SARS-CoV OR Urbani SARS-Associated Coronavirus OR Urbani SARS Associated Coronavirus OR SARS Coronavirus OR Severe acute respiratory syndrome-related coronavirus OR Severe acute respiratory syndrome related coronavirus OR SARS-Associated Coronavirus OR SARS Associated Coronavirus) and (Ultrafine Fibers OR Fiber, Ultrafine OR Airborne Particulate Matter OR Air Pollutants, Particulate OR Ambient Particulate Matter OR Ultrafine Particulate Matter OR Ultrafine Particles OR Ultrafine Particle).

We then searched for articles that addressed how quantifiable particulate matter exposure is associated with the risk, severity and mortality due to SARS infection.

For the purposes of this review we define PM as a mixture of solid particles and liquid droplets found in the air [27]. Severe acute respiratory syndrome is a viral respiratory illness caused by coronaviruses first detected in 2003. This review focuses on both SARS-CoV-1 and SARS-CoV-2.

PRISMA 2020 flow diagram for new systematic reviews which included searches of databases, registers and other sources

From: Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. E 2021;372:n71. doi: 10.1136/bmj.n71. For more information, visit. http://www.prisma-statement.org/

Figure 1. Study Design. Per Preferred reporting Items for systematic reviews and Meta-Analyses (PRISMA) Guidelines. PRISMA is an evidence-based minimum set of items for reporting in systematic reviews and meta-analyses [26]. http://www.prisma-statement.org/, accessed on 7 January 2023.

Articles were selected based on the following inclusion criteria: (1) adult population; (2) articles written in English; (3) articles should include the concentration of the PM exposure in association with incidence, prevalence, severity and mortality due to SARS (SARS-CoV-1 and SARS-CoV-2); (4) studies after November 2002.

Articles were excluded if they: (1) were not in English language; (2) did not quantify the concentration of PM exposure; (3) involved any non-human subjects/in vitro work/cell studies/immunohistochemistry; (4) were conducted on pediatric population; (5) focused on gaseous pollutants; or (6) were not original research. Two independent researchers conducted the literature search and determined studies that met the inclusion/exclusion criteria. A third investigator resolved disagreements.

2.2. Quality Assessment and Risk of Bias (RoB)

The overall RoB of the Cohort studies included in this review was determined with the approach described by Lee et al., 2020 (Figure 2A,B) [28]. We assessed three key domains of interest in the studies:

2.2.1. Assessment of Outcomes

Studies that performed Nucleic Acid Amplification Test (NAAT) using reversetranscription polymerase chain reaction (RT-PCR) to detect SARS-CoV-2 RNA from the upper respiratory tract, physician diagnosis or other clinical tests, were categorized as low risk for detection bias. For studies with unknown methods of diagnosis, we categorized them as unclear risk of detection bias.

2.2.2. Adjustment for Confounding

Studies that adjusted for age, gender, individual levels of exposure or any other relevant covariates were categorized as low risk for this domain. Studies that did not adjust results for at least one covariate were categorized as high risk.

2.2.3. Control/Dose-Response Comparator Was Used for Comparative Analysis

Studies that included a control group were categorized as low risk for this domain, whereas those that did not were categorized as high risk. The three key domains were assessed for overall risk of bias judgment. Studies were categorized as low overall risk of bias if it was at low risk for all key domains, and high if any of the domains were high. For

the time series studies only two domains, i.e., assessment of outcomes and adjustment for confounding were considered to analyze the risk of bias.

2.3. Data Management/Extraction

Based on the inclusion and exclusion criteria, we screened and selected manuscripts (EndNote[™] 20.1). Each article was screened for study design, patient characteristics, sample size, tools used, incidence, severity and mortality of SARS in association with quantifiable PM exposure. Results from each database search were filtered for human subjects, English language, publication date (after November 2002) and imported into EndNote. The references were then screened for duplicates. Only original research papers were then reviewed for title, abstract and full text to ascertain eligibility. The references cited in the relevant articles were also examined. All results were screened by SP and MSF and further independently evaluated by AN. Disagreements were resolved by consensus (see Supplementary Tables S1–S3).

2.4. Data Synthesis (GraphPad Prism 9; Ver 9.2.0)

Data was generated from sources using our review PEO question and summarized into tables and plots (Figure 3). Qualitative data synthesis was performed for studies, using thematic analysis that included three stages: (i). identifying information about the selected studies' methodology and findings; (ii). organizing them into subheadings and descriptive categories; and (iii). developing these categories into analytic themes [29].

3. Results/Synthesis

3.1. Literature Search

A total of 906 studies (334 PubMed and 572 Embase) were identified after filtering for relevant studies (Figure 1, Supplementary Tables S1 and S2). After removing duplicates, N = 732 were assessed for inclusion (abstract and title review). Finally, 46 original research articles were considered eligible [25,30–74] Table 1. Data from screening and extraction is available (Supplementary Tables S1–S3).

Figure 2. (**A**) Risk of Bias Assessment. Cohort Studies were evaluated in three main domains, i.e., outcome assessment, risk of confounding and presence of control dose-response comparator. (**B**) Risk of bias assessment. Time series studies, which were evaluated in two domains, i.e., outcome assessment, risk of confounding. Studies were color coded red or green for high vs. low risk of bias. Studies were categorized as low overall risk of bias if they were at low risk (green) for all key domains and high if any of the domains were high (red). RoB of * Meo [59]; [†] Meo [60]; [‡] Meo [61]; [§] Meo [68]; [∥] Meo [45]; [¶] Meo [62].

Figure 3. Overview of Data Synthesis. (**A**) Correlation coefficients were estimate for: $PM_{2.5 \text{ and } 10}$ and C19 Incidence and mortality for * Low green space countries and [†] High green space countries: Meo [62]; $PM_{2.5 \text{ and } 10}$ and C19 Incidence in Akan, Li, Sahoo and Fattorini, Sangkham; $PM_{2.5 \text{ and } 10}$ and C19 Prevalence in Zoran, Dragone; $PM_{2.5}$ and C19 Incidence in Meo [§] [68], Meo ^{||} [59], Meo ^Δ [60]; Bolano Ortiz; $PM_{2.5}$ and C19 Prevalence in Semczuk; $PM_{2.5}$ and C19 Mortality in Beig; $PM_{2.5}$ and C19 Incidence, Prevalence, Mortality in Meo [¶] [61]; $PM_{2.5}$ and C19 spread in Rovetta; $PM_{2.5}$ and C19 Morbidity, Prevalence in Frontera; PM_{10} and C19 Incidence in Maatoug; PM10 and Mortality in Ghanim; PM_{10} and C19 Standardized (age) mortality ratio in Dettori. [‡] For studies where more than one city was analyzed, the highest correlation coefficient was plotted. Data grouped by region. (**B**) Relative risk of ^a mortality from C19 due to PM exposure and ^b Incidence of C19 due to PM exposure. Studies are grouped based on regions. (**C**) Odds ratios of ^α Hospitalization from C19 due to PM exposure and ^β Incidence of C19 due to PM exposure. Additional Information provided for relevant articles within each panel description.

Risk of bias assessment was performed for outcome, confounders and control group assessment. Of the three domains assessed for cohort studies, N = 2 studies were high risk for outcome assessment, N = 24 were high risk due to lack of adjustment for confounders and N = 39 were high risk due to lack of a control group in their studies. Overall, N = 3 studies had low risk of bias, whereas N = 40 had high risk of bias

For the time series studies of the two domains assessed (outcome and confounders), N = 3 were low risk for outcome assessment and N = 1 was considered high risk for due to lack of adjustment for confounders. Overall, N = 2 were low risk for bias and N = 1 had high risk of bias.

