Effects of Partial Replacement of Nitrogen Fertilizer with Organic Fertilizer on Rice Growth, Nitrogen Utilization Efficiency and Soil Properties in the Yangtze River Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Experimental Area
2.2. Experimental Design, Treatments, and Cropping Practices
2.3. Data Collection
2.3.1. Grain Yield and Yield Components
- S = Standard deviation of the average rice yield, kg·hm−2;
- X = Average rice yield, kg·hm−2;
- Xmax = Maximum rice yield during the experiment, kg·hm−2.
2.3.2. Plant Dry Matter Accumulation in Different Growth Stages
2.3.3. Nitrogen Use Efficiency
- REN = Nitrogen recovery efficiency in the current season, %;
- N = Nitrogen accumulation with applied nitrogen, kg·hm−2;
- N0 = Nitrogen accumulation in the control treatment, kg·hm−2;
- F = Amount of fertilizer, kg·hm−2;
- AEN = Agronomic nitrogen use efficiency, kg·kg−1;
- Y = Crop yield with applied nitrogen, kg·hm−2;
- Y0 = Crop yield in the control treatment, kg·hm−2;
- PFPN = Partial productivity of nitrogen fertilizer, kg·kg−1.
2.3.4. Soil Sample Collection and Determination of Physiochemical Properties
2.4. Statistical Analysis
3. Results
3.1. Effects of Organic Fertilizer as a Partial Replacement for Chemical Fertilizer on Rice Yield Components and Grain Production
3.2. Effects of Organic Fertilizer as a Partial Replacement for Chemical Fertilizer on the Rice Straw Yield and Total Biomass Production
3.3. Effects of Organic Fertilizer as a Partial Replacement for Chemical Fertilizer on the Nutrient Concentrations and Nutrient Uptake in Plants
3.4. Effects of Organic Fertilizer as a Partial Replacement for Chemical Fertilizer on the Nutrient Harvest Index and Fertilizer Use Efficiency of Rice
3.5. Effects of Organic Fertilizer as a Partial Replacement for Chemical Fertilizer on Soil Chemical and Physical Properties
4. Discussion
4.1. Rice Yield Components and Grain Production
4.2. Straw and Total Biomass Production
4.3. Nutrient Concentrations and Nutrient Uptake in Plants
4.4. Fertilizer Use Efficiency of Rice and Nutrient Harvest Index
4.5. Soil Chemical and Physical Properties
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cong, R.-H.; Zhang, Z.; Lu, J.-W.; Li, X.-K.; Ren, T.; Wang, W.-N. Evaluation of nitrogen requirement and efficiency of rice in the region of Yangtze River valley based on large-scale field experiments. J. Integr. Agric. 2015, 14, 2090–2098. [Google Scholar] [CrossRef] [Green Version]
- Bailey-Serres, J.; Parker, J.E.; Ainsworth, E.A.; Oldroyd, G.E.D.; Schroeder, J.I. Genetic strategies for improving crop yields. Nature 2019, 575, 109–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, J.H.; Liu, X.J.; Zhang, Y.; Shen, J.L.; Han, W.X.; Zhang, W.F.; Christie, P.; Goulding, K.W.T.; Vitousek, P.M.; Zhang, F.S. Significant Acidification in Major Chinese Croplands. Science 2010, 327, 1008–1010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, G.; Chen, X.; Cui, Z.; Yue, S.; Zhang, F. Estimated reactive nitrogen losses for intensive maize production in China. Agric. Ecosyst. Environ. 2014, 197, 293–300. [Google Scholar] [CrossRef]
- Huang, J.; Huang, Z.; Jia, X.; Hu, R.; Xiang, C. Longterm reduction of nitrogen fertilizer use through knowledge training in rice production in China. Agric. Syst. 2015, 135, 105–111. [Google Scholar] [CrossRef]
- Ministry of Ecology and Environment of the People’s Republic of China. Announcement on the Release of the Bulletin of the Second National Pollution Source Survey [EB/OL]. Available online: https://www.mee.gov.cn/xxgk2018/xxgk/xxgk01/2006/t20200610_783547.html (accessed on 8 June 2020).
