Altered Grey Matter-Brain Healthcare Quotient: Interventions of Olfactory Training and Learning of Neuroplasticity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Intervention Design
2.3. Olfactory Training
2.4. Learning Neuroplasticity and Brain Healthcare
2.5. Psychological Characteristics
2.6. Questionnaire for Olfactory Training
2.7. Questionnaire for Behavioural Changes
2.8. MRI
2.9. Image Processing for Brain Volume
2.10. Statistical Analyses
3. Results
3.1. Demographic Data
3.2. Changes in the Brain over 2 Months
3.3. Brain Changes and Psychological Characteristics
3.4. Brain Changes and the Number of Correct Answers in the Olfactory Training Questionnaire
3.5. Behavioural Changes in Three Groups Two Months after Training
4. Discussion
4.1. Olfactory Training
4.2. Learning Neuroplasticity and Brain Healthcare
4.3. Psychological Characteristics and the Effect of the Intervention
4.4. Length of the Training
4.5. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Terry, R.D.; DeTeresa, R.; Hansen, L.A. Neocortical cell counts in normal human adult aging. Ann. Neurol. 1987, 21, 530–539. [Google Scholar] [CrossRef] [PubMed]
- Hedman, A.M.; van Haren, N.E.; Schnack, H.G.; Kahn, R.S.; Hulshoff Pol, H.E. Human brain changes across the life span: A review of 56 longitudinal magnetic resonance imaging studies. Hum. Brain Mapp. 2012, 33, 1987–2002. [Google Scholar] [CrossRef] [PubMed]
- Cardenas, V.A.; Chao, L.L.; Studholme, C.; Yaffe, K.; Miller, B.L.; Madison, C.; Buckley, S.T.; Mungas, D.; Schuff, N.; Weiner, M.W. Brain atrophy associated with baseline and longitudinal measures of cognition. Neurobiol. Aging 2011, 32, 572–580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prins, N.D.; Scheltens, P. White matter hyperintensities, cognitive impairment and dementia: An update. Nat. Rev. Neurol. 2015, 11, 157–165. [Google Scholar] [CrossRef]
- Stern, Y.; Barnes, C.A.; Grady, C.; Jones, R.N.; Raz, N. Brain reserve, cognitive reserve, compensation, and maintenance: Operationalization, validity, and mechanisms of cognitive resilience. Neurobiol. Aging 2019, 83, 124–129. [Google Scholar] [CrossRef]
- Zatorre, R.J.; Fields, R.D.; Johansen-Berg, H. Plasticity in gray and white: Neuroimaging changes in brain structure during learning. Nat. Neurosci. 2012, 15, 528–536. [Google Scholar] [CrossRef] [Green Version]
- Draganski, B.; May, A. Training-induced structural changes in the adult human brain. Behav. Brain Res. 2008, 192, 137–142. [Google Scholar] [CrossRef]
- Boyke, J.; Driemeyer, J.; Gaser, C.; Buchel, C.; May, A. Training-induced brain structure changes in the elderly. J. Neurosci. 2008, 28, 7031–7035. [Google Scholar] [CrossRef] [Green Version]
- Draganski, B.; Gaser, C.; Kempermann, G.; Kuhn, H.G.; Winkler, J.; Büchel, C.; May, A. Temporal and spatial dynamics of brain structure changes during extensive learning. J. Neurosci. 2006, 26, 6314–6317. [Google Scholar] [CrossRef] [Green Version]
- Engvig, A.; Fjell, A.M.; Westlye, L.T.; Moberget, T.; Sundseth, Ø.; Larsen, V.A.; Walhovd, K.B. Effects of memory training on cortical thickness in the elderly. Neuroimage 2010, 52, 1667–1676. [Google Scholar] [CrossRef] [Green Version]
- Wenger, E.; Brozzoli, C.; Lindenberger, U.; Lövdén, M. Expansion and Renormalization of Human Brain Structure During Skill Acquisition. Trends Cogn. Sci. 2017, 21, 930–939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, L.; Abutalebi, J.; Emmorey, K.; Gong, G.; Yan, X.; Feng, X.; Zou, L.; Ding, G. How bilingualism protects the brain from aging: Insights from bimodal bilinguals. Hum. Brain Mapp. 2017, 38, 4109–4124. [Google Scholar] [CrossRef] [PubMed]