Author [Ref.]		Country	Exposure/ Design	Study Size/Time Period	Specimen/ Assay	End Points	Additional Findings	
1		Kan [30]	China	PM ₁₀ Cohort Study	Beijing/N = 37/ 25 April–31 May 2003	RT-PCR	Mortality	 Mortality (RR) significant for PM₁₀ and NO₂ No association was seen with SO₂
2		Li [31]	China	PM _{2.5 and 10} Time series Study	Wuhan and Xiaogan 26 January–29 February 2020	RT-PCR	Incidence	 Correlation between the PM_{2.5 and 10} and incidencewas seen in Wuhan (R² = 0.105, 0.174, respectively) Ambient air pollutants showed a positive association with incidence.
3		Lu [32]	China	PM _{2.5} Cohort study	41 cities/ N = 22,970/ 20 January-29 February 2020	RT-PCR	Incidence	 Incidence and ambient PM_{2.5} correlation were stronger for cities inside Hubei than those outside (highest RR at lag 0–14)
4	ASIA	Sahoo [33]	India	PM _{2.5 and 10} Time series study	32 states and union territories/N = 21,700/ 30 January-24 April 2020	RT-PCR	Incidence	 10 μg/m³ increase in PM_{2.5and10} resulted in 2.21% (95%CI: 1.13–3.29), 2.67% (95% CI: 0.33–5.01), increase in daily counts of cases, respectively.
5		Sangkham [34]	Thailand	PM _{2.5, and 10} Cohort Study	Bangkok City 30 March 2020	RT-PCR	Incidence	• Significant negative association between PM and C19 cases $(PM_{10} rs = -0.506, PM_{2.5} rs = -0.460)$
6		Shao [35]	China	PM _{2.5 and 10} Cohort Study	Wuhan City 23 January–7 April 2020	RT-PCR	Mortality	 Significant positive correlation between PM_{2.5} and the number of deaths per day.
7		Yao [36]	China	PM _{2.5 and 10} Cohort Study	49 cities February 2020	RT-PCR	Case fatality rate (CFR)	 Positive associations between PM pollution and CFR around Hubei Province. Every 10 μg/m³ increase in PM_{2.5 and} 10, the C19 CFR increased by 0.24% (0.01–0.48%) and 0.26% (0.00–0.51%), respectively.
8		Beig [37]	India	PM _{2.5} Cohort Study	6 Cities May 2022	RT-PCR	Mortality	 PM_{2.5} baseline level and mortality /0.1 million population indicates significant correlation (r = 0.84 with <i>p</i>-value < 0.05) at 90% CI

Table 1. Study Characteristics [30–75].

	Stud Author [y Ref.]	Country	Exposure/ Design	Study Size/Time Period	Specimen/ Assay	End Points	Additional Findings
9	ASIA	Laxmipriya [38]	India	PM _{2.5 and 10} Cohort study	11 stations in Chennai city/July 2020	RT-PCR	Incidence	 Areas with PM concentrations ranging from (38 to 90 mg/m³) reported with fewer positive cases (<5 cases). Areas covering above 91 to 195 mg/m³) had a positive association.
10		Frontera [25]	Italy	PM _{2.5} Cohort study	21 territories/ March 2020	RT-PCR	Prevalence, ICU admissions, Mortality	 Positive Correlation between mean PM_{2.5} and total number of hospitalized patients (r = 0.62 p = 0.008), ICU admissions (r = 0.53 p = 0.005), total cases (r = 0.64 p = 0.007) and deaths r = 0.53 p = 0.032
11	EUROPE	Bianconii [39]	Italy	PM _{2.5 and 10} Cohort Study	20 provinces/ N = 105,792 31 March 2020	RT-PCR	Incidence proportion and mortality	 PM_{2.5} and PM₁₀ were associated with: Incidence proportion irrespective of confounders (\$\mathbb{B} = 0.71\$, p = 0.003 and \$\mathbb{B} = 0.61\$, p = 0.031\$, respectively). Death rates across Italian regions PM_{2.5}; \$\mathbb{B} = 0.68\$, p = 0.004 PM₁₀; \$\mathbb{B} = 0.61\$, p = 0.029\$)
12		Dragone [40]	Italy	PM _{2.5 and 10} Cohort study	Lombard region/ N = 42,283/ 1 February-31 March 2020	RT-PCR	Prevalence	• Positive correlation between spatial distribution of Prevalence with PM_{10} (r = 0.54) and $PM_{2.5}$ (r = 0.51)
13		Fattorini [41]	Italy	PM _{2.5 and 10} Cohort study	N = 18,000 February–April 2020	RT-PCR	Incidence	• Statistical correlation between cases and the air quality parameters in Italy PM_{10} r = 0.5168 $p < 0.01$, $PM_{2.5}$ r = 0.5827 $p < 0.01$.
14		Rovetta [42]	Italy	PM _{2.5 and 10} Cohort study	Lombardy; N = 82,992/ February–March 2020	Unclear	Mortality rate	• A statistically significant correlation between SARS-CoV-2 spread and $PM_{2.5}$ in Lombardy during the first two weeks of March, (Correlation coefficient $\rho = 0.56$)

Study Size/Time Study Exposure/ Specimen/ **End Points** Country Additional Findings Author [Ref.] Design Period Assay Vienna/ PM₁₀ levels positively correlated . PM_{10} 15 Moshammer [43] Austria N = 1665/RT-PCR Incidence (r = 0.014) with the risk Time Series study March–April 2020 of infection PM_{10} (*p* = 0.001, 95% CI: ٠ 0.059–0.234) was independently N = 60,359,546/Standardized PM_{10} 16 Dettori [44] Italy RT-PCR associated with the case status. Cohort Study Mortality Ratio June 2020 (r = 0.147 p-value = 0.001 95% CI 0.059-0.234) Cases significantly augmented ٠ with a rise in the levels of PM_{2.5} $(\rho = 0.176, p < 0.001).$ Incidence and $PM_{2.5}$ Cases United Kingdom 17 Meo [45] RT-PCR Statistically insignificant 24 February-2 November 2020 ٠ Cohort Study Mortality relationship between PM2.5 and mortality ($\rho = 0.029, p = 0.270$) ٠ PM_{2.5} levels were significantly associated with an increase in PM_{2.5} Cohort UK biobank; N = 15,156/16 RT-PCR SARS-CoV-2 positive testing 18 Scalsky [46] United Kingdom Incidence EUROPE March 2020–16 March 2021 likelihood (OR = 1.063, 95%) CI = 1.04 - 1.09) Air pollution levels were not ٠ Catalonia/ PM_{2.5} Cohort Study statistically significantly 19 RT-PCR Incidence Kogevinas [47] Spain N = 9605/June-Novemberassociated with SARS-CoV-2 2020 infection. PM₁₀ showed the highest effects ٠ estimates (1.65, 95% CI 1.32-2.06) on severity and (2.37, 95% CI 1.71-3.32) mortality. Catalan hospitals C19 severity and PM_{10} An increase of 1 μ g/m³ in PM₁₀ ٠ RT-PCR 20 Marques [48] Spain N = 2112Cohort Study mortality causes an increase in 3.06% (95% April-June 2020 CI 1.11-4.25%) of patients suffering severe disease and an increase of 2.68% (95% CI 0.53-5.58%) of deaths. PM_{2.5} was associated with a 5.1% ٠ Varese; N = 62,848 increase in the incidence (95% CI PM_{2.5 and 10} Cohort Study 21 25 February 2020–13 RT-PCR Incidence 2.7% to 7.5%), corresponding to Veronesi [49] Italy March 2021 294 additional cases per 100,000 person-years.

	Stud Author	ly [Ref.]	Country	Exposure/ Design	Study Size/Time Period	Specimen/ Assay	End Points	Additional Findings
22		Zoran [50]	Spain	PM _{2.5 and 10} Cohort Study	6.61 million Inhabitants January 2020–July 2021	RT-PCR	Incidence, Prevalence and Mortality	 Statistically significant correlation between PM_{2.5} and total cases (r = 0.20 <i>p</i> < 0.05). Significant correlation between PM₁₀ and total cases (r = 0.27 <i>p</i> < 0.05) and daily new cases (r = 0.14 <i>p</i> < 0.05)
23	EUROPE	Semczuk–Kaczmarek [51]	Poland	PM _{2.5 and 10} Cohort Study	N = 18,016 4 March–15 May 2020	RT-PCR	Mortality and Morbidity	 Statistically significant correlation between cases (per 100,000 population) and annual average concentration of PM_{2.5} (R² = 0.367, p = 0.016), PM₁₀ (R² = 0.415, p = 0.009). Long-term exposure to air pollution, especially PM_{2.5} and 10, seems to play an essential role in prevalence and mortality
24		Di Ciaula [52]	Italy	PM ₁₀ Cohort Study	10 cities; N = 147 March–April 2020	RT-PCR	Mortality	• PM ₁₀ exposure has no significant effect on mortality
25		Czwojdzinska [53]	Poland	PM _{2.5 and 10} Cohort study	N = 38,411,148 4 March–18 November 2020	RT-PCR	Incidence and mortality	Incidence independent of PM concentration
26	NSA	Berg [54]	USA	PM _{2.5} Cohort study	Colorado N = 34,439 1 March–31 August 2020	RT-PCR	Incidence, hospitalization and mortality	 1 µg/m³ increase in long-term PM_{2.5} concentrations is associated with a statistically significant 26% (RR: 1.26, 95% CI: 1.06–1.48) increase in the relative risk of hospitalizations, a 34% increase in mortality RR: 1.34, 95% CI: 1.02–1.77. Positive, insignificant increase in the RR of infections (1.10, 95% CI: 0.98–1.24).
27		Bozack [55]	USA	PM _{2.5} Cohort Study	Seven NYC hospitals N = 6542 8 March-30 August 2020	RT-PCR	Mortality, ICU admission, Intubation	 PM_{2.5} exposure was not associated with the risk of intubation and mechanical ventilation (PM_{2.5}: RR, 1.05 [95% CI: 0.91–1.20] per 1-µg/m³ increase.

	Stud Author	ly [Ref.]	Country	Exposure/ Design	Study Size/Time Period	Specimen/ Assay	End Points	Additional Findings
28		Fang [56]	USA	3096 counties; PM _{2.5} Cohort Study	Cumulative Cases: 1st [May: 20,764] and 2nd [September: 34,596] surge in 2020	RT-PCR	Incidence	 1 µg/m³ increase in annual average concentration of PM_{2.5} was associated with 7.60% increase in the cumulative risk, 95% CI between 3.82% and 11.51%.
29		Kiser [57]	USA	Nevada/PM _{2.5} / Cohort Study	Regional hospital, Reno/15 May–20 October 2020	RT-PCR	Incidence	 10 μg/m³ increase in the 7-day average PM_{2.5} concentration was associated with a 6.3% relative increase in the SARS-CoV-2 test positivity rate, with a 95% CI of 2.5 to 10.3%.
30	SA	Mendy [58]	USA	PM _{2.5} /Cohort study	Cincinnati/ N = 14,783/ 13 March-30 September 2020	RT-PCR	Disease Severity	 1 μg/m³ increase in 10-year annual average PM_{2.5} was associated with 18% higher hospitalization and 14% higher hospitalization
31	C	Meo [59]	USA	PM _{2.5} /Cohort study	5 regions; N = 1192 13 March–31 December 2020	RT-PCR	Incidence and Mortality	 For every 1 unit increase in PM_{2.5}, the # of C19 infections significantly increased by 0.1%. PM_{2.5} and mortality were not statistically significant (ρ = 0.029 p = 0.270)
32		Meo [60]	USA	PM _{2.5} /Cohort Study	California 20 March–16 September 2020	RT-PCR	Incidence, Prevalence and mortality	 Significant positive correlation environmental pollutants PM_{2.5} and the number of daily cases PM_{2.5} μm and daily deaths had no relationship (r = -0.015, p = 0.842).
33		Meo [61]	USA	California /PM _{2.5} / Cohort study	California/19 March-15 August 2020	RT-PCR	Incidence and mortality	• The rho-coefficient relation showed a significantly increased number of new cases 0.403 (p value < 0.001) and deaths 0.17 (p value < 0.001) with increasing levels of PM _{2.5}

	Stu Author	dy [Ref.]	Country	Exposure/ Design	Study Size/Time Period	Specimen/ Assay	End Points	Additional Findings
34		Meo [62]	USA	PM2.5 Cohort study	17 countries 25 January 2020–11 July 2021	RT-PCR	Incidence and Mortality	 PM_{2.5 and 10}, were significantly decreased (<i>p</i> < 0.0001) in environmentally highly green space countries compared to less-green countries. SARS-CoV-2- 2 cases and deaths were also significantly decreased in highly green countries compared to less-green countries.
35	USA	Adhikari [63]	USA	PM _{2.5} Cohort study	New York/ N = 42,023 cases/April 2020	RT-PCR	Incidence Rate Ratio, Mortality	 Significant negative association between PM_{2.5} and new daily confirmed cases. One-unit increase in average PM_{2.5} (μg/m³) was associated with a 33.11% (95% CI: 31.04–35.22) decrease in daily new cases.
36		Gujral [64]	USA	PM _{2.5} Cohort study	California January–July 2020	RT-PCR	Incidence	• Exposure to particulates, PM _{2.5 and 10} , depicts a negative Association.
37	AUSTRALIA	Cortes-Ramirez [65]	Australia	PM ₁₀ Cohort study	New South Wales/ 2 March–2 August 2020	RT-PCR	Incidence	 Higher wildfire burned areas were associated with higher incidence in both the random effects and spatial models after adjustment for sociodemographic factors (posterior mean = 1.32 (99% CI: 1.05-1.67) and 1.31 (99% CI: 1.03-1.65)). No association between the average PM₁₀ level and incidence was found.
38	EAST	Maatoug [66]	Saudi Arabia	PM ₁₀ Cohort study	Riyadh, Jeddah, Makkah/ N = 354,813 9 March–9 November 2020	RT-PCR	Incidence	 Short-term exposure to PM₁₀, NO₂, O₃ positively correlated with daily cases.
39	MIDDLE	Hadei [67]	Iran	PM _{2.5 and 10} Cohort study	N = 114,964 February-January 2021	RT-PCR	Mortality and morbidity	• Meta-analysis estimated that the RR for mortality, due to PM _{2.5} exposure was 1.06 (95% CI: 0.99, 1.13)

	Stuc Author	ly [Ref.]	Country	Exposure/ Design	Study Size/Time Period	Specimen/ Assay	End Points	Additional Findings
40		Meo [68]	Saudi Arabia	PM _{2.5} Cohort Study	Riyadh 20 February–2 April 2021	RT-PCR	Incidence and mortality	 Increased PM_{2.5}, NO₂, CO, O₃ was associated with a significant increase in cases. Association with mortality was insignificant
41	ST	Ghanim [69]	Saudi Arabia	PM ₁₀ Cohort study	13 regions; N = 194,255 June 2020	RT-PCR	Incidence and Mortality	• Positive correlation between mean PM_{10} and total number of cases $r = 0.178 p = 0.623$
42	MIDDLE EAS	Akan [70]	Turkey	PM _{2.5 and 10} Cohort study	15 Provinces N = 42,618,331 8 February–8 May 2021	RT-PCR	Incidence	• PM _{2.5 and 10} displayed statistically significant negative associations with the number of cases. The spearman correlation coefficients for PM ₁₀ ranged between -0.02 and -0.62 and -0.03 to -0.34 for PM _{2.5}
43		Norouzi [71]	Iran	PM _{2.5} Cohort study	12 cities/ N = 73,080/ 1 March 2019–31 August 2020	RT-PCR	Incidence	 Increased PM_{2.5} was not a predictor of mortality. PM₁₀ excluded from the models due to an insignificant association with mortality.
44	IERICA	Bolano-Ortiz [72]	Latin America and Caribbean	PM _{2.5 and 10} Cohort study	Ten cities/N = 56.95 million/ 1 April–31 May 2020	Unknown	Incidence rate and mortality	 Negative correlation between total cases and PM₁₀ (-0.44; <i>p</i> < 0.05;) in Mexico City and PM_{2.5} (-0.70; <i>p</i> < 0.01) in Bogota New and total cases showed the highest positive correlations with particulate matter PM₁₀ (Sao Paulo and Santiago (0.35; <i>p</i> < 0.01; and Buenos Aires 0.54; <i>p</i> < 0.01)
45	LATIN AM	Lopez-Feldman [73]	Mexico	PM _{2.5} Cohort study	Residents of (Hidalgo, and Mexico City) 7 October 2020	RT-PCR	Mortality	• Three models used to analyze the relationship between long-term exposure and mortality. An average marginal effect of 0.0076 was noted.
46		Salgado [74]	Chile	PM _{2.5 and 10} Cohort Study	188 communes/ N = 4574 May 2021	RT-PCR	Incidence and mortality	• For each microgram per cubic meter increase, the incidence rate increased by 1.3% for PM _{2.5} and 0.9% for PM ₁₀ . No statistically significant relationship with mortality rate
	Subdivided by: Positive association Negative association Unclear/Equivocal association Late Pandemic SARS-1.							

3.2. Study Characteristics

As the C19 pandemic swept the globe from 31 December 2019, understanding the phenotype of both the disease and associated risk factors of disease severity has been challenging. Cohort studies were the predominant type (N = 43), while N = 3 were timeseries studies [31,33,43]. The association of PM in the context of C19 surges, geographic location, and type of SARS infection are also of great interest and were further examined. In the context of these categories we will also discuss how PM_{2.5} and PM₁₀ have played a role in SARS severity and spread.

3.3. Coronaviruses Have Been the Cause of Several Outbreaks

SARS-1 originated in Guangdong, China in 2003, and in six months had spread to more than two dozen countries resulting in at least 774 deaths [75]. Due to limited transmission, there are few studies that focus on this pathogen. Only one study that analyzed and noted positive association between PM and SARS-1 infection was noted by Kan et al., who found that for every 10 μ g/m³ increase in PM₁₀ the Relative risk (RR) of daily SARS mortality was 1.06 (1.00–1.12) [30]. There were few variants or recurrence of SARS-1 [76]. In contrast, the SARS-CoV-2 virus has several variants and lineages, and been responsible for at least 6 million deaths worldwide [77,78].

3.4. Temporal Relationship of PM and SARS

A decline in the incidence, mortality, and hospitalization was observed during the later pandemic period, from approximately late April–June 2020. A temporal analysis in Beijing from 25 April–31 May 2020 showed a declining trend in daily mortality count [30]. While this could be attributed to the implementation of more stringent mitigation measures, there are several other factors that may be relevant [79]. To understand the role of PM in the temporal variegation of outcomes, investigators have examined the impact of PM during the early and later phase of the pandemic. Dragone et al. noted that PM levels exceeded the daily limit during two early pandemic periods (16–25 February and 17–20 March 2020) in Italy. During this period, areas with the highest levels of ambient PM also had the highest number of infected populations [40]. Similarly, Li et al. noted a positive association between C19 cases and $PM_{2.5}$ through a risks study using days with the highest and lowest incidence numbers in February [31]. Analysis investigating C19 cases in January–April 2020 in India showed that a 10 μ g/m³ increase in PM_{2.5} and PM₁₀ resulted in 2.21% (95% CI:1.13–3.29), 2.67% (95% CI: 0.33–5.01), increase in daily counts of C19 infected cases, respectively [33]. The early pandemic was the focus of 14/46 studies. PM was positively associated with C19 for a number of studies in the following aspects: incidence (N = 6); prevalence (N = 2); morbidity (N = 1) and mortality (N = 6). Negative association was observed with mortality (N = 1) and incidence (N = 1), and equivocal results were reported by N = 1 [34,52,63]. Of the 32 studies from the later pandemic period, PM was positively associated with C19 based on: incidence (N = 17); prevalence (N = 4); morbidity (N = 6) and mortality (N = 18). Negative association with incidence was observed in N = 2. Equivocal results reported by N = 4 [72].

3.5. Understanding Geographic Epidemiology Based on Region-Based Outcomes

Few, if any, areas of the globe have been left unaffected by the C19 pandemic. Meo et al. studied 17 countries across the globe and noted a significant positive association between PM and C19 incidence [45]. Certain areas like Malawi and Indonesia have been disproportionately impacted, and reported the highest case fatality rates on 8/26/22 [80].

Europe was the setting of (N = 16) studies [25,39–53]. A statistically significant correlation between PM_{2.5} and C19 cases was observed in Lombardy, Italy by Rovetta et al. [42]. With 1 unit increase in PM_{2.5} levels, the number of SARS-CoV-2 infections significantly increased by 0.1% in London [45]. Similarly, Scalsky et al. observed that PM_{2.5} levels recorded in 2010 were significantly associated with an increased SARS-CoV-2 positive testing likelihood (OR = 1.063, 95% CI 1.04–1.09) [46]. Overall, PM was positively associated value of the statement of

ated with C19: mortality (N = 9); incidence (N = 6); prevalence (N = 4); morbidity (N = 2). Equivocal results were reported by (N = 2) [52,53].

Similarly, of the nine studies dedicated to Asia [30–38], a significant positive association was seen between PM_{2.5} and C19 cases in Wuhan ($R^2 = 0.13$, p < 0.05) and Xiagan ($R^2 = 0.223$, p < 0.01) [31]. In Hubei, a 10-µg/m³ rise in levels of PM_{2.5} (lag 0–14 was positively associated with RR of 1.050 (95% CI: 1.028–1.073) daily newly confirmed cases [32]. Overall, a positive association was observed between PM and C19 incidence (N = 4); mortality (N = 3); prevalence (N = 1).

Six studies with a focus on the Middle East were identified [66–71]. In a study conducted in Riyadh, Jeddah and Makkah, PM_{10} positively correlated to daily cases of C19 (Pearson correlation coefficients were 0.68, 0.54, 0.38, respectively) [66]. Similar observations were made in three Iranian cities where exposure to $PM_{2.5}$ for several days showed significant association to confirmed cases [67]. Increase in $PM_{2.5}$ due to a sandstorm in Saudi Arabia was associated with a significant increase in the number of SARS-CoV-2 cases (Spearman's correlation coefficient $\rho = 0.944$ (<0.0001)) [68].

In the U.S, data from seven New York City (NYC) hospitals concluded that higher and long-term exposure to PM_{2.5} was associated with an increased risk of mortality (RR 1.11, 95%CI: 1.02–1.21) and ICU admission (RR 1.13, 95%CI: 1.00–1.28) per 1-µg/m³ increase in PM_{2.5} [55]. Similarly, a study from five regions noted that the number of cases significantly augmented with a rise in the levels of PM_{2.5} ($\rho = 0.176$, p < 0.001). PM was positively associated with C19: incidence rate (N = 7); mortality (N = 4) and prevalence (N = 1). A negative association with mortality was observed by N = 2 [63,64].

Similarly, as in 2/3 Latin American countries, PM and C19 incidence and mortality had a positive association. In contrast, one study reported equivocal results [72]. Specifically, an increase of 1 μ g/m³ in PM_{2.5} increased the mortality risk by approximately 7.4% in Mexico City metropolitan area in October 2020 [73].

3.6. Aerodynamic Diameter of PM and SARS (PM_{2.5} vs. PM₁₀)

PM is a heterogeneous mixture of solid particles and liquid droplets found in the air. It is commonly grouped by diameter into fine $PM_{2.5}$ (<2.5 mm) and coarse PM_{10} (<10 mm). $PM_{2.5}$ is more likely to travel and deposit deeper in the lungs like the alveolus, whereas PM_{10} can deposit on the surfaces of larger airways inducing inflammation. Ambient air pollutants are risk factors for cardiopulmonary diseases and responsible for over 6 million annual deaths.

The role of PM_{2.5} was assessed by 19/46 studies. PM_{2.5} was positively associated with C19: incidence (N = 11); mortality (N = 6); morbidity (N = 5); and prevalence (N = 1). Negative association with prevalence was seen in only one study [63].

 PM_{10} was evaluated in eight studies, and it was positively associated with C19 incidence (N = 5); prevalence (N = 1); and mortality (N = 1). Finally, PM_{10} and $PM_{2.5}$ were evaluated by N = 19 studies. A positive association with C19 incidence (N = 9); mortality (N = 5) was seen. Negative association was seen in N = 2 and equivocal results were identified in N = 1.

4. Discussion

Our systematic review identified the role of PM to be important in the incidence, mortality and morbidity due to SARS infection. These studies had significant differences in the populations, methods, and outcomes that were studied (Table 1). We identified three themes, temporality, PM size/dose, and spatial, which define the relationship of C19 with PM exposure. Evaluating the heterogeneous characteristics of the disease across different territories and phases of the pandemic is important to implement measures to contain spread.

Longer durations and higher levels of PM increased the risk of ICU admissions and deaths due to C19. Several mechanisms have been hypothesized. Oxidative stress and

disruptive immune and/or neuroendocrine function can result in increased severity of viral pulmonary infections [81,82].

PM has been associated with enhanced infection with RNA viruses such as SARS [83]. PM concentration and virus dissemination were positively correlated in the spread of measles in several studies [12]. A 10 μ g/m³ increase in PM_{2.5} was associated with increased measles incidence. A similar observation was also noted with respiratory syncytial virus, which causes bronchiolitis and pneumonia [15]. A study in Kuala Lumpur collected $PM_{2.5}$ in four study sites and found the highest levels of SARS-CoV-2 RNA on PM_{2.5} [84]. PM exposure in murine models was associated with upregulated Angiotensin converting enzyme 2 (ACE2) and Transmembrane protease serine 2 (TMPRSS2), receptors required for SARS entry into host cells [85,86]. Exposure to PM induced Renin Angiotensin-aldosterone (RAAS) and Kallikrein—kinin systems (KKS), involved in cardiovascular and lung diseases. PM-induced damage to lung cells increases the inflammatory state which can increase the mortality and severity of C19 [87,88]. Therefore, it may be important to implement measures to reduce PM emissions in the atmosphere. Studies in this review further highlighted the importance of measures such as lockdown and movement restrictions, public awareness regarding pollution via media tools and professional programs and strengthening rural infrastructure that may limit the infectivity of SARS [69,72].

4.1. Geographic Epidemiology

Variation in C19 outcomes in different regions could be attributed to social determinants of health such as poverty, access to health care facilities and health literacy. Populations with limited resources also have a high prevalence of chronic health conditions [89,90]. Urban areas with industries had elevated levels of PM_{2.5}. Spatial variation in the concentration of PM_{2.5} in some areas such as California's central valley and Italy's Po Valley can be contributed to geographical features with climate inversion events that trap these pollutants. The air trapping in these regions can also lead to chronic exposure to these particulates increasing the risk for respiratory and cardiovascular diseases which further enhances the risk [91].

4.2. Temporal Association

Worsening asthma and COPD leading to hospitalization has been noted with short-term (up to 24 h) exposures to PM_{10} [92]. Long-term $PM_{2.5}$ is known to increase the risk of COPD, a known risk factor for severe C19 infection [93].

An NYC hospital-based study noted that mortality rates dropped from 25.6% in March to 7.6% in August 2020 [94]. This reduction in the number of severe C19 cases that was observed during the later pandemic phase could be attributed to multiple reasons, including the development of immunity due to availability of vaccinations, and treatment modalities including corticosteroids, targeted antiviral therapy, and anti-cytokine treatments. The quarantine restrictions and mask policies enforced by many countries also could have reduced exposure to ambient PM [95–97].

Strengths of Systematic Review. This review focuses on the environmental inducers of infectious diseases, a global health issue. It incorporates the variation in PM and the risk of Coronaviruses geographically. Manuscripts from across the globe were reviewed, which made this study more generalizable. Each article was screened for study design and was further subcategorized to understand temporal, spatial variability.

Our systematic review has several limitations. Since assessing the risk of bias inherently has some level of subjectivity, we categorized high- vs. low-risk studies using a determined set of criteria. While many of the studies that we assessed had a high risk of bias, future studies would benefit from assessing their data in the context of potential confounders including age, gender, and comorbidities. Several variants have been identified since the 2019; however, our manuscript does not discuss the disparity in disease outcomes for different variants [77]. The manuscripts that have been included in our review have not determined the variants that were present in their communities during their data acquisition [30,72,73]. There is also a variation in the PM concentration across countries and regions that could add to the bias. However, only N = 6 studies analyzed the spatial variation [32,38,40,55,62,65]. Also, additional studies not identified in the two large databases could have caused selection bias. There is a limitation in data available on SARS-1, which could be due to selection of manuscripts in the English language. Finally, while meta-analysis in the context of a systematic review may provide a more accurate effects estimate, for this to occur we would require source data availability and methodologic similarity. We therefore reviewed all 46 studies for available supplemental data and for similar methodologies and outcomes. Studies were grouped according to the statistical outcomes measured, i.e., relative risk vs. odd's ratio. Seven out of 46 evaluated relative risks. Four out of these seven had supplementary data available. Out of the three studies that evaluated the odds ratio, one had supplementary data available. Unfortunately, only two studies performed the Generalized additive models (GAM) to analyze the association between PM and C19 outcomes; however, the C19 outcomes were different (Incidence vs. morbidity), which limits our ability to perform meta-analysis.

5. Conclusions

In conclusion, these studies have expanded our knowledge of PM exposure and its association with SARS infection. The review highlights the clinical impact of PM and the need for implementing measures to combat climate change and dangerous levels of environmental toxin. There was a spatial and temporal variation in the characteristics of the disease. Overall, it was seen that exposure to quantified PM was associated with increased incidence, mortality and morbidity to C19. Measures can be taken on both global and a personal level, such as improving air ventilation design and systems in enclosed spaces and buildings, restricting wildlife trading and deforestation, and training our healthcare professionals to educate masses on taking personal steps to ensure less production and exposure to pollution, such as using facemasks, and walking/cycling instead of motorized transport.

6. Future Plans

Future experimental studies will include developing our understanding of the role of PM in accentuating the response to pathogens such as C19, understanding the effects estimate for chronic vs. short-term exposure to PM, and in furthering our management of PM exposure to limit severity of viral infections. These projects will focus on quantifying the association of PM concentrations (by zip code and/or geocoding) and the incidence of C19 related morbidity and mortality.

Supplementary Materials: The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/life13020538/s1. Supplementary Table S1. EMBASE Identified Manuscripts (N = 572); Supplementary Table S2. PUBMED Identified Manuscripts (N = 334); Supplementary Table S3. Manuscript Exclusions. S3a. Case reports/series; S3b. Commentary/Expert opinion/Conference Abstracts; S3c. Duplicates S3d. in vitro/Cell studies; S3e. Letters to the editor; S3f. Non-English Manuscripts; S3g. Pediatric Studies; S3h. Pilot studies/Study designs; S3i. Reviews/Meta-analysis; S3j. Unrelated.

Author Contributions: All authors made substantial contributions to the study. All authors participated in study conception and design, data analysis/interpretation, and manuscript preparation. Primary investigator A.N.; Study design A.N., S.P., U.J., S.K.; Statistical Analysis A.N., S.P., M.S.F., M.L., Y.L.; Data interpretation A.N., S.P., M.S.F., S.K., U.J. All authors participated in writing, revising and approve the final manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: National Institutes of Health (NIH): National Heart Lung and Blood Institute (NHLBI) R01HL119326; National Institute of Environmental Health Science (NIEHS) R01ES032808; National Center for Advancing Translational Sciences (NCATS) KL2TR001446; Centers for Disease

Control/National Institute for Occupational Safety and Health (CDC/NIOSH) U01-[OH011300, OH012069, OH011855] and Stony Wold-Herbert Fund.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No new data were created in this study.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

PM	Particulate matter
SARS	Severe acute respiratory syndrome
CoV	Coronaviruses
ARDS	Acute respiratory distress syndrome
C19	COVID-19
PEO	Population, Exposure, Outcome
RoB	Risk of bias
RT-PCR	Reverse transcription polymerase chain reaction
RAAS	Renin angiotensin aldosterone system
TMPRSS2	Transmembrane serine protease 2
ACE	Angiotensin converting enzyme
KKS	(Kallikrein-kinin) systems
COPD	Chronic Obstructive Pulmonary Disease
PRISMA	Preferred Reporting Items for Systematic Reviews and Meta-Analyses
UK	United Kingdom
US	United States
CFR	Case Fatality Rate

References

- 1. Basics of COVID-19. Available online: https://www.cdc.gov/coronavirus/2019-ncov/your-health/about-covid-19/basics-covid-19.html (accessed on 7 January 2023).
- Chafekar, A.; Fielding, B.C. MERS-CoV: Understanding the Latest Human Coronavirus Threat. Viruses 2018, 10, 93. [CrossRef] [PubMed]
- COVID-19 Timeline. Available online: https://www.cdc.gov/museum/timeline/covid19.html#:~{}:text=February%2011%2C% 202020,of%20%E2%80%9CCoronavirus%20Disease%202019.%E2%80%9D (accessed on 7 January 2023).
- COVID-19 Was Third Leading Cause of Death in U.S. Available online: https://www.cdc.gov/media/releases/2022/s0422-third-leading-cause.html (accessed on 21 November 2022).
- 5. U.S. Environmental Protection Agency. Health and Environmental Effects of Particulate Matter (PM). Available online: https://www.epa.gov/pm-pollution/health-and-environmental-effects-particulate-matter-pm (accessed on 24 June 2022).
- Cai, B.; Xia, T.; Qian, Y.; Lu, H.; Cai, R.; Wang, C. Association Between Fine Particulate Matter and Fatal Hemorrhagic Stroke Incidence: A Time Stratified Case-Crossover Study in Shanghai, China. J. Occup. Environ. Med. 2020, 62, 916–921. [CrossRef] [PubMed]
- 9 out of 10 People Worldwide Breathe Polluted Air, but More Countries Are Taking Action. Available online: https://www.who. int/news/item/02-05-2018-9-out-of-10-people-worldwide-breathe-polluted-air-but-more-countries-are-taking-action (accessed on 7 July 2022).
- Seaton, A.; MacNee, W.; Donaldson, K.; Godden, D. Particulate air pollution and acute health effects. *Lancet* 1995, 345, 176–178.
 [CrossRef]
- Becker, S.; Soukup, J.M. Exposure to urban air particulates alters the macrophage-mediated inflammatory response to respiratory viral infection. J. Toxicol. Environ. Health A 1999, 57, 445–457. [CrossRef]
- 10. Mishra, R.; Krishnamoorthy, P.; Gangamma, S.; Raut, A.A.; Kumar, H. Particulate matter (PM10) enhances RNA virus infection through modulation of innate immune responses. *Environ. Pollut.* **2020**, *266*, 115148. [CrossRef] [PubMed]
- 11. Chen, P.S.; Tsai, F.T.; Lin, C.K.; Yang, C.Y.; Chan, C.C.; Young, C.Y.; Lee, C.H. Ambient influenza and avian influenza virus during dust storm days and background days. *Environ. Health Perspect.* **2010**, *118*, 1211–1216. [CrossRef] [PubMed]
- 12. Chen, G.; Zhang, W.; Li, S.; Williams, G.; Liu, C.; Morgan, G.G.; Jaakkola, J.J.K.; Guo, Y. Is short-term exposure to ambient fine particles associated with measles incidence in China? A multi-city study. *Environ. Res.* **2017**, *156*, 306–311. [CrossRef]
- Croft, D.P.; Zhang, W.; Lin, S.; Thurston, S.W.; Hopke, P.K.; Masiol, M.; Squizzato, S.; van Wijngaarden, E.; Utell, M.J.; Rich, D.Q. The Association between Respiratory Infection and Air Pollution in the Setting of Air Quality Policy and Economic Change. *Ann. Am. Thorac. Soc.* 2019, *16*, 321–330. [CrossRef]

- Croft, D.P.; Zhang, W.; Lin, S.; Thurston, S.W.; Hopke, P.K.; van Wijngaarden, E.; Squizzato, S.; Masiol, M.; Utell, M.J.; Rich, D.Q. Associations between Source-Specific Particulate Matter and Respiratory Infections in New York State Adults. *Environ. Sci. Technol.* 2020, 54, 975–984. [CrossRef]
- 15. Ye, Q.; Fu, J.F.; Mao, J.H.; Shang, S.Q. Haze is a risk factor contributing to the rapid spread of respiratory syncytial virus in children. *Environ. Sci. Pollut. Res. Int.* 2016, 23, 20178–20185. [CrossRef]
- 16. Aguilera, R.; Corringham, T.; Gershunov, A.; Benmarhnia, T. Wildfire smoke impacts respiratory health more than fine particles from other sources: Observational evidence from Southern California. *Nat. Commun.* **2021**, *12*, 1493. [CrossRef] [PubMed]
- 17. Khaniabadi, Y.O.; Daryanoosh, S.M.; Amrane, A.; Polosa, R.; Hopke, P.K.; Goudarzi, G.; Mohammadi, M.J.; Sicard, P.; Armin, H. Impact of Middle Eastern Dust storms on human health. *Atmos. Pollut. Res.* **2017**, *8*, 606–613. [CrossRef]
- Kim Oanh, N.T.; Nghiem, L.H.; Phyu, Y.L. Emission of Polycyclic Aromatic Hydrocarbons, Toxicity, and Mutagenicity from Domestic Cooking Using Sawdust Briquettes, Wood, and Kerosene. *Environ. Sci. Technol.* 2002, *36*, 833–839. [CrossRef]
- 19. Copat, C.; Cristaldi, A.; Fiore, M.; Grasso, A.; Zuccarello, P.; Signorelli, S.S.; Conti, G.O.; Ferrante, M. The role of air pollution (PM and NO₂) in COVID-19 spread and lethality: A systematic review. *Environ. Res.* **2020**, *191*, 110129. [CrossRef]
- Maleki, M.; Anvari, E.; Hopke, P.K.; Noorimotlagh, Z.; Mirzaee, S.A. An updated systematic review on the association between atmospheric particulate matter pollution and prevalence of SARS-CoV-2. *Environ. Res.* 2021, 195, 110898. [CrossRef]
- Frontera, A.; Martin, C.; Vlachos, K.; Sgubin, G. Regional air pollution persistence links to COVID-19 infection zoning. J. Infect. 2020, 81, 318–356. [CrossRef]
- 22. Wu, X.; Nethery, R.C.; Sabath, B.M.; Braun, D.; Dominici, F. Exposure to air pollution and COVID-19 mortality in the United States: A nationwide cross-sectional study. *medRxiv* 2020. [CrossRef]
- Wang, B.; Chen, H.; Chan, Y.L.; Oliver, B.G. Is there an association between the level of ambient air pollution and COVID-19? Am. J. Physiol. Lung Cell. Mol. Physiol. 2020, 319, L416–L421. [CrossRef] [PubMed]
- Coker, E.S.; Cavalli, L.; Fabrizi, E.; Guastella, G.; Lippo, E.; Parisi, M.L.; Pontarollo, N.; Rizzati, M.; Varacca, A.; Vergalli, S. The Effects of Air Pollution on COVID-19 Related Mortality in Northern Italy. *Environ. Resour. Econ.* 2020, 76, 611–634. [CrossRef]
- Frontera, A.; Cianfanelli, L.; Vlachos, K.; Landoni, G.; Cremona, G. Severe air pollution links to higher mortality in COVID-19 patients: The "double-hit" hypothesis. J. Infect. 2020, 81, 255–259. [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. *Rev. Esp. Cardiol.* 2021, 74, 790–799. [CrossRef]
- 27. Particulate Matter (PM) Basics. Available online: https://www.epa.gov/pm-pollution/particulate-matter-pm-basics (accessed on 26 November 2022).
- Lee, K.K.; Bing, R.; Kiang, J.; Bashir, S.; Spath, N.; Stelzle, D.; Mortimer, K.; Bularga, A.; Doudesis, D.; Joshi, S.S.; et al. Adverse health effects associated with household air pollution: A systematic review, meta-analysis, and burden estimation study. *Lancet Glob. Health* 2020, *8*, e1427–e1434. [CrossRef]
- 29. Systematic Reviews. Available online: https://rmit.libguides.com/systematicreviews/synthesise (accessed on 6 January 2022).
- Kan, H.D.; Chen, B.H.; Fu, C.W.; Yu, S.Z.; Mu, L.N. Relationship between ambient air pollution and daily mortality of SARS in Beijing. *Biomed. Environ. Sci.* 2005, 18, 1–4.
- 31. Li, H.; Xu, X.L.; Dai, D.W.; Huang, Z.Y.; Ma, Z.; Guan, Y.J. Air pollution and temperature are associated with increased COVID-19 incidence: A time series study. *Int. J. Infect. Dis.* **2020**, *97*, 278–282. [CrossRef]
- 32. Lu, B.; Wu, N.; Jiang, J.; Li, X. Associations of acute exposure to airborne pollutants with COVID-19 infection: Evidence from China. *Environ. Sci. Pollut. Res. Int.* 2021, *28*, 50554–50564. [CrossRef] [PubMed]
- 33. Sahoo, M.M. Significance between air pollutants, meteorological factors, and COVID-19 infections: Probable evidences in India. *Environ. Sci. Pollut. Res. Int.* **2021**, *28*, 40474–40495. [CrossRef]
- 34. Sangkham, S.; Thongtip, S.; Vongruang, P. Influence of air pollution and meteorological factors on the spread of COVID-19 in the Bangkok Metropolitan Region and air quality during the outbreak. *Environ. Res.* **2021**, *197*, 111104. [CrossRef]
- 35. Shao, L.; Cao, Y.; Jones, T.; Santosh, M.; Silva, L.F.O.; Ge, S.; da Boit, K.; Feng, X.; Zhang, M.; BéruBé, K. COVID-19 mortality and exposure to airborne PM(2.5): A lag time correlation. *Sci. Total Environ.* **2022**, *806*, 151286. [CrossRef]
- 36. Yao, Y.; Pan, J.; Wang, W.; Liu, Z.; Kan, H.; Qiu, Y.; Meng, X.; Wang, W. Association of particulate matter pollution and case fatality rate of COVID-19 in 49 Chinese cities. *Sci. Total Environ.* **2020**, *741*, 140396. [CrossRef]
- Beig, G.; Bano, S.; Sahu, S.K.; Anand, V.; Korhale, N.; Rathod, A.; Yadav, R.; Mangaraj, P.; Murthy, B.S.; Singh, S.; et al. COVID-19 and environmental -weather markers: Unfolding baseline levels and veracity of linkages in tropical India. *Environ. Res.* 2020, 191, 110121. [CrossRef]
- Laxmipriya, S.; Narayanan, R.M. COVID-19 and its relationship to particulate matter pollution—Case study from part of greater Chennai, India. *Mater. Today Proc.* 2021, 43, 1634–1639. [CrossRef]
- 39. Bianconi, V.; Bronzo, P.; Banach, M.; Sahebkar, A.; Mannarino, M.R.; Pirro, M. Particulate matter pollution and the COVID-19 outbreak: Results from Italian regions and provinces. *Arch. Med. Sci.* 2020, *16*, 985–992. [CrossRef]
- 40. Dragone, R.; Licciardi, G.; Grasso, G.; Del Gaudio, C.; Chanussot, J. Analysis of the Chemical and Physical Environmental Aspects that Promoted the Spread of SARS-CoV-2 in the Lombard Area. *Int. J. Environ. Res. Public Health* **2021**, *18*, 1226. [CrossRef]
- 41. Fattorini, D.; Regoli, F. Role of the chronic air pollution levels in the COVID-19 outbreak risk in Italy. *Environ. Pollut.* 2020, 264, 114732. [CrossRef] [PubMed]

- 42. Rovetta, A.; Bhagavathula, A.S.; Castaldo, L. Modeling the Epidemiological Trend and Behavior of COVID-19 in Italy. *Cureus* 2020, *12*, e9884. [CrossRef] [PubMed]
- Moshammer, H.; Poteser, M.; Hutter, H.P. COVID-19 and air pollution in Vienna-a time series approach. *Wien. Klin. Wochenschr.* 2021, 133, 951–957. [CrossRef]
- 44. Dettori, M.; Deiana, G.; Balletto, G.; Borruso, G.; Murgante, B.; Arghittu, A.; Azara, A.; Castiglia, P. Air pollutants and risk of death due to COVID-19 in Italy. *Environ. Res.* **2021**, *192*, 110459. [CrossRef]
- Meo, S.A.; Adnan Abukhalaf, A.; Sami, W.; Hoang, T.D. Effect of environmental pollution PM_{2.5}, carbon monoxide, and ozone on the incidence and mortality due to SARS-CoV-2 infection in London, United Kingdom. *J. King Saud Univ. Sci.* 2021, 33, 101373. [CrossRef]
- 46. Scalsky, R.J.; Chen, Y.J.; Ying, Z.; Perry, J.A.; Hong, C.C. The Social and Natural Environment's Impact on SARS-CoV-2 Infections in the UK Biobank. *Int. J. Environ. Res. Public Health* **2022**, *19*, 533. [CrossRef]
- Kogevinas, M.; Castaño-Vinyals, G.; Karachaliou, M.; Espinosa, A.; de Cid, R.; Garcia-Aymerich, J.; Carreras, A.; Cortés, B.; Pleguezuelos, V.; Jiménez, A.; et al. Ambient Air Pollution in Relation to SARS-CoV-2 Infection, Antibody Response, and COVID-19 Disease: A Cohort Study in Catalonia, Spain (COVICAT Study). *Environ. Health Perspect.* 2021, 129, 117003. [CrossRef]
- Marquès, M.; Correig, E.; Ibarretxe, D.; Anoro, E.; Antonio Arroyo, J.; Jericó, C.; Borrallo, R.M.; Miret, M.; Näf, S.; Pardo, A.; et al. Long-term exposure to PM₁₀ above WHO guidelines exacerbates COVID-19 severity and mortality. *Environ. Int.* 2022, 158, 106930. [CrossRef]
- Veronesi, G.; De Matteis, S.; Calori, G.; Pepe, N.; Ferrario, M.M. Long-term exposure to air pollution and COVID-19 incidence: A prospective study of residents in the city of Varese, Northern Italy. Occup. Environ. Med. 2022, 79, 192–199. [CrossRef] [PubMed]
- 50. Zoran, M.A.; Savastru, R.S.; Savastru, D.M.; Tautan, M.N.; Baschir, L.A.; Tenciu, D.V. Assessing the impact of air pollution and climate seasonality on COVID-19 multiwaves in Madrid, Spain. *Environ. Res.* **2022**, 203, 111849. [CrossRef] [PubMed]
- Semczuk-Kaczmarek, K.; Rys-Czaporowska, A.; Sierdzinski, J.; Kaczmarek, L.D.; Szymanski, F.M.; Platek, A.E. Association between air pollution and COVID-19 mortality and morbidity. *Intern. Emerg. Med.* 2021, 17, 467–473. [CrossRef]
- Di Ciaula, A.; Bonfrate, L.; Portincasa, P.; Appice, C.; Belfiore, A.; Binetti, M.; Cafagna, G.; Campanale, G.; Carrieri, A.; Cascella, G.; et al. Nitrogen dioxide pollution increases vulnerability to COVID-19 through altered immune function. *Environ. Sci. Pollut. Res. Int.* 2022, 29, 44404–44412. [CrossRef]
- 53. Czwojdzińska, M.; Terpińska, M.; Kuźniarski, A.; Płaczkowska, S.; Piwowar, A. Exposure to PM2.5 and PM10 and COVID-19 infection rates and mortality: A one-year observational study in Poland. *Biomed. J.* **2021**, *44*, S25–S36. [CrossRef] [PubMed]
- 54. Berg, K.; Romer Present, P.; Richardson, K. Long-term air pollution and other risk factors associated with COVID-19 at the census tract level in Colorado. *Environ. Pollut.* **2021**, *287*, 117584. [CrossRef]
- 55. Bozack, A.; Pierre, S.; DeFelice, N.; Colicino, E.; Jack, D.; Chillrud, S.N.; Rundle, A.; Astua, A.; Quinn, J.W.; McGuinn, L.; et al. Long-Term Air Pollution Exposure and COVID-19 Mortality: A Patient-Level Analysis from New York City. Am. J. Respir. Crit. Care Med. 2021, 205, 651–662. [CrossRef]
- 56. Fang, F.; Mu, L.; Zhu, Y.; Rao, J.; Heymann, J.; Zhang, Z.F. Long-Term Exposure to PM_{2.5}, Facemask Mandates, Stay Home Orders and COVID-19 Incidence in the United States. *Int. J. Environ. Res. Public Health* **2021**, *18*, 6274. [CrossRef]
- Kiser, D.; Elhanan, G.; Metcalf, W.J.; Schnieder, B.; Grzymski, J.J. SARS-CoV-2 test positivity rate in Reno, Nevada: Association with PM_{2.5} during the 2020 wildfire smoke events in the western United States. *J. Expo. Sci. Environ. Epidemiol.* 2021, *31*, 797–803. [CrossRef]
- 58. Mendy, A.; Wu, X.; Keller, J.L.; Fassler, C.S.; Apewokin, S.; Mersha, T.B.; Xie, C.; Pinney, S.M. Air pollution and the pandemic: Long-term PM_{2.5} exposure and disease severity in COVID-19 patients. *Respirology* **2021**, *26*, 1181–1187. [CrossRef]
- Meo, S.A.; Abukhalaf, A.A.; Alessa, O.M.; Alarifi, A.S.; Sami, W.; Klonoff, D.C. Effect of environmental pollutants PM_{2.5}, CO, NO₂, and O₃ on the incidence and mortality of SARS-CoV-2 infection in five regions of the USA. *Int. J. Environ. Res. Public Health* 2021, *18*, 7810. [CrossRef]
- Meo, S.A.; Abukhalaf, A.A.; Alomar, A.A.; Alessa, O.M. Wildfire and COVID-19 pandemic: Effect of environmental pollution PM_{2.5} and carbon monoxide on the dynamics of daily cases and deaths due to SARS-CoV-2 infection in San-Francisco USA. *Eur. Rev. Med. Pharmacol. Sci.* 2020, 24, 10286–10292. [CrossRef]
- 61. Meo, S.A.; Abukhalaf, A.A.; Alomar, A.A.; Alessa, O.M.; Sami, W.; Klonoff, D.C. Effect of environmental pollutants PM_{2.5}, carbon monoxide, and ozone on the incidence and mortality of SARS-CoV-2 infection in ten wildfire affected counties in California. *Sci. Total Environ.* **2021**, 757, 143948. [CrossRef]
- Meo, S.A.; Almutairi, F.J.; Abukhalaf, A.A.; Usmani, A.M. Effect of green space environment on air pollutants PM_{2.5}, PM₁₀, CO, O₃ and incidence and mortality of SARS-CoV-2 in highly green and less-green countries. *Int. J. Environ. Res. Public Health* 2021, 18, 13151. [CrossRef]
- 63. Adhikari, A.; Yin, J. Short-term effects of Ambient Ozone, PM2.5, and meteorological factors on COVID-19 confirmed cases and deaths in Queens, New York. *Int. J. Environ. Res. Public Health* **2020**, 17, 4047. [CrossRef]
- 64. Gujral, H.; Sinha, A. Association between exposure to airborne pollutants and COVID-19 in Los Angeles, United States with ensemble-based dynamic emission model. *Environ. Res.* **2021**, *194*, 110704. [CrossRef]
- 65. Cortes-Ramirez, J.; Michael, R.N.; Knibbs, L.D.; Bambrick, H.; Haswell, M.R.; Wraith, D. The association of wildfire air pollution with COVID-19 incidence in New South Wales, Australia. *Sci. Total Environ.* **2022**, *809*, 151158. [CrossRef]