- Ju, X.; Zhang, F.; Bao, X.; Römheld, V.; Roelcke, M. Utilization and management of organic wastes in Chinese agriculture: Past, present and perspectives. Sci. China Life Sci. 2005, 48, 965–979. [Google Scholar]
- Zhang, M.; Yao, Y.; Tian, Y.; Ceng, K.; Zhao, M.; Zhao, M.; Yin, B. Increasing yield and N use efficiency with organic fertilizer in Chinese intensive rice cropping systems. Field Crop. Res. 2018, 227, 102–109. [Google Scholar] [CrossRef]
- Zhang, T.Y.; Sun, W.L.; Wang, R.B. Analysis of the contribution of fertilizer zero growth to agricultural pollution reduction: Based on GM (1,1) model and decoupling theory. Resour. Environ. Yangtze Basin 2020, 29, 265–274, (In Chinese with English Abstract). [Google Scholar]
- Dai, X.; Song, D.; Zhou, W.; Liu, G.; Liang, G.; He, P.; Sun, G.; Yuan, F.; Liu, Z.; Yao, Y.; et al. Partial substitution of chemical nitrogen with organic nitrogen improves rice yield, soil biochemical indictors and microbial composition in a double rice cropping system in south China. Soil Tillage Res. 2021, 205, 104753. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Wei, G.A.O.; Luan, H.A.; Tang, J.W.; Li, R.N.; Li, M.Y.; Zhang, H.Z.; Huang, S.W. Effects of a decade of organic fertilizer substitution on vegetable yield and soil phosphorus pools, phosphatase activities, and the microbial community in a greenhouse vegetable production system. J. Integr. Agric. 2022, 21, 15. [Google Scholar] [CrossRef]
- Duan, Y.; Xu, M.; Gao, S.; Yang, X.; Huang, S.; Liu, H.; Wang, B. Nitrogen use efficiency in a wheat-corn cropping system from 15 years of manure and fertilizer applications. Field Crop. Res. 2014, 157, 47–56. [Google Scholar] [CrossRef]
- Song, W.; Shu, A.; Liu, J.; Shi, W.; Li, M.; Zhang, W.; Li, Z.; Liu, G.; Yuan, F.; Zhang, S.; et al. Effects of long-term fertilization with different substitution ratios of organic fertilizer on paddy soil. Pedosphere 2022, 32, 637–648. [Google Scholar] [CrossRef]
- Dawe, D.; Dobermann, A.; Ladha, J.; Yadav, R.; Bao, L.; Gupta, R.; Lal, P.; Panaullah, G.; Sariam, O.; Singh, Y.; et al. Do organic amendments improve yield trends and profitability in intensive rice systems? Field Crop. Res. 2003, 83, 191–213. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, C.; Wang, Y.; Hu, Y.; Christie, P.; Zhang, J.; Li, X. Maize yield and soil fertility with combined use of compost and inorganic fertilizers on a calcareous soil on the North China Plain. Soil Tillage Res. 2016, 155, 85–94. [Google Scholar] [CrossRef]
- Hou, H.Q.; Ji, J.H.; Liu, X.M.; Lv, Z.Z.; Lan, X.J.; Liu, Y.R. Effects of different proportion of organic fertilizers on rice yield and nitrogen use efficiency. Soils 2020, 52, 758–765, (In Chinese with English Abstract). [Google Scholar]
- Gong, Z.; Lei, W.; Chen, Z.; Gao, Y.; Zeng, S.; Zhang, G.; Xiao, D.; Shugang, L. Chinese soil taxonomy. J. Chin. Acad. Sci. 2007, 21, 57–58. (In English) [Google Scholar]
- Han, X.; Hu, C.; Chen, Y.; Qiao, Y.; Liu, D.; Fan, J.; Li, S.; Zhang, Z. Crop yield stability and sustainability in a rice-wheat cropping system based on 34-year field experiment. Eur. J. Agron. 2020, 113, 125965. [Google Scholar] [CrossRef]
- Wanjari, R.H.; Singh, M.V.; Ghosh, P.K. Sustainable Yield Index: An Approach to Evaluate the Sustainability of Long-Term Intensive Cropping Systems in India. J. Sustain. Agric. 2004, 24, 39–56. [Google Scholar] [CrossRef]
- Shidan, B. Soil Agricultural Chemistry Analysis, 3rd ed.; China Agriculture Press: Beijing, China, 2013; pp. 72–75. [Google Scholar]
- Nelson, D.W.; Sommers, L.E. Total carbon, organic carbon and organic matter. In Methods of Soil Analysis Part 2. Chemical and Microbial Properties; American Society of Agronomy: Madison, WI, USA, 1982. [Google Scholar]
- Bremner, J.M. Nitrogen total. In Methods of Soil Analysis Part 3: Chemical Methods; American Society of Agronomy: Madison, WI, USA, 1996. [Google Scholar]
- Olsen, S.R.; Cole, C.V.; Watanabe, F.; Dean, L.A. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate; USDA Circular No. 939; US Department of Agriculture: Washington, DC, USA, 1954; pp. 19–20. [Google Scholar]
- Lu, R.K. Analytic Methods of Soil Agrochemistry; China Agricultural Science and Technology Press: Beijing, China, 1999. (In Chinese) [Google Scholar]
- Thomas, G.W. Soil pH and Soil Acidity; John Wiley & Sons: Hoboken, NJ, USA, 2018. [Google Scholar]
- ISO 1272-2017; Soil Quality-Determination of Dry Bulk Density. International Organization for Standardization: Geneva, Switzerland, 2017.
- Miao, Z.; Yu, S.E.; Lu, B.; Ding, J.; Yu, Z. Relationships of water requirement-photosynthesis-production for paddy rice using structural equation modeling. Trans. Chin. Soc. Agric. Eng. 2013, 29, 91–98. [Google Scholar]
- Tao, Y.; Qu, H.; Li, Q.; Gu, X.; Zhang, Y.; Liu, M.; Guo, L.; Liu, J.; Wei, J.; Wei, G.; et al. Potential to improve N uptake and grain yield in water saving ground cover rice production system. Field Crop. Res. 2014, 168, 101–108. [Google Scholar] [CrossRef]
- Khatun, A.; Bhuiya, M.; Saleque, M. Nitrogen uptake from organic manures and chemical fertilizer and yield of lowland rice. Bull. Inst. Trop. Agric. Kyushu Univ. 2016, 39, 13–27. [Google Scholar]
- Li, L.L.; Li, S.T. A review on nitrogen mineralization of organic manure and affecting factors. J. Plant Nutr. Fertil. 2012, 18, 749–757, (In Chinese with English Abstract). [Google Scholar]
- Wu, J.; Ji, X.; Peng, H.; Xie, Y.; Guan, D.; Tian, F.; Zhu, J.; Huo, L. Effects of different organic fertilizers on greenhouse gas emissions and yield in paddy soils. Trans. Chin. Soc. Agric. Eng. 2018, 34, 162–169, (In Chinese with English Abstract). [Google Scholar]
- Zhao, Z.; Yan, S.; Liu, F.; Ji, P.; Wang, X.; Tong, Y. Effects of Chemical Fertilizer Combined with Organic Manure on Early Rice Yield and Nitrogen Fate in Paddy Field. J. Shenyang Agric. Univ. 2019, 50, 728–733, (In Chinese with English Abstract). [Google Scholar]
- Yang, J.; Zhang, J. Crop management techniques to enhance harvest index in rice. J. Exp. Bot. 2010, 61, 3177–3189. [Google Scholar] [CrossRef] [Green Version]
- Yuan, L.; Zhang, Z.; Cao, X.; Zhu, S.; Zhang, X.; Wu, L. Responses of rice production, milled rice quality and soil properties to various nitrogen inputs and rice straw incorporation under continuous plastic film mulching cultivation. Field Crop. Res. 2014, 155, 164–171. [Google Scholar] [CrossRef]
- Yang, C.; Yang, L.; Yan, T.; Outyang, Z. Effects of nutrient regimes on dry matter production and nutrient uptake and distribution by rice plant. Chin. J. Soil Sci. 2004, 35, 200–202, (In Chinese with English Abstract). [Google Scholar]
- Sui, B.; Feng, X.; Tian, G.; Hu, X.; Shen, Q.; Guo, S. Optimizing nitrogen supply increases rice yield and nitrogen use efficiency by regulation yield formation factors. Field Crop. Res. 2013, 150, 99–107. [Google Scholar] [CrossRef]
- Liao, Y.L.; Lu, Y.H.; Xie, J.; Zhou, X.; Nie, J.; Tang, W.G. Effects of combined application of controlled release nitrogen fertilizer and Chinese milk vetch on yield and nitrogen nutrient uptake of early rice. J. Soil Water Conserv. 2015, 29, 190–201, (In Chinese with English Abstract). [Google Scholar]
- Pampolino, M.F.; Manguiat, I.J.; Ramanathan, S.; Gines, H.C.; Tan, P.S.; Chi, T.T.N.; Rajendran, R.; Buresh, R.J. Environmental impact and economic benefits of site-specific nutrient management (SSNM) in irrigated rice systems. Agric. Syst. 2007, 93, 1–24. [Google Scholar] [CrossRef]
- Xu, M.; Li, D.C.; Li, J. Effects of organic manure application combined with chemical fertilizers on nutrients absorption and yield of rice in Hunan of China. Sci. Agric. Sin. 2008, 41, 3133–3139, (In Chinese with English Abstract). [Google Scholar]
- Fu, Y.Q.; Zhong, X.H.; Zeng, J.H.; Liang, K.M.; Pan, J.F.; Xin, Y.F.; Liu, Y.Z.; Hu, X.Y.; Peng, B.L.; Chen, R.B.; et al. Improving grain yield, nitrogen use efficiency and radiation use efficiency by dense planting, with delayed and reduced nitrogen application, in double cropping rice in South China. J. Integr. Agric. 2021, 20, 565–580. [Google Scholar] [CrossRef]
- Hayatu, N.G.; Liu, Y.R.; Han, T.F.; Daba, N.A.; Zhang, L.; Zhe, S.; Li, J.W.; Muazu, H.; Lamlom, S.F.; Zhang, H.M. Carbon sequestration rate, nitrogen use efficiency and rice yield responses to long-term substitution of chemical fertilizer by organic manure in a rice-rice cropping system. J. Integr. Agric. 2022, 2095–3119. [Google Scholar] [CrossRef]
- Ma, Q.; Yu, W.T.; Shen, S.M.; Zhou, H.; Jiang, Z.S.; Xu, Y.G. Effects of fertilization on nutrient budget and nitrogen use efficiency of farmland soil under different precipitation in northeastern China. Nutr. Cycl. Agroecosyst. 2010, 88, 315–327. [Google Scholar] [CrossRef]
- Liang, B.; Huang, K.; Fu, Y.; Li, H.; Wang, C.; Zhong, X.; Lu, Q.; Hu, C. Effect of combined application of organic fertilizer and chemical fertilizer in different ratios on growth, yield and quality of fluecured tobacco. Asian Agric. Res. 2017, 9, 43–46. [Google Scholar]
- Miao, Y.L.; Liang, F.; Xie, J.; Zhang, Q.; Liu, Y.R.; Zhao, X.M. Effects of Long-term Organic Fertilizer Instead of Chemical Fertilizer on Organic Carbon Stability of Paddy Soil. Acta Pedol. Sin. 2023. (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Han, B.J.; Chen, Y.; Qiao, Y.F.; Han, X.Z.; Meng, K. effect of long term application organic fertilizer on soil physiochemical properties. Syst. Sci. Compr. Stud. Agric. 2004, 20, 294–296, (In Chinese with English Abstract). [Google Scholar]
- Lehmann, J.; Kinyangi, J.; Solomon, D. Organic matter stabilization in soil micro-aggregates: Implications from spatial heterogeneity of organic carbon contents and carbon forms. Biogeochemistry 2007, 85, 45–57. [Google Scholar] [CrossRef]
- Wen, Y.; Li, Y.; Yuan, L.; Li, J.; Li, W.; Lin, Z.; Zhao, B. Comprehensive assessment methodology of characteristics of soil fertility under different fertilization regimes in North China. Trans. Chin. Soc. Agric. Eng. 2015, 31, 91–99, (In Chinese with English Abstract). [Google Scholar]
- Tao, Y.Y.; Jin, M.J.; Tang, Y.L.; Zhu, X.L.; Lu, C.Y.; Wang, H.H.; Shi, L.L.; Zhou, X.W.; Shen, M.X. Partial nitrogen fertilizer substitution by aquatic plant compost to improve rice yield and paddy soil fertility. Trans. Chin. Soc. Agric. Eng. 2017, 33, 196–202, (In Chinese with English Abstract). [Google Scholar]
Year | Treatment | PT/(104·hm−2) | SP/(Panicle−1) | PFG/(%) | TGW/(g) |
---|---|---|---|---|---|
2012 | CK | 169.5b | 178.9b | 73.4a | 27.5b |
HY | 196.5a | 224.1a | 74.5a | 27.9ab | |
RF | 178.8ab | 209.5a | 73.7a | 27.5b | |
CFR | 187.0a | 210.5a | 78.5a | 28.3a | |
DMR | 189.0a | 213.7a | 75.3a | 28.3a | |
2013 | CK | 156.7b | 182.9b | 70.0a | 27.0b |
HY | 195.0a | 240.1a | 80.0a | 30.6a | |
RF | 180.0ab | 199.9b | 79.4a | 29.8a | |
CFR | 185.0ab | 238.3a | 76.7a | 30.4a | |
DMR | 213.3a | 213.3ab | 78.9a | 28.8ab | |
2014 | CK | 142.5c | 184.3b | 76.6a | 27.1b |
HY | 207.1a | 219.9a | 78.7a | 29.0a | |
RF | 178.3b | 195.2ab | 77.7a | 28.9a | |
CFR | 200.0ab | 213.1ab | 77.2a | 29.2a | |
DMR | 199.2ab | 212.6ab | 78.3a | 29.2a | |
2015 | CK | 138.8c | 175.8b | 74.0b | 23.7b |
HY | 201.1a | 213.3a | 78.8a | 23.8b | |
RF | 171.8b | 203.9a | 80.8a | 24.2ab | |
CFR | 205.2a | 207.6a | 79.6a | 24.5a | |
DMR | 213.1a | 212.4a | 79.9a | 24.3ab | |
2016 | CK | 136.5c | 185.4b | 78.3b | 23.5a |
HY | 197.7a | 211.9a | 81.8ab | 24.0a | |
RF | 170.1b | 204.9a | 82.9ab | 23.8a | |
CFR | 205.2a | 217.4a | 84.8a | 24.1a | |
DMR | 208.6a | 216.1a | 86.0a | 24.2a | |
2017 | CK | 154.7b | 184.0b | 76.7b | 23.6b |
HY | 208.3a | 212.5a | 82.2ab | 24.2ab | |
RF | 196.4a | 207.8a | 83.8a | 24.1ab | |
CFR | 212.3a | 217.3a | 84.4a | 24.3a | |
DMR | 213.4a | 220.1a | 86.5a | 24.3a | |
2018 | CK | 205.0b | 196.4b | 76.6a | 21.9a |
HY | 277.5ab | 212.3a | 79.8a | 22.4a | |
RF | 247.5ab | 201.9a | 79.8a | 22.4a | |
CFR | 282.5a | 217.5a | 76.1a | 22.5a | |
DMR | 272.5ab | 217.4a | 81.4a | 22.1a | |
2019 | CK | 181.8c | 187.0b | 76.5a | 23.5c |
HY | 253.5a | 210.2ab | 80.0a | 25.4ab | |
RF | 190.5c | 208.0ab | 81.0a | 25.6ab | |
CFR | 256.5a | 212.1ab | 79.6a | 26.1a | |
DMR | 214.5b | 217.2a | 81.9a | 24.2bc | |
2020 | CK | 184.5d | 183.6b | 77.1a | 22.6b |
HY | 259.5a | 210.1a | 80.1a | 25.6a | |
RF | 205.5c | 203.8a | 80.9a | 25.7a | |
CFR | 241.5b | 213.2a | 80.5a | 25.9a | |
DMR | 243.0b | 214.3a | 81.8a | 25.4a | |
F value | |||||
(Year) Y | 31.98 ** | 1.096 | 7.456 ** | 159.858 ** | |
(Treatment) T | 55.07 ** | 32.719 ** | 9.785 ** | 19.579 ** | |
Y × T | 1.25 | 0.810 | 0.648 | 1.940 |
Treatment | Year | Average Yields | Accumulative Yields | CV | SYI | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | |||||
CK | 7.4b | 6.4c | 5.5b | 5.8c | 6.9d | 6.5c | 6.9b | 6.5b | 6.4b | 6.5c | 58.2c | 0.10a | 0.773b |
HY | 10.2a | 10.6a | 10.3a | 10.0a | 9.9b | 10.0ab | 9.2a | 11.2a | 10.5a | 10.2a | 92.0a | 0.07c | 0.848a |
RF | 9.4a | 9.8b | 9.8a | 8.4b | 8.8c | 9.2b | 9.2a | 10.6a | 10.0a | 9.5b | 85.2b | 0.08b | 0.792b |
CFR | 9.8a | 10.2ab | 10.0a | 10.6a | 10.5ab | 10.6a | 10.2a | 11.3a | 10.4a | 10.4a | 93.5a | 0.05d | 0.867a |
DMR | 9.6a | 10.5a | 10.0a | 10.8a | 10.9a | 10.9a | 10.0a | 11.5a | 10.6a | 10.5a | 94.8a | 0.07c | 0.854a |
F value | |||||||||||||
Year (Y) | 7.647 ** | ||||||||||||
Treatment (T) | 324.066 ** | ||||||||||||
Y × T | 3.108 ** |
Year | Treatment | Straw Yield (t·hm−2) | Total Biomass (t·hm−2) | Harvest Index |
---|---|---|---|---|
2012 | CK | 7.69b | 15.09c | 0.49b |
HY | 9.30a | 19.47a | 0.52a | |
RF | 8.44ab | 17.84b | 0.53a | |
CFR | 9.23a | 19.01ab | 0.51b | |
DMR | 8.69a | 18.32ab | 0.53a | |
2013 | CK | 6.58b | 12.97b | 0.49b |
HY | 9.81a | 20.38a | 0.52a | |
RF | 9.40a | 19.20a | 0.51ab | |
CFR | 9.86a | 20.10a | 0.51ab | |
DMR | 9.84a | 20.35a | 0.52ab | |
2014 | CK | 5.99b | 11.46b | 0.48b |
HY | 9.11a | 19.43a | 0.53a | |
RF | 9.98a | 19.74a | 0.49b | |
CFR | 9.18a | 19.18a | 0.52a | |
DMR | 9.39a | 19.40a | 0.52a | |
2015 | CK | 6.02c | 11.80c | 0.49b |
HY | 8.63ab | 18.64a | 0.54a | |
RF | 7.54b | 15.92b | 0.53a | |
CFR | 9.57a | 20.18a | 0.53a | |
DMR | 9.22a | 19.98a | 0.54a | |
2016 | CK | 7.08b | 13.93c | 0.49b |
HY | 9.77a | 19.66a | 0.50b | |
RF | 7.59b | 16.37b | 0.54a | |
CFR | 8.93a | 19.40a | 0.54a | |
DMR | 9.13a | 20.00a | 0.54a | |
2017 | CK | 6.83b | 13.29c | 0.49c |
HY | 10.03a | 20.01ab | 0.50bc | |
RF | 8.44a | 17.61b | 0.52ab | |
CFR | 9.82a | 20.40a | 0.52ab | |
DMR | 9.15a | 20.01ab | 0.54a | |
2018 | CK | 7.05b | 13.99b | 0.50c |
HY | 8.66a | 17.90a | 0.52bc | |
RF | 8.39a | 17.63a | 0.52ab | |
CFR | 8.88a | 19.07a | 0.53a | |
DMR | 8.41a | 18.44a | 0.54a | |
2019 | CK | 6.54c | 13.01b | 0.50b |
HY | 11.16a | 22.47a | 0.50b | |
RF | 10.27ab | 20.92a | 0.51b | |
CFR | 9.71b | 20.87a | 0.54a | |
DMR | 9.72b | 21.24a | 0.54a | |
2020 | CK | 7.79b | 14.23b | 0.45b |
HY | 10.96a | 21.43a | 0.49ab | |
RF | 10.03a | 20.01a | 0.50 ab | |
CFR | 9.97a | 20.42a | 0.51a | |
DMR | 9.92a | 20.51a | 0.52a |
Treatment | REN (%) | AEN (kg/kg) | PFPN (kg/kg) | Nitrogen Harvest Index (%) |
---|---|---|---|---|
CK | - | - | - | 63.71a |
HY | 38.27c | 14.95a | 38.80b | 62.70a |
RF | 49.52b | 16.88a | 47.55a | 60.23a |
CFR | 54.64ab | 19.09a | 49.75a | 61.13a |
DMR | 61.16a | 19.72a | 50.39a | 63.89a |
Treatment | pH | Organic Matter/(g·kg−1) | Total N/(g·kg−1) | Available P/(mg·kg−1) | Available K/(mg·kg−1) | Bulk Density/(g·kg−3) |
---|---|---|---|---|---|---|
CK | 7.13a | 23.85d | 1.41b | 8.75c | 110.83d | 1.26a |
HY | 7.00a | 31.53c | 1.86ab | 29.84b | 209.22b | 1.16bc |
RF | 7.01a | 30.28c | 1.79ab | 12.48bc | 132.91c | 1.20ab |
CFR | 6.97a | 35.48b | 2.09a | 18.17bc | 194.92b | 1.13bc |
DMR | 6.96a | 39.43a | 2.26a | 60.01a | 231.24a | 1.08c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Zhang, X.; Yuan, M.; Wu, G.; Sun, Y. Effects of Partial Replacement of Nitrogen Fertilizer with Organic Fertilizer on Rice Growth, Nitrogen Utilization Efficiency and Soil Properties in the Yangtze River Basin. Life 2023, 13, 624. https://doi.org/10.3390/life13030624
Wang J, Zhang X, Yuan M, Wu G, Sun Y. Effects of Partial Replacement of Nitrogen Fertilizer with Organic Fertilizer on Rice Growth, Nitrogen Utilization Efficiency and Soil Properties in the Yangtze River Basin. Life. 2023; 13(3):624. https://doi.org/10.3390/life13030624
Chicago/Turabian StyleWang, Jiabao, Xiangming Zhang, Manman Yuan, Gang Wu, and Yixiang Sun. 2023. "Effects of Partial Replacement of Nitrogen Fertilizer with Organic Fertilizer on Rice Growth, Nitrogen Utilization Efficiency and Soil Properties in the Yangtze River Basin" Life 13, no. 3: 624. https://doi.org/10.3390/life13030624
APA StyleWang, J., Zhang, X., Yuan, M., Wu, G., & Sun, Y. (2023). Effects of Partial Replacement of Nitrogen Fertilizer with Organic Fertilizer on Rice Growth, Nitrogen Utilization Efficiency and Soil Properties in the Yangtze River Basin. Life, 13(3), 624. https://doi.org/10.3390/life13030624