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Abstract: The basic idea of the RNA world as an early step towards life relies on a molecular evolution
process based on self-replicating RNA strands. It is probably the oldest and most convincing model
for efficient prebiotic evolution. Obviously, the functionality of RNA sequences depends on order (i.e.,
the definition of their sequence) as well as on complexity (i.e., the length of their sequence). Order and
complexity seem to be crucial parameters in the course of RNA evolution. In the following, an attempt
is made to define these parameters and to identify characteristic mechanisms of their development.
Using a general RNA world scenario including the free monomer units, the sequential order is
defined based on statistical thermodynamics. The complexity, on the other hand, is determined by
the size of a minimal algorithm fully describing the system. Under these conditions, a diagonal line in
an order/complexity-diagram represents the progress of molecular evolution. Elementary steps such
as repeated random polymerization and selection follow characteristic pathways and finally add up
to a state of high system functionality. Furthermore, the model yields a thermodynamic perspective
on molecular evolution, as the development of a defined polymer sequence has a distinct influence
on the entropy of the overall system.

Keywords: RNA world; order; complexity; origin of life; molecular evolution; prebiotic chemistry;
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1. Defining Progress in an RNA World

The important role of RNA as the key polymer in the origin of life was initially
proposed in the sixties of the last century [1–3]. It was driven by the discovery that
RNA strands can have significant catalytic activity [4,5], including the phenomenon that
they may facilitate their own reproduction. This opens the door to an efficient RNA-
based self-sustaining molecular evolution, the RNA world [6]. Since its proclamation in
1986, this model has played a dominating role in the general discussion about prebiotic
evolution [7–14].

According to the general understanding, the evolution of RNA starts with some
random polymerization of different (proto-)nucleotides, e.g., containing the four bases
adenine, guanine, cytosine and uracil (or corresponding predecessors [15]). Hereby, a
large number of accidental sequences are formed, a certain fraction of which may have
catalytic functions. In some cases, they may catalyze, directly or indirectly, their own
reproduction, which eventually will lead to a selection and accumulation of these distinct
RNA sequences. As originally proposed by Walter Gilbert, the RNA molecules may “evolve
in self-replicating patterns, using recombination and mutation to explore new functions
and to adapt to new niches” [6]. In the course of this evolution process, the functionality
of the selected RNA species will grow, connected to improved catalytic functions and
increased efficiency of the reproduction cycle. Finally, the selected species will dominate
the polymerized RNA fraction in the system.

Following this general idea, one may imagine an idealized primordial soup at a given
stage of the evolution process where nucleotides occur next to their oligomers and polymers
in a homogeneous solution. Is there a possible way to rate this given state regarding the
overall process of evolution? Of course, one could determine the catalytic activities of some
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of the given species, but based on these data, it would be very complicated to obtain access
to an overall picture. Instead, it makes sense to focus on more general system parameters,
such as order and complexity [16,17].

The principle approach of order and complexity in case of RNA-based molecular
evolution is roughly illustrated in Figure 1. The process starts with a mixed solution of
monomer units that is low in order and low in complexity, therefore assigned to point 1
near the lower left corner of the diagram. Increasing the order of the system is quite simple.
As an example, one may bring the system into a dry state, hereby forcing crystallization.
Complexity remains more or less constant, therefore, the process follows a horizontal line.
Point 2 in the diagram represents monomer crystals with a strongly increased order, but of
course no functionality, since the system lacks sufficient complexity.
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Figure 1. Diagram showing four characteristic states in an RNA world scenario. 1© Mix of nucleotides:
low order, low complexity. 2© Crystals formed by nucleotides: high order, low complexity. 3© Random
polymer formed by nucleotides: low order, high complexity. 4© Product of an evolution process: high
order (many chains with common defined sequences), high complexity (length of the sequence) and,
correspondingly, high functionality.

Increasing complexity, on the other hand, is quite easy as well. Inducing random
polymerization under suitable conditions may finally lead to a single polymer chain
(point 3). The long random sequence of this single chain represents a very complex
situation, but practically no progress in terms of order. As a random chain, it will most
likely not support any function.

Functionality such as catalysis needs a high degree of complexity (a certain length
of the chain) combined with a high degree of order (many chains with identical, well-
defined sequences). Such a combination (e.g., point 4 in Figure 1) cannot be reached
in a single move. Instead, it requires many subsequent steps in a process of molecular
evolution. In an experimental reproduction of an evolution process, the development
towards order and complexity may be followed if the monomer composition, chain lengths
and chain sequences are monitored over time and if possible interactions between the
system components are considered. A basic approach for the determination of order and
complexity from these data is proposed in the following sections.

2. A “Random Walk” through the System

In order to give those key parameters (order and complexity) a clear basis, they need a
proper definition that, in turn, requires a simplified model approach to the system. This
model is just meant to monitor the state of the system at a given point in time and does
not represent a molecular process. As a starting point, we remove all solvent molecules as
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well as those components that do not take part in the course of the evolution. Looking at
the remaining monomer units and chain molecules, we implement something similar to a
random walk from monomer to monomer, from chain unit to chain unit and in between
chains and monomers (Figure 2). Disregarding the difference between chain units and
monomers, the term “unit” will be used in the following. The pathway through the system
is not fully random, but follows a given set of rules. It may resemble a classical random
walk, but does not include statistical decisions for the most part. Actually, at one point in
time, it is exclusively random in terms of the starting point. The rules are as follows:

(1) The starting point may be any unit of the system.
(2) In each step, the move preferably occurs to the closest adjacent unit (nearest neighbor).
(3) If rule 2 leads to a unit that is already part of the given path, choose the one with the

next-shortest distance. This rule applies repeatedly until the next step is leading to a
“fresh” unit that has not been part of the path so far.

(4) The random walk stops after N steps, with N being the total number of units in the
system.

(5) The random walk is repeated again and again over a certain time window to account
for dynamic reorientation processes (molecular dynamics) in the system.

Life 2023, 13, 603 3 of 13 
 

 

the remaining monomer units and chain molecules, we implement something similar to a 
random walk from monomer to monomer, from chain unit to chain unit and in between 
chains and monomers (Figure 2). Disregarding the difference between chain units and 
monomers, the term “unit” will be used in the following. The pathway through the system 
is not fully random, but follows a given set of rules. It may resemble a classical random 
walk, but does not include statistical decisions for the most part. Actually, at one point in 
time, it is exclusively random in terms of the starting point. The rules are as follows: 
(1) The starting point may be any unit of the system. 
(2) In each step, the move preferably occurs to the closest adjacent unit (nearest neigh-

bor).  
(3) If rule 2 leads to a unit that is already part of the given path, choose the one with the 

next-shortest distance. This rule applies repeatedly until the next step is leading to a 
“fresh” unit that has not been part of the path so far.  

(4) The random walk stops after N steps, with N being the total number of units in the 
system. 

(5) The random walk is repeated again and again over a certain time window to account 
for dynamic reorientation processes (molecular dynamics) in the system.  
These rules guarantee that the resulting set of pathways reflects a characteristic cross-

section of the system. Rule no. 1 allows for the definition of N different pathways until the 
full system is specified. Rule no. 2 accounts for contacts and nearest neighborhoods re-
sulting from covalent bonds in a chain molecule as well as brief contacts between mole-
cules (as formed by hydrogen bonds in a base-pairing step) or temporary structures 
formed inside membrane bilayers. Rule no. 3 efficiently prevents the formation of closed 
loops. Of course, the random walks will vary over time, as the system undergoes dynamic 
changes. The time window of the random walks according to rule no. 5 is chosen such 
that molecular dynamics are possible, while no chemical structures are changed. Under 
these conditions, the full set of pathways will represent a complete image of the system’s 
intermolecular interactions. It will account for preferred intermolecular contacts such as 
base pairings, polymer entanglements, intermediate structures in reduplication processes 
etc. There may be alternative concepts allowing for structural monitoring of the system, 
but the described procedure should be among the most efficient strategies.  

 
Figure 2. Schematic representation of a fraction of a random walk following rules 1–5 through a 
system with monomer units (separate circles) and repetitive units in oligomer chains. 

3. Defining the Order of the System—Reciprocal Sequential Entropy 
As a manifestation of the system’s order, we will use the reciprocal entropy assigned 

to the entity of all random walks. Following the rules of statistical thermodynamics, one 
can derive a general expression for this characteristic “sequential” entropy contribution 
of a mixture of monomer and oligomer chains based on a set of system parameters: 

Figure 2. Schematic representation of a fraction of a random walk following rules 1–5 through a
system with monomer units (separate circles) and repetitive units in oligomer chains.

These rules guarantee that the resulting set of pathways reflects a characteristic cross-
section of the system. Rule no. 1 allows for the definition of N different pathways until the
full system is specified. Rule no. 2 accounts for contacts and nearest neighborhoods result-
ing from covalent bonds in a chain molecule as well as brief contacts between molecules (as
formed by hydrogen bonds in a base-pairing step) or temporary structures formed inside
membrane bilayers. Rule no. 3 efficiently prevents the formation of closed loops. Of course,
the random walks will vary over time, as the system undergoes dynamic changes. The
time window of the random walks according to rule no. 5 is chosen such that molecular
dynamics are possible, while no chemical structures are changed. Under these conditions,
the full set of pathways will represent a complete image of the system’s intermolecular
interactions. It will account for preferred intermolecular contacts such as base pairings,
polymer entanglements, intermediate structures in reduplication processes etc. There may
be alternative concepts allowing for structural monitoring of the system, but the described
procedure should be among the most efficient strategies.

3. Defining the Order of the System—Reciprocal Sequential Entropy

As a manifestation of the system’s order, we will use the reciprocal entropy assigned
to the entity of all random walks. Following the rules of statistical thermodynamics, one
can derive a general expression for this characteristic “sequential” entropy contribution of
a mixture of monomer and oligomer chains based on a set of system parameters:
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(1) The number n of different types of monomer units (e.g., four in case of conventional RNA).
(2) The relative contributions ri of all given monomer types i in solution (with

r1 + r2 + r3 + . . . + rn = 1). In case of RNA and for equal concentrations of all
bases, we obtain r1 = r2 = r3 = r4 = 0.25.

(3) The average number of monomers M between two chains in the random walk (in
number of units).

(4) The average chain length L (in number of units).
(5) The predictability pk of a given chain unit in accordance with a (partially) defined

chain sequence. Note that the index “k” generally does not coincide with the index
“i”. Instead, k = 1 denotes the most likely unit to follow, k = 2 the second-most likely,
etc. Completely defined chains, therefore, lead to p1 = 1 and p2 = p3 = p4 = . . . = pn = 0),
completely random chains to p1 = p2 = p3 = . . . = pn = 1/n. The values for pk are a
measure for the average degree of definition of the chain sequences.

(6) The relative accessibility aj of unit j of the chains in solution (with aj = 0 for a completely
inaccessible segment, and a1 + a2 + a3 + . . . + aL = 1). This parameter set accounts for
the average chain conformation and its preferred contact sites with monomer units
in solution.

(7) The total number N of units in the system and on the pathway of the random walk.

With these parameters given, the characteristic entropy contribution Sr (the sequential
entropy contribution) of a random walk is derived as (for a justification of Equation (1),
please see Supporting Information):

Sr = k ln w = k M
(

N
M+ L

2

)
∑n

i=1 riln(1/ri) +

k
(

N
M+ L

2

)
∑L

j=1 ajln
(
1/aj) +

k L
2

(
N

M+ L
2

)
∑n

k=1 pkln(1/pk)

(1)

with k as Boltzmann’s constant and w as the statistical weight defined by the variety within
the set of random walks. If we assume that a certain fraction p of the chains is random
(with p1 = p2 = p3 = . . . = pn = 1/n) and the fraction (1 − p) has fully defined sequences
resulting from efficient selection (with p1 = 1 and p2 = p3 = p4 = . . . = pn = 0), Equation (1)
turns into

Sr = k ln w = k M
(

N
M+ L

2

)
∑n

i=1 riln(1/ri) +

k
(

N
M+ L

2

)
∑L

j=1 ajln
(
1/aj) +

k p L
2

(
N

M+ L
2

)
ln n

(2)

For equal amounts of all monomer types i in the solution (r1 = r2 = r3 = . . . = rn = 1/n)
and for equal relative accessibilities within the defined chains (a1 = a2 = a3 = . . . = aL = 1/L),
Equation (2) further simplifies to:

Sr = k ln w = k M
(

N
M+ L

2

)
ln n +

k
(

N
M+ L

2

)
ln L +

k p L
2

(
N

M+ L
2

)
ln n

(3)

The applicability of Equation (3) may be shown on four characteristic cases that
correspond to points 1 to 4 in Figure 1. (all for equal monomer contributions and relative
accessibilities):
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(1) Pure monomer. If no chains are present and the system consists of monomer units
only, the average chain length is L = 1 and all units are fully random with p = 1. In this
case, Equation (3) reduces to Sr = k N ln n. For four different monomer varieties, the
corresponding entropy contribution for one mol of units (N = 6.022 · 1023) amounts to
Sr = 11.526 J/(K·mol), which is equivalent to the mixing entropy of the four different
units (with 0.25 mol of each monomer) in the same overall volume. This leads to a
relatively large entropy contribution Sr and, correspondingly, to a small sequential
order 1/Sr; this situation is represented by point 1 in Figure 1.

(2) Crystals. If we induce crystallization, e.g., from a mixed monomer solution by re-
moval of the solvent, we expect to obtain separate crystals of pure monomer types 1, 2,
3, . . . , n next to each other. In the random walk model, each crystal is the equivalent
to a very long chain (with a very large length L), while no monomer is present (M = 0).
At the same time, we have to consider n = 1 for a dominating part of the random walk,
since only one single type of monomer is found within each individual crystal. This
given, Equation (3) simplifies to Sr = k (2N/L) ln L, an entropy term which reflects the
variability of the possible contact points between the different crystals in the course
of the random walk. In effect, this leads to a very low sequential entropy Sr and,
correspondingly, to a high degree of order given by 1/Sr. In Figure 1, this situation
could be assigned to point 2 (Figure 1).

(3) Random chains, no monomer. In case of random chains (p = 1) in complete absence of
all monomers (meaning M = 0), Equation (3) turns into Sr = k (2N/L) ln L + k N ln n, a term
largely dominated the mixing entropy of the N units, as all of them are random over
the full pathway. Due to the variability of the chain contacts, the entropy contribution
is slightly larger than in case 1 and again leads to a slightly lower sequential order
1/Sr. This situation is generally referred to as the asphalt problem [18] and would
correspond to point 3 (Figure 1).

(4) Defined chains, no monomer. In a system without any residual monomer (which
means that M = 0) and fully defined chains with common sequences (p = 0), Equation
(3) reduces to Sr = k (2N/L) ln L, an entropy term similar to the one in case 3, but
this time reflecting the possible contact points between the chains in the course of
the random walk. Depending on the average chain length L, the resulting entropy
contribution Sr is significantly smaller than in case 1. In Figure 1, this situation reflects
the product of an extremely successful evolution with a high sequential order 1/Sr as
indicated by point 4 (Figure 1).

An interesting fact results from a comparison between cases 3 and 4, random chains
vs. defined chains. The difference between both entropy contributions is given by
∆Sr = k N ln n, equivalent to the monomer mixing entropy which is in the range of
several J/K for one mol of chain units. This value is of clear thermodynamic relevance. It
describes the driving force for the loss of well-defined chain sequences and is not neces-
sarily connected to the formation of shorter chains. If we describe the defined chains as
“living” and the random chains as “dead”, this value represents the amount of entropy
separating these two states. Of course, it is simply based on the low statistical weight of the
defined chain sequence that in the ideal case is equal to unity.

It is important to note that these results account for the statistics of all possible random
walk pathways. They also include possible intermolecular interactions between chains,
for example, during the chain reproduction process. In this case, the variable M, the
number of monomer units between chains on the pathway decreases based on preferred
chain-to-chain contacts. This is especially relevant in cases where evolution occurs under
the influence of wet–dry cycles [19,20]. Base pairing effects can be introduced by using
Equation (1) instead of Equation (2) or (3) and increasing the probability pi for a specific
type of monomer and for a specific chain site above its relative occurrence in the solution.
If chain molecules accumulate locally, e.g., inside lipid bilayer structures [21,22], this
again leads to a corresponding reduction of the parameter M and changes in the specific
accessibilities aj. If a combination of wet–dry cycling and membrane structure formation
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occurs, such as in the hydrothermal pool scenario [23], the approach can be adapted
accordingly. Finally, the description can be designed to describe the influence of solid
surfaces in the system [24,25]. Overall, the given approach of using the random walk
together with the statistical description by Equation (1) is very versatile and accounts for
all possible states during an RNA evolution. It delivers the sequential entropy contribution
Sr and, with its reciprocal value 1/Sr, an important measure for the sequential order in
the system. The value for Sr actually coincides with the system entropy proposed in a
machine learning approach to evolution [26–28]. In this context, a spontaneous decrease
of sequential entropy, e.g., during a successful reduplication process under dissipation of
energy, is assigned to the entropy decrease connected to the second law of learning [26].

4. Defining the Complexity of the System—The Size of the Reproducing Algorithm

Among the many approaches to determine system complexity as a parameter, the idea
originally developed by Andrey Nikolaevich Kolmogorov seems to be most appropriate
to characterize prebiotic development [29–32]. It is based on the assumption that, for
every structure, there is a minimal size of an algorithm (or computer program) which fully
describes its entity and all of its details. The size of this computer algorithm in a universal
description language in bit or byte may serve as a measure for the degree of complexity
of the system. Even though it is hard or even impossible to determine the minimal size of
the algorithm exactly (a problem known as Chaitin’s incompleteness theorem [33]), this
number still can be approached and estimated for a given system.

In connection with the “random walk” described in Section 2, it means one has to find
an algorithm that, if run for an infinite number of times, leads to a set of results identical
to that of the real system if sampled by an indefinite number of random walks over time.
The length of the code of this algorithm (in bit or byte) determines the given degree of
complexity. As an example, the complexity c of a defined chain sequence is given by the
number of bit necessary for its description. For a chain formed by L units with n = 4 (as for
RNA), it amounts to c = 2L (in bit) as 2 bit are needed to define each unit. In general, for a
choice from n types of units, we obtain

c = L log2 n (in bit) (4)

For undefined, random chains of length L, the situation turns out to be more compli-
cated. In principle, there are two strategies to account for the different chain sequences in
the system:

(a) The algorithm could create a list of all nL possible permutations for a chain of a length
L, and then assign an integer number between 0 and N/L, the upper limit defined by
the average number of chains in the total system. With a large number of possible
permutations, these values would require the largest part of the code. Therefore, the
value for the complexity can be approximated by:

c1 ≈ nL log2
N
L

(in bit) (5)

The precise value for c could be larger, as the short code for the creation of the list of
permutations must be accounted for, but it could also be smaller, as many zeros or
small values on the list of integers could be compressed in an optimized coding.

(b) The algorithm could contain a list of every single sequence of every single chain in
the system. Since all chains would add up to an overall length of N, the complexity
could then be approximated by:

c2 N log2 n (in bit) (6)

While strategy (a) is more efficient for short chains, strategy (b) definitely would be
more suitable for long chains. According to the definition of the Kolmogorov complexity, it
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is the smaller value of the set c1 and c2 that defines the degree of complexity. In borderline
cases, it may be even adequate to combine both strategies in order to achieve the smallest
code. In case of a wide distribution of chain lengths, the strategy (a) may account for the
shorter chains, while strategy (b) may be chosen for the longer chains.

If we assume that a certain fraction p of the chains is random (with
p1 = p2 = p3 = . . . = pn = 1/n) and that the fraction (1 − p) has a fully defined sequence (with
p1 = 1 and p2 = p3 = p4 = . . . = pn = 0), the information on the defined chain (Equation (4))
needs to be combined with the information of the random chains with the fraction p. In
this case, we either obtain

c1 ≈ L log2 n + nL log2
pN
L

(in bit) (7)

or, alternatively
c2 ≈ L log2 n + pN log2 n (in bit) (8)

As a last step, we may finally account for the monomer content in the solution. The
value of M as the average number of monomer units in between the chains principally
reduces the effort to define the random chain sequences. The number of random chains
pN/L in Equations (7) and (8) reduces to to pN/(L + M). Consequently, we obtain

c1 ≈ L log2 n + nL log2
pN

L + M
(in bit) (9)

or, alternatively

c2 ≈ L log2 n + L
pN

L + M
log2 n (in bit) (10)

as the terms that potentially determine the system’s complexity, depending on which one
is smaller.

Just as for the degrees of order, we derive the resulting degrees of complexity for the
characteristic cases indicated in Figure 1:

(1) Pure monomer. We assume that no chains are present and the system consists of
monomer units of equal relative contributions (r1 = r2 = r3 = . . . = rn = 1/n). Under
these circumstances, the choice of the next monomer in the random walk is fully
reproduced by a suitable random number generator that produces the integers 1, 2,
3, . . . , n at equal probability. This random number generator could be a subroutine
that would be called repetitively in a loop for N times. If run repeatedly for an infinite
number of times, this program would fully reproduce the statistics of a corresponding
infinite number of consecutive random walks. The overall size of the program code
could be limited to a few byte, corresponding to a very low degree of complexity. This
situation is represented by point 1 in Figure 1.

(2) Crystals. If we induce crystallization, e.g., from a mixed monomer solution by re-
moval of the solvent, we expect to obtain separate crystals of pure monomer types
1, 2, 3, . . . n next to each other. Simulating the random walk, the program would
run the random number generator once to define the type i of the starting crystal. It
would then assume a random walk through the same units i for an average length
determined by the average size of the crystals. After that, the type of the following
crystal i’ would be determined by the random generator, and so on, until the full total
length N is achieved. Again, if this routine is repeated for a very large number of
times, the statistics of the results would be identical to the one for random walks in
the real system. The size of the program code would only be slightly larger than in
case 1, so the complexity of this situation is still very low. In Figure 1, it could be
assigned to point 2.

(3) Completely random chains, no monomer. In case of random chains (p = 1) in com-
plete absence of all monomers (meaning M = 0), the random walk may initially
resemble the result of case 1 (pure monomer). However, with an increasing number
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of random walks over time, the statistical result of the corresponding sequences will
reflect the given sequences of the chains. Even though they have formed randomly,
they will determine the total statistics of an infinite set of random walks over time.
Therefore, an algorithm that is meant to reproduce these statistics must contain the
sequence of every single given chain, together with a subroutine deciding on the
random decisions on where to start and where to connect from chain to chain. This
means that its code necessarily contains all sequences and hence is determined either
by c1 in Equation (5) or by c2 in Equation (6), depending on which result is smaller.
Some additional code is required for the hopping between chains. In any case, the
result will be significantly larger than in cases 1 and 2. The system may have formed
randomly, nevertheless its state is quite complex. In Figure 1, this situation would
correspond to point 3.

(4) Completely defined chains, no monomer. In a system without any residual monomer
(which means that M = 0) and fully defined chains with a given sequence (p = 0), the
random walk will follow the defined sequence (or parts of it) repeatedly. The starting
unit and the connecting positions between the chains are the only random points of
the pathway. Correspondingly, the reproducing algorithm would have to include the
defined sequence of the chain together with an occasional call for the random number
generator. Hence, the number of bit or byte necessary for this algorithm depends on
the length L of the defined chain and is slightly larger than c = L · log2 n (in bit). This
system’s degree of complexity may be smaller than in case 3 (since N is generally
larger than L), but it definitely exceeds that of the cases 1 or 2 (point 4 in Figure 1).

5. Model Calculations

In order to show some characteristic results, model calculations for order according
to Equation (3) and complexity according to Equations (9) and (10) have been performed
showing some important dependencies. All calculations are for four different monomer
types (n = 4, like in RNA) and an overall amount of 1 mol units (0.25 mol for each base).
It turns out that, for a system size of one mol, c1 is always smaller than c2, such that only
Equation (9) is relevant for the degree of complexity. Due to the macroscopic size of the
system, the complexity can vary over many orders of magnitude up to the Tbit regime,
while the order (given as the reciprocal entropy) varies between 0.1 and 0.3 K/J. The
variations of the entropy are thermodynamically relevant and can correspond to the effect
of several kJ of heat at room temperature.

Figure 3 shows the dependence of the position in an order/complexity diagram vs.
the fraction p of random chains. The value for p is varied between 1.00 and 0.05 in steps of
0.05. An average chain length of L = 20 units and an average number of M = 10 monomers
between two chains on the random walk are assumed.

As expected, the order of the system given as the reciprocal entropy continuously
increases with an increasing fraction of defined chains (decreasing p). At the same time,
the complexity decreases, since there are less and less random chains to be accounted for.
The overall result in Figure 3 clearly shows that a simple increase of the fraction of defined
chains does not advance evolution as indicated by the diagonal in Figure 1. The system may
increase its degree of order, but simultaneously loses complexity such that the potential for
further development is reduced.

The effect of increasing average chain length L on the order/complexity diagram is
shown in Figure 4. The value for L varies between 1 (meaning that there are just monomers
and no chains at all) and 10.5 in steps of 0.5. An average fraction of random chains of
p = 0.5 and an average number of M = 10 monomers between two chains on the random
walk are assumed.
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Figure 3. Order/complexity diagram showing the effect of an increasing fraction of defined chains
(shown as a decreasing fraction p of random chains, from left to right in steps of 0.05).
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Figure 4. Order/complexity diagram representing the effect of increasing average chain length
(from bottom to top in steps of 0.5 units). Due to the large increase of the system’s complexity, this
parameter is shown on a logarithmic scale.

As expected, the complexity increases dramatically with increasing chain length, the
values spanning over six orders of magnitude. Regarding the order, the dependence
is more complex. Initially, for chain lengths between 1 and 5 units, reciprocal entropy
decreases with increasing numbers of connected units due to the increasing number of
system components. At this point, the mixing entropy dominates. With longer chains
(L > 5), order increases again since more and more units are connected. Comparing
the overall development with the evolution diagonal (Figure 1), it shows that only the
development of longer chains can be seen as a true contribution to a successful evolution
process provided that at least a fraction of the chains do have a defined sequence.