- Gryga, M.; Taubert, M.; Dukart, J.; Vollmann, H.; Conde, V.; Sehm, B.; Villringer, A.; Ragert, P. Bidirectional gray matter changes after complex motor skill learning. Front. Syst. Neurosci. 2012, 6, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hidi, S. Interest and its contribution as a mental resource for learning. Rev. Educ. Res. 1990, 60, 549–571. [Google Scholar] [CrossRef]
- Chang, Y. Reorganization and plastic changes of the human brain associated with skill learning and expertise. Front. Hum. Neurosci. 2014, 8, 35. [Google Scholar] [CrossRef] [Green Version]
- Birte-Antina, W.; Ilona, C.; Antje, H.; Thomas, H. Olfactory training with older people. Int. J. Geriatr. Psychiatry 2018, 33, 212–220. [Google Scholar] [CrossRef]
- Croy, I.; Nordin, S.; Hummel, T. Olfactory disorders and quality of life—An updated review. Chem. Senses 2014, 39, 185–194. [Google Scholar] [CrossRef] [Green Version]
- Gellrich, J.; Han, P.; Manesse, C.; Betz, A.; Junghanns, A.; Raue, C.; Schriever, V.A.; Hummel, T. Brain volume changes in hyposmic patients before and after olfactory training. Laryngoscope 2018, 128, 1531–1536. [Google Scholar] [CrossRef]
- Han, P.; Musch, M.; Abolmaali, N.; Hummel, T. Improved Odor Identification Ability and Increased Regional Gray Matter Volume After Olfactory Training in Patients With Idiopathic Olfactory Loss. i-Perception 2021, 12, 20416695211005811. [Google Scholar] [CrossRef]
- Negoias, S.; Pietsch, K.; Hummel, T. Changes in olfactory bulb volume following lateralized olfactory training. Brain Imaging Behav. 2017, 11, 998–1005. [Google Scholar] [CrossRef]
- Al Aïn, S.; Poupon, D.; Hétu, S.; Mercier, N.; Steffener, J.; Frasnelli, J. Smell training improves olfactory function and alters brain structure. Neuroimage 2019, 189, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Urban-Wojcik, E.J.; Lee, S.; Grupe, D.W.; Quinlan, L.; Gresham, L.; Hammond, A.; Charles, S.T.; Lachman, M.E.; Almeida, D.M.; Davidson, R.J.; et al. Diversity of daily activities is associated with greater hippocampal volume. Cogn. Affect. Behav. Neurosci. 2022, 22, 75–87. [Google Scholar] [CrossRef] [PubMed]
- Blackwell, L.S.; Trzesniewski, K.H.; Dweck, C.S. Implicit theories of intelligence predict achievement across an adolescent transition: A longitudinal study and an intervention. Child Dev. 2007, 78, 246–263. [Google Scholar] [CrossRef] [PubMed]
- Falk, E.B.; O’Donnell, M.B.; Cascio, C.N.; Tinney, F.; Kang, Y.; Lieberman, M.D.; Taylor, S.E.; An, L.; Resnicow, K.; Strecher, V.J. Self-affirmation alters the brain’s response to health messages and subsequent behavior change. Proc. Natl. Acad. Sci. USA 2015, 112, 1977–1982. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, Y.; Cooper, N.; Pandey, P.; Scholz, C.; O’Donnell, M.B.; Lieberman, M.D.; Taylor, S.E.; Strecher, V.J.; Dal Cin, S.; Konrath, S.; et al. Effects of self-transcendence on neural responses to persuasive messages and health behavior change. Proc. Natl. Acad. Sci. USA 2018, 115, 9974–9979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watanabe, K.; Kakeda, S.; Nemoto, K.; Onoda, K.; Yamaguchi, S.; Kobayashi, S.; Yamakawa, Y. Grey-matter brain healthcare quotient and cognitive function: A large cohort study of an MRI brain screening system in Japan. Cortex A J. Devoted Study Nerv. Syst. Behav. 2021, 145, 97–104. [Google Scholar] [CrossRef]
- Radloff, L.S. The CES-D Scale:A Self-Report Depression Scale for Research in the General Population. Appl. Psychol. Meas. 1977, