Determination of Heterogeneous Proteomic and Metabolomic Response in anti-TNF and anti-IL-6 Treatment of Patients with Rheumatoid Arthritis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Ethical Consideration
2.3. Subjects
- (1)
- Sample information: unique identifier of the study participant and type of drug therapy;
- (2)
- Information about the anthropometric characteristics of the participant: gender, height, weight, body mass index, age at the time of the examination;
- (3)
- Information about the clinical and medical characteristics of the participant: diagnosis or code ICD-10, Steinbroker stage, concomitant diseases, history of therapy of the underlying disease, drug prescribed in the study, duration of the disease (months), assessment of disease activity by DAS28-ESR indices, assessment of disease activity by CDAI indices, assessment of functional status by HAQ index;
- (4)
- Information on clinical biochemical parameters of blood: the level of C-reactive protein (CRP), erythrocyte sedimentation rate (ESR), CCP (cyclic citrullinated peptide) antibodies.
2.4. Preanalytical Stage for Proteomic Analysis
2.5. Proteomic Analysis
2.6. Preanalytical Stage for Metabolomic Analysis
2.7. Metabolic Analysis
2.8. Data Analysis
3. Results
3.1. Proteome Analysis
3.2. Metabolome Analysis
3.3. Human IL-6 and TNF Immunoassay
3.4. Association of Antibodies with anti-TNF and anti-IL6 Therapies
4. Discussion
4.1. Relation of anti-TNF and anti-IL6 Therapy to the Multiple Autoantibodies Inreconnection
4.2. Does anti-TNF and anti-IL6 Therapy Have Even Chances to Cope with the Disease?
4.3. Essential Condition for the Successful Therapy
4.4. Rebellion of Arginine
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shi, J.; Fan, J.; Su, Q.; Yang, Z. Cytokines and Abnormal Glucose and Lipid Metabolism. Front. Endocrinol. (Lausanne) 2019, 10, 703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zabek, A.; Swierkot, J.; Malak, A.; Zawadzka, I.; Deja, S.; Bogunia-Kubik, K.; Mlynarz, P. Application of (1)H NMR-Based Serum Metabolomic Studies for Monitoring Female Patients with Rheumatoid Arthritis. J. Pharm. Biomed. Anal. 2016, 117, 544–550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kapoor, S.R.; Filer, A.; Fitzpatrick, M.A.; Fisher, B.A.; Taylor, P.C.; Buckley, C.D.; McInnes, I.B.; Raza, K.; Young, S.P. Metabolic Profiling Predicts Response to Anti-Tumor Necrosis Factor α Therapy in Patients with Rheumatoid Arthritis. Arthritis Rheum. 2013, 65, 1448–1456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tatar, Z.; Migne, C.; Petera, M.; Gaudin, P.; Lequerre, T.; Marotte, H.; Tebib, J.; Pujos Guillot, E.; Soubrier, M. Variations in the Metabolome in Response to Disease Activity of Rheumatoid Arthritis. BMC Musculoskelet. Disord. 2016, 17, 353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Priori, R.; Casadei, L.; Valerio, M.; Scrivo, R.; Valesini, G.; Manetti, C. 1H-NMR-Based Metabolomic Study for Identifying Serum Profiles Associated with the Response to Etanercept in Patients with Rheumatoid Arthritis. PLoS ONE 2015, 10, e0138537. [Google Scholar] [CrossRef]