- 66. Ben Maatoug, A.; Triki, M.B.; Fazel, H. How do air pollution and meteorological parameters contribute to the spread of COVID-19 in Saudi Arabia? *Environ. Sci. Pollut. Res. Int.* **2021**, *28*, 44132–44139. [CrossRef]
- Hadei, M.; Hopke, P.K.; Shahsavani, A.; Raeisi, A.; Jafari, A.J.; Yarahmadi, M.; Farhadi, M.; Rahmatinia, M.; Bazazpour, S.; Bandpey, A.M.; et al. Effect of short-term exposure to air pollution on COVID-19 mortality and morbidity in Iranian cities. J. Environ. Health Sci. Eng. 2021, 19, 1807–1816. [CrossRef]
- Meo, S.A.; Almutairi, F.J.; Abukhalaf, A.A.; Alessa, O.M.; Al-Khlaiwi, T.; Meo, A.S. Sandstorm and its effect on particulate matter PM_{2.5}, carbon monoxide, nitrogen dioxide, ozone pollutants and SARS-CoV-2 cases and deaths. *Sci. Total Environ.* 2021, 795, 148764. [CrossRef] [PubMed]
- 69. Ghanim, A.A.J. Analyzing the severity of coronavirus infections in relation to air pollution: Evidence-based study from Saudi Arabia. *Environ. Sci. Pollut. Res. Int.* **2022**, *29*, 6267–6277. [CrossRef] [PubMed]
- Akan, A.P. Transmission of COVID-19 pandemic (Turkey) associated with short-term exposure of air quality and climatological parameters. *Environ. Sci. Pollut. Res. Int.* 2022, *31*, 41695–41712. [CrossRef]
- 71. Norouzi, N.; Asadi, Z. Air pollution impact on the COVID-19 mortality in Iran considering the comorbidity (obesity, diabetes, and hypertension) correlations. *Environ. Res.* **2022**, *204 Pt A*, 112020. [CrossRef]
- 72. Bolano-Ortiz, T.R.; Camargo-Caicedo, Y.; Puliafito, S.E.; Ruggeri, M.F.; Bolano-Diaz, S.; Pascual-Flores, R.; Saturno, J.; Ibarra-Espinosa, S.; Mayol-Bracero, O.L.; Torres-Delgado, E.; et al. Spread of SARS-CoV-2 through Latin America and the Caribbean region: A look from its economic conditions, climate and air pollution indicators. *Environ. Res.* **2020**, *191*, 109938. [CrossRef]
- 73. Lopez-Feldman, A.; Heres, D.; Marquez-Padilla, F. Air pollution exposure and COVID-19: A look at mortality in Mexico City using individual-level data. *Sci. Total Environ.* 2021, 756, 143929. [CrossRef]
- 74. Salgado, M.V.; Smith, P.; Opazo, M.A.; Huneeus, N. Long-term exposure to fine and coarse particulate matter and COVID-19 incidence and mortality rate in chile during 2020. *Int. J. Environ. Res. Public Health* **2021**, *18*, 7409. [CrossRef]
- 75. SARS Basics Fact Sheet. Available online: https://www.cdc.gov/sars/about/fs-sars.html (accessed on 22 November 2022).
- Chiu, R.W.; Chim, S.S.; Tong, Y.K.; Fung, K.S.; Chan, P.K.; Zhao, G.P.; Lo, Y.M. Tracing SARS-coronavirus variant with large genomic deletion. *Emerg. Infect. Dis.* 2005, 11, 168–170. [CrossRef]
- SARS-CoV-2 Variant Classification and Definitions. Available online: https://www.cdc.gov/coronavirus/2019-ncov/variants/ variant-classifications.html (accessed on 21 November 2022).
- 78. WHO Coronavirus (COVID-19) Dashboard. Available online: https://covid19.who.int/ (accessed on 22 November 2022).
- Kanu, F.A.; Smith, E.E.; Offutt-Powell, T.; Hong, R.; Delaware Case, I.; Contact Tracing, T.; Dinh, T.H.; Pevzner, E. Declines in SARS-CoV-2 Transmission, Hospitalizations, and Mortality After Implementation of Mitigation Measures- Delaware, March-June 2020. Morb. Mortal. Wkly. Rep. 2020, 69, 1691–1694. [CrossRef]
- 80. Mortality Analyses. Available online: https://coronavirus.jhu.edu/data/mortality (accessed on 22 November 2022).
- Signorini, C.; Pignatti, P.; Coccini, T. How Do Inflammatory Mediators, Immune Response and Air Pollution Contribute to COVID-19 Disease Severity? A Lesson to Learn. *Life* 2021, *11*, 182. [CrossRef]
- 82. Mazzoli-Rocha, F.; Fernandes, S.; Einicker-Lamas, M.; Zin, W.A. Roles of oxidative stress in signaling and inflammation induced by particulate matter. *Cell Biol. Toxicol.* **2010**, *26*, 481–498. [CrossRef] [PubMed]
- 83. Cui, Y.; Zhang, Z.F.; Froines, J.; Zhao, J.; Wang, H.; Yu, S.Z.; Detels, R. Air pollution and case fatality of SARS in the People's Republic of China: An ecologic study. *Environ. Health* **2003**, *2*, 15. [CrossRef] [PubMed]
- 84. Nor, N.S.M.; Yip, C.W.; Ibrahim, N.; Jaafar, M.H.; Rashid, Z.Z.; Mustafa, N.; Hamid, H.H.A.; Chandru, K.; Latif, M.T.; Saw, P.E.; et al. Particulate matter (PM_{2.5}) as a potential SARS-CoV-2 carrier. *Sci. Rep.* **2021**, *11*, 2508. [CrossRef]
- Sagawa, T.; Tsujikawa, T.; Honda, A.; Miyasaka, N.; Tanaka, M.; Kida, T.; Hasegawa, K.; Okuda, T.; Kawahito, Y.; Takano, H. Exposure to particulate matter upregulates ACE2 and TMPRSS2 expression in the murine lung. *Environ. Res.* 2021, 195, 110722. [CrossRef] [PubMed]
- 86. Tung, N.T.; Cheng, P.-C.; Chi, K.-H.; Hsiao, T.-C.; Jones, T.; BéruBé, K.; Ho, K.-F.; Chuang, H.-C. Particulate matter and SARS-CoV-2: A possible model of COVID-19 transmission. *Sci. Total Environ.* **2021**, *750*, 141532. [CrossRef]
- 87. Comunian, S.; Dongo, D.; Milani, C.; Palestini, P. Air Pollution and COVID-19: The Role of Particulate Matter in the Spread and Increase of COVID-19's Morbidity and Mortality. *Int. J. Environ. Res. Public Health* **2020**, *17*, 4487. [CrossRef]
- Aztatzi-Aguilar, O.G.; Uribe-Ramírez, M.; Arias-Montaño, J.A.; Barbier, O.; De Vizcaya-Ruiz, A. Acute and subchronic exposure to air particulate matter induces expression of angiotensin and bradykinin-related genes in the lungs and heart: Angiotensin-II type-I receptor as a molecular target of particulate matter exposure. *Part. Fibre Toxicol.* 2015, 12, 17. [CrossRef]
- Chen, J.; Guo, X.; Pan, H.; Zhong, S. What determines city's resilience against epidemic outbreak: Evidence from China's COVID-19 experience. *Sustain. Cities Soc.* 2021, 70, 102892. [CrossRef]
- Bossak, B.H.; Turk, C.A. Spatial Variability in COVID-19 Mortality. Int. J. Environ. Res. Public Health 2021, 18, 5892. [CrossRef] [PubMed]
- Bo, M.; Mercalli, L.; Pognant, F.; Cat Berro, D.; Clerico, M. Urban air pollution, climate change and wildfires: The case study of an extended forest fire episode in northern Italy favoured by drought and warm weather conditions. *Energy Rep.* 2020, *6*, 781–786. [CrossRef]
- Han, C.H.; Pak, H.; Lee, J.M.; Chung, J.H. Short-term effects of exposure to particulate matter on hospital admissions for asthma and chronic obstructive pulmonary disease. *Medicine* 2022, 101, e30165. [CrossRef]

- Rice, M.B.; Ljungman, P.L.; Wilker, E.H.; Dorans, K.S.; Gold, D.R.; Schwartz, J.; Koutrakis, P.; Washko, G.R.; O'Connor, G.T.; Mittleman, M.A. Long-term exposure to traffic emissions and fine particulate matter and lung function decline in the Framingham heart study. *Am. J. Respir. Crit. Care Med.* 2015, 191, 656–664. [CrossRef] [PubMed]
- Horwitz, L.I.; Jones, S.A.; Cerfolio, R.J.; Francois, F.; Greco, J.; Rudy, B.; Petrilli, C.M. Trends in COVID-19 Risk-Adjusted Mortality Rates. J. Hosp. Med. 2021, 16, 90–92. [CrossRef] [PubMed]
- 95. Beigel, J.H.; Tomashek, K.M.; Dodd, L.E. Remdesivir for the Treatment of COVID-19—Preliminary Report. Reply. *N. Engl. J. Med.* **2020**, *383*, 994. [CrossRef]
- 96. Group, R.C.; Horby, P.; Lim, W.S.; Emberson, J.R.; Mafham, M.; Bell, J.L.; Linsell, L.; Staplin, N.; Brightling, C.; Ustianowski, A.; et al. Dexamethasone in Hospitalized Patients with COVID-19. *N. Engl. J. Med.* **2021**, *384*, 693–704. [CrossRef]
- 97. Gandhi, M.; Rutherford, G.W. Facial Masking for COVID-19. Reply. N. Engl. J. Med. 2020, 383, 2093–2094. [CrossRef] [PubMed]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.