
  

 

File S1: Justification of Eq. [1] 
 

A) General approach for a sequential entropy 

 

In statistical thermodynamics, the term entropy is defined according to the Boltzmann formula  

 

   S   =   k ln w             [S1] 

 

with k as Boltzmann’s constant and w as the statistical weight of the system’s state. We assume that a system 

consists of N separate particles of different varieties i = 1, 2, 3, …n. If each variety i occurs at a number of mi 

(with m1 + m2 + m3 + … + mn = N), the number of different sequences obtained in a random walk through all of the 

particles (and hence the corresponding statistical weight of the system’s state) is given by: 

 

   w   =   ே!௠భ! × ௠మ! × ௠య! × ….  × ௠೙!      [S2] 

Or, in a logarithmic form: 

 

   ln w = ln N! – ln m1! – ln m2! – ln m3! – … – ln mn!  [S3] 

 

With the approximation ln x! ≈ x ln x – x for large numbers x and accounting for m1 + m2 + m3 + … + mn = N, we 

get: 

 

   ln w  =   N ln N  -  ∑ 𝑚௜ ln m௜௡௜ୀଵ     

=    ∑ (𝑚௜ ln𝑁 − 𝑚௜ ln m௜)௡௜ୀଵ       [S4] 

 

When we introduce the fraction pi = mi / N of each variety i, this expression turns into: 

 

   ln w  =   - N  ∑ 𝑝௜ ln 𝑝௜௡௜ୀଵ    

=   N  ∑ 𝑝௜ ln (1/𝑝௜)௡௜ୀଵ         [S5] 

 

Together with the Boltzmann formula Eq. [S1], this leads to a term for the sequential entropy: 

 

S   =   k N  ∑ 𝑝௜ ln (1/𝑝௜௡௜ୀଵ )       [S6] 
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This result is completely analogous to the thermodynamic entropy of N particles with n different states i = 1, 2, 

3, …n and given populations pi where p1 + p2 + p3 + … + pn = 1.  

 

In a system that consists of only one single type of units (that is, p1 = 1 while all other populations are zero), all 

random walks would yield identical sequences. According to Eq. [S6], this leads to S = 0. In a system that 

consists of e.g. four different units with equal populations pi = ¼, the corresponding result is S = kN ln 4. 

 

B) A characteristic random walk 

We now need to consider an averaged characteristic random walk through the system following the rules listed 

in the text. Assuming that the system consists of interconnected units forming chains of an averaged length L as 

well as of monomer units in solution, we assume the random walk to connect an average of M free dissolved 

units before it connects to another chain. The contact from the unit M onto the next chain preferably occurs at a 

chain position with a high accessibility ai. Starting from this point, the path follows the chain in any direction 

over a certain number of chain units until the end of the chain, where the path (for M > 0) regularly continues 

towards the dissolved units such that the described step starts from the beginning. The overall average number 

of chain units is necessarily determined by L/2. So on average, a typical step including one path through the 

solution and one stretch of a chain includes M + L/2 units. Considering a random walk over N units, we need to 

account for N/( M + L/2) repetitions of this step.  

 

During each such step (one path through the solution and one stretch of a chain), three different contributions 

to the sequential entropy have to be accounted for: i) the path through the monomers in solution, ii) the contact 

point between the last monomer unit and the chain, iii) the path along the chain to one of its end points. All 

these contributions are considered in the following. 

 

1) Path through the monomer solution 

This contribution to the sequential entropy is determined by the number of monomer units per step M and by 

the relative populations ri of the n different monomer types where r1 + r2 + r3 + … + rn = 1. In analogy to Eq. [S6] 

and for N/( M + L/2) steps, it reads: 

 

S1   =   k Mቆ ேெାಽమቇ  ∑ 𝑟௜ ln (1/𝑟௜)௡௜ୀଵ      [S7] 

 

For just one single monomer type and r1 = 1, this contribution is zero. For e.g. four different monomer types 

with equal populations, it turns into (ln 4) k MN/( M + L/2). 

 

2) Contact point between last monomer and first chain unit 

The second contribution to the sequential entropy is determined by the relative accessibility aj of the L different 

chain units where a1 + a2 + a3 + … + aL = 1. In analogy to Eq. [S6] and for N/( M + L/2) steps, it reads: 
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S2   =   k ቆ ேெାಽమቇ  ∑ 𝑎௝  ln (1/a௝)௅௝ୀଵ      [S8] 

 

For just one single accessible unit j in the chain and aj = 1, this contribution is zero. For equal accessibility of all 

chain units, it turns into (ln L) k N/( M + L/2). 

 

3) Path along the chain 

The third contribution to the sequential entropy is determined by the relative predictability pk of each following 

unit in the chain with p1 + p2 + p3 + … + pn = 1.  If the chain sequence is completely determined, all predictability 

values are set to p1 = 1 with the index k = 1 denoting the most likely unit type. If the chain is completely random, 

all predictability values are equal to 1/n. In analogy to Eq. [S6] and for L/2 units in each of the N/( M + L/2) steps, 

it reads: 

 

S3   =   k ௅ଶ ቆ ேெାಽమቇ  ∑ 𝑝௞ ln (1/𝑝௞)௡௞ୀଵ     [S9] 

 

For a completely determined sequence with p1 = 1, this contribution is zero. For a completely random chain 

consisting of e.g. four different units, it turns into (ln 4) k (L/2)N/( M + L/2). 

 

In combination, all three contributions S1, S2 and S3 add up to Eq. [1] in the main text. If N is set to 6.022∙1023, the 

resulting value Sr  =  S1 + S2 + S3 accounts for a molar sequential entropy with respect to the average unit. Its 

thermodynamic equivalent is the mixing entropy. This mixing entropy would determine the driving force for 

the complete loss of a fully determined sequence.  