- Murillo-Saich, J.D.; Diaz-Torne, C.; Ortiz, M.A.; Coras, R.; Gil-Alabarse, P.; Pedersen, A.; Corominas, H.; Vidal, S.; Guma, M. Metabolomics Profiling Predicts Outcome of Tocilizumab in Rheumatoid Arthritis: An Exploratory Study. Metabolomics 2021, 17, 74. [Google Scholar] [CrossRef]
- Sweeney, S.R.; Kavanaugh, A.; Lodi, A.; Wang, B.; Boyle, D.; Tiziani, S.; Guma, M. Metabolomic Profiling Predicts Outcome of Rituximab Therapy in Rheumatoid Arthritis. RMD Open 2016, 2, e000289. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.-K.; Chen, P.-K.; Chen, C.-C.; Chang, S.-H.; Chen, C.-H.; Chen, D.-Y. Increased Levels of Omega-3 Fatty Acids and DHA Are Linked to Pain Reduction in Rheumatoid Arthritis Patients Treated with Janus Kinase Inhibitors. Nutrients 2021, 13, 3050. [Google Scholar] [CrossRef]
- Hashizume, M.; Yoshida, H.; Koike, N.; Suzuki, M.; Mihara, M. Overproduced Interleukin 6 Decreases Blood Lipid Levels via Upregulation of Very-Low-Density Lipoprotein Receptor. Ann. Rheum. Dis. 2010, 69, 741–746. [Google Scholar] [CrossRef]
- Cacciapaglia, F.; Anelli, M.G.; Rinaldi, A.; Fornaro, M.; Lopalco, G.; Scioscia, C.; Lapadula, G.; Iannone, F. Lipids and Atherogenic Indices Fluctuation in Rheumatoid Arthritis Patients on Long-Term Tocilizumab Treatment. Mediat. Inflamm. 2018, 2018, 2453265. [Google Scholar] [CrossRef]
- Kawashiri, S.; Kawakami, A.; Yamasaki, S.; Imazato, T.; Iwamoto, N.; Fujikawa, K.; Aramaki, T.; Tamai, M.; Nakamura, H.; Ida, H.; et al. Effects of the Anti-Interleukin-6 Receptor Antibody, Tocilizumab, on Serum Lipid Levels in Patients with Rheumatoid Arthritis. Rheumatol. Int. 2011, 31, 451–456. [Google Scholar] [CrossRef] [PubMed]
- Slupsky, C.M.; Rankin, K.N.; Wagner, J.; Fu, H.; Chang, D.; Weljie, A.M.; Saude, E.J.; Lix, B.; Adamko, D.J.; Shah, S.; et al. Investigations of the Effects of Gender, Diurnal Variation, and Age in Human Urinary Metabolomic Profiles. Anal. Chem. 2007, 79, 6995–7004. [Google Scholar] [CrossRef] [PubMed]
- Shime, H.; Yabu, M.; Akazawa, T.; Kodama, K.; Matsumoto, M.; Seya, T.; Inoue, N. Tumor-Secreted Lactic Acid Promotes IL-23/IL-17 Proinflammatory Pathway. J. Immunol. 2008, 180, 7175–7183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olofsson, T.; Wallman, J.K.; Jöud, A.; Schelin, M.E.C.; Ernestam, S.; van Vollenhoven, R.; Saevarsdottir, S.; Lampa, J. Pain Over Two Years After Start of Biologic Versus Conventional Combination Treatment in Early Rheumatoid Arthritis: Results From a Swedish Randomized Controlled Trial. Arthritis Care Res. 2021, 73, 1312–1321. [Google Scholar] [CrossRef]
- Reyes-Castillo, Z.; Palafox-Sánchez, C.A.; Parra-Rojas, I.; Martínez-Bonilla, G.E.; del Toro-Arreola, S.; Ramírez-Dueñas, M.G.; Ocampo-Bermudes, G.; Muñoz-Valle, J.F. Comparative Analysis of Autoantibodies Targeting Peptidylarginine Deiminase Type 4, Mutated Citrullinated Vimentin and Cyclic Citrullinated Peptides in Rheumatoid Arthritis: Associations with Cytokine Profiles, Clinical and Genetic Features. Clin. Exp. Immunol. 2015, 182, 119–131. [Google Scholar] [CrossRef] [Green Version]
- Drobinski, P.J.; Nissen, N.I.; Sinkeviciute, D.; Willumsen, N.; Karsdal, M.A.; Bay-Jensen, A.C. In Contrast to Anti-CCP, MMP-Degraded and Citrullinated Vimentin (VICM) Is Both a Diagnostic and a Treatment Response Biomarker. Int. J. Mol. Sci. 2022, 24, 321. [Google Scholar] [CrossRef]
- Foulquier, C.; Sebbag, M.; Clavel, C.; Chapuy-Regaud, S.; Al Badine, R.; Méchin, M.-C.; Vincent, C.; Nachat, R.; Yamada, M.; Takahara, H.; et al. Peptidyl Arginine Deiminase Type 2 (PAD-2) and PAD-4 but Not PAD-1, PAD-3, and PAD-6 Are Expressed in Rheumatoid Arthritis Synovium in Close Association with Tissue Inflammation. Arthritis Rheum. 2007, 56, 3541–3553. [Google Scholar] [CrossRef]
- Kinloch, A.; Lundberg, K.; Wait, R.; Wegner, N.; Lim, N.H.; Zendman, A.J.W.; Saxne, T.; Malmström, V.; Venables, P.J. Synovial Fluid Is a Site of Citrullination of Autoantigens in Inflammatory Arthritis. Arthritis Rheum. 2008, 58, 2287–2295. [Google Scholar] [CrossRef]
- Karsdal, M.A.; Schett, G.; Emery, P.; Harari, O.; Byrjalsen, I.; Kenwright, A.; Bay-Jensen, A.C.; Platt, A. IL-6 Receptor Inhibition Positively Modulates Bone Balance in Rheumatoid Arthritis Patients with an Inadequate Response to Anti-Tumor Necrosis Factor Therapy: Biochemical Marker Analysis of Bone Metabolism in the Tocilizumab RADIATE Study (NCT00106522). Semin. Arthritis Rheum. 2012, 42, 131–139. [Google Scholar] [CrossRef]
- Juhl, P.; Thudium, C.S.; Gudmann, N.S.; Karsdal, M.A.; Bay-Jensen, A.-C.; Siebuhr, A.S. IL-6 Receptor Inhibition Modulates Type III Collagen and C-Reactive Protein Degradation in Rheumatoid Arthritis Patients with an Inadequate Response to Anti-Tumour Necrosis Factor Therapy: Analysis of Connective Tissue Turnover in the Tocilizumab RADIATE Study. Clin. Exp. Rheumatol. 2018, 36, 568–574. [Google Scholar]
- Klinder, A.; Waletzko-Hellwig, J.; Sellin, M.-L.; Seyfarth-Sehlke, A.; Wolfien, M.; Prehn, F.; Bader, R.; Jonitz-Heincke, A. Effects of the Interleukin-6 Receptor Blocker Sarilumab on Metabolic Activity and Differentiation Capacity of Primary Human Osteoblasts. Pharmaceutics 2022, 14, 1390. [Google Scholar] [CrossRef] [PubMed]
- Delanghe, J.R.; Langlois, M.R. Hemopexin: A Review of Biological Aspects and the Role in Laboratory Medicine. Clin. Chim. Acta 2001, 312, 13–23. [Google Scholar] [CrossRef] [PubMed]
- Kishimoto, T.; Kang, S. IL-6 Revisited: From Rheumatoid Arthritis to CAR T Cell Therapy and COVID-19. Annu. Rev. Immunol. 2022, 40, 323–348. [Google Scholar] [CrossRef]
- Pandolfi, F.; Franza, L.; Carusi, V.; Altamura, S.; Andriollo, G.; Nucera, E. Interleukin-6 in Rheumatoid Arthritis. Int. J. Mol. Sci. 2020, 21, 5238. [Google Scholar] [CrossRef]
- Narazaki, M.; Tanaka, T.; Kishimoto, T. The Role and Therapeutic Targeting of IL-6 in Rheumatoid Arthritis. Expert Rev. Clin. Immunol. 2017, 13, 535–551. [Google Scholar] [CrossRef]
- Kondo, N.; Kuroda, T.; Kobayashi, D. Cytokine Networks in the Pathogenesis of Rheumatoid Arthritis. Int. J. Mol. Sci. 2021, 22, 10922. [Google Scholar] [CrossRef]
- Nishimoto, N.; Terao, K.; Mima, T.; Nakahara, H.; Takagi, N.; Kakehi, T. Mechanisms and Pathologic Significances in Increase in Serum Interleukin-6 (IL-6) and Soluble IL-6 Receptor after Administration of an Anti-IL-6 Receptor Antibody, Tocilizumab, in Patients with Rheumatoid Arthritis and Castleman Disease. Blood 2008, 112, 3959–3964. [Google Scholar] [CrossRef]
- Wang, T.; He, C. TNF-α and IL-6: The Link between Immune and Bone System. Curr. Drug Targets 2020, 21, 213–227. [Google Scholar] [CrossRef]
- Tao, L.; Xue, J.-F. Effects of TNF-α in Rheumatoid Arthritis via Attenuating A1 (I) Collagen Promoter. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 3905–3912. [Google Scholar] [CrossRef]
- Wijnands, K.A.P.; Castermans, T.M.R.; Hommen, M.P.J.; Meesters, D.M.; Poeze, M. Arginine and Citrulline and the Immune Response in Sepsis. Nutrients 2015, 7, 1426–1463. [Google Scholar] [CrossRef] [Green Version]
- Morris, S.M. Enzymes of Arginine Metabolism. J. Nutr. 2004, 134 (Suppl. S10), 2743S–2747S; discussion 2765S–2767S. [Google Scholar] [CrossRef] [Green Version]
- Kao, C.; Hsu, J.; Bandi, V.; Jahoor, F. Alterations in Glutamine Metabolism and Its Conversion to Citrulline in Sepsis. Am. J. Physiol. Endocrinol. Metab. 2013, 304, E1359–E1364. [Google Scholar] [CrossRef]
- Lewis, N.D.; Asim, M.; Barry, D.P.; de Sablet, T.; Singh, K.; Piazuelo, M.B.; Gobert, A.P.; Chaturvedi, R.; Wilson, K.T. Immune Evasion by Helicobacter Pylori Is Mediated by Induction of Macrophage Arginase II. J. Immunol. 2011, 186, 3632–3641. [Google Scholar] [CrossRef] [Green Version]
- Mills, C.D. M1 and M2 Macrophages: Oracles of Health and Disease. Crit. Rev. Immunol. 2012, 32, 463–488. [Google Scholar] [CrossRef] [Green Version]
Parameter | Treatment Strategy | ||
---|---|---|---|
TNFi | IL6i | ||
Sample size (n) | 24 | 16 | |
Disease duration, months | 130.5 ± 129.4 | 157 ± 150 | |
Anthropometric information | Male, % | 21 | 27 |
Age, means, years | 54.0 ± 11.1 | 55.5 ± 11.8 | |
Height ± SD, cm | 167.5 ± 7.4 | 167 ± 7.2 | |
Weight ± SD, kg | 70.86 ± 13.87 | 70.3 ± 14.3 | |
Smokers, % | - | 37 | |
Clinical Information | Diagnosis: M05.8, % | 86 | 64 |
Diagnosis: M05.3, % | 14 | 36 | |
CCP antibodies, positive, % | 50 | 100 | |
Adalimumab, % | 42 | - | |
Etanercept, % | 29 | - | |
Dalibra, % | 29 | - | |
Upadacitinib, % | - | - | |
Sarilumab, % | - | 100 | |
Assessment of disease activity | Steinbroker | 2.5 ± 0.8 | 2.6 ± 0.7 |
CDAI ± SD | 27.8 ± 9.3 | 29.4 ± 10.1 | |
DAS-28 ± SD | 5.35 ± 0.95 | 5.4 ± 1.1 | |
HAQ ± SD | 0.35 ± 0.44 | 0.06 ± 0.19 | |
Biochemistry of blood | CRP, mg/mL | 21.4 ± 26 | 22.4 ± 28.2 |
ESR, mm/h | 26.6 ± 15 | 23.6 ± 14.3 |
UniProt ID | Protein Name | Freq | FC | LOG FC | Biological Process |
---|---|---|---|---|---|
anti-αTNF | |||||
P01871 | Ig heavy constant mu | 1 | 19.11 | 4.26 | Adaptive immunity |
A0M8Q6 | Ig lambda constant 7 | 1 | 11.03 | 3.46 | |
P01877 | Ig heavy constant alpha 2 | 1 | 7.84 | 2.97 | |
P0CG04 | Ig lambda constant 1 | 1 | 7.82 | 2.97 | |
P01876 | Ig heavy constant alpha 1 | 1 | 7.78 | 2.96 | |
B9A064 | Ig lambda-like polypeptide 5 | 1 | 7.35 | 2.88 | |
P0DOY2 | Ig lambda constant 2 | 1 | 6.81 | 2.77 | |
P0DOY3 | Ig lambda constant 3 | 1 | 6.81 | 2.77 | |
P01860 | Ig heavy constant gamma 3 | 1 | 5.97 | 2.58 | |
P0CF74 | Ig lambda constant 6 | 1 | 5.73 | 2.52 | |
P01861 | Ig heavy constant gamma 4 | 1 | 5.54 | 2.47 | |
P19652 | Alpha-1-acid glycoprotein 2 | 1 | 5.38 | 2.43 | Acute phase |
P01023 | Alpha-2-macroglobulin | 1 | 5.13 | 2.36 | |
P01024 | Complement C3 | 1 | 4.94 | 2.31 | Complement alternate pathway |
P01009 | Alpha-1-antitrypsin | 1 | 4.92 | 2.30 | Acute phase |
P01857 | Ig heavy constant gamma 1 | 1 | 4.43 | 2.15 | Adaptive immunity |
P02790 | Hemopexin | 1 | 4.20 | 2.07 | Transport |
P02765 | Alpha-2-HS-glycoprotein | 1 | 4.17 | 2.06 | Mineral balance |
P00739 | Haptoglobin-related protein | 0.8 | 0.25 | −2.01 | Acute inflammatory response |
anti-IL6 | |||||
P01009 | Alpha-1-antitrypsin | 1 | 0.34 | −1.37 | Acute phase |
P01023 | Alpha-2-macroglobulin | 0.87 | 2.2 | 1.1 | |
P01024 | Complement C3 | 0.57 | 2.7 | 1.4 | Complement alternate pathway |
P02765 | Alpha-2-HS-glycoprotein | 0.57 | 3.4 | 1.8 | Mineral balance |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stepanov, A.A.; Malsagova, K.A.; Kopylov, A.T.; Rudnev, V.R.; Karateev, D.E.; Markelova, E.I.; Luchikhina, E.L.; Borisova, E.E.; Kaysheva, A.L. Determination of Heterogeneous Proteomic and Metabolomic Response in anti-TNF and anti-IL-6 Treatment of Patients with Rheumatoid Arthritis. Life 2023, 13, 596. https://doi.org/10.3390/life13020596
Stepanov AA, Malsagova KA, Kopylov AT, Rudnev VR, Karateev DE, Markelova EI, Luchikhina EL, Borisova EE, Kaysheva AL. Determination of Heterogeneous Proteomic and Metabolomic Response in anti-TNF and anti-IL-6 Treatment of Patients with Rheumatoid Arthritis. Life. 2023; 13(2):596. https://doi.org/10.3390/life13020596
Chicago/Turabian StyleStepanov, Alexander A., Kristina A. Malsagova, Arthur T. Kopylov, Vladimir R. Rudnev, Dmitry E. Karateev, Evgenia I. Markelova, Elena L. Luchikhina, Elena E. Borisova, and Anna L. Kaysheva. 2023. "Determination of Heterogeneous Proteomic and Metabolomic Response in anti-TNF and anti-IL-6 Treatment of Patients with Rheumatoid Arthritis" Life 13, no. 2: 596. https://doi.org/10.3390/life13020596
APA StyleStepanov, A. A., Malsagova, K. A., Kopylov, A. T., Rudnev, V. R., Karateev, D. E., Markelova, E. I., Luchikhina, E. L., Borisova, E. E., & Kaysheva, A. L. (2023). Determination of Heterogeneous Proteomic and Metabolomic Response in anti-TNF and anti-IL-6 Treatment of Patients with Rheumatoid Arthritis. Life, 13(2), 596. https://doi.org/10.3390/life13020596