Figure 5 shows the effect of a decreasing number of monomer units M on the path
of the “random walk”. In this sense, the value for M varies from 20 to 0 in steps of 1. An
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average chain length of L = 20 units and an average fraction of random chains of p = 0.5
are assumed.
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Figure 5. Order/complexity diagram showing the effect of decreasing average number of monomer
units between chains on the “random walk” (from left to right). The value of M = 0 corresponds to a
situation without any monomer.

The resulting development shows a continuous increase in order and complexity and
almost ideally follows the evolution diagonal of Figure 1. An increasing contribution of the
oligomer chains vs. the monomer units basically stands for a more efficient polymerization
capability and generally for a more evolved system.

What could an actual evolution process look like? In nature, it could consist of
random changes (e.g., mutations) followed by periods of selection. In the following model
calculations (Figure 6), we assume a constant selection rate given by dp/dt = −0.01 per
time unit interrupted by mutation events in regular time intervals (every five time units).
During each mutation event, a certain percentage of the defined chains is lost, while a
single unit adds to the length of the defined chain. We also assume that the defined chains
are, on average, twice as long as the random chains. The result of this simplified evolution
model strongly depends on the degree of loss of defined chains during the mutation event.
With the periodicity of the mutation/selection events, each curve follows a zigzag pattern,
but the overall development leads to different final results after 50 time intervals.

At 90% loss (Figure 6, left), the development leads to a more complex situation,
but obviously to a significant decrease in structural order. The destructive influence of
the mutation events is not balanced out by selection, but still leads to increasing system
complexity. The situation at 60% loss during the mutation event seems more or less
static in terms of the system’s order state. However, at 30% loss of chain definition, the
selection process obviously gains ground over time and leads to a stepwise increase of
order and complexity. Such a pattern can be seen as a typical development for an evolution
process. Regarding the structural order that develops during these steps, one can see this
development as the outcome of a continuous learning process [26–28,34]. In this context,
the spontaneous reduction of the sequential entropy, which in a thermodynamic sense
derives from energy dissipation e.g., connected to base pairing, can be interpreted as the
result of the second law of learning [26].
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The self-organization process leading to an increase of order is typically interpreted
as a simple consequence of reduplication and selection. Stuart A. Kauffman has offered a
significantly broader view on self-organization [35]. According to this generalized model,
catalytic and regulatory networks will form among macromolecules such that they repro-
duce in a cooperative manner, a mechanism that is strikingly similar to functional patterns
found in organisms [35]. A system of competing networks can be seen as a more complex
contribution to the selection process leading to an increasing degree of structural order,
here simply represented by every second step in the zig-zag course in Figure 6.

The negative outcome at a loss rate of 90% at each mutation step (Figure 6 left) can
be partially compensated by a higher selection efficiency (increasing from left to right in
Figure 7).
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With increasing selection rate (given by a negative development of the random chain
fraction), the system may lose more order (reciprocal entropy) during each mutation step.
On the other hand, each following selection process becomes more and more efficient since
the selection starts with more complex material to choose from. Overall, this can end up
in increasing values for order and complexity at the end of each selection period (circles
in Figure 7 right). In the long run, however, an evolution process with a less destructive
mutation step is much more efficient (Figure 6 right). Only a continuous development
towards increasing order and increasing complexity is suitable for an efficient step towards
initial forms of life.



Life 2023, 13, 603 12 of 13

6. Summary and Outlook

Based on the idea of an RNA world, the concept of order and complexity proves
to be a versatile and powerful approach to evaluate the efficiency of general evolution
processes. It defines a general criterion for any development in any system that presumably
is capable to form functional prebiotic chemistry and to transform into early forms of life.
Beyond the application shown here, and with minor additions, it easily accounts for special
features such as multilayer and membrane environments, micelle and vesicle formation,
intermolecular arrangements, compartment formation, surface interactions, temperature
and pressure gradients. Further, it is suitable as a very general tool to identify life or any
early stages of its development and yields a thermodynamic understanding for its various
states of order.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/life13030603/s1, File S1: Justification of Equation (1).
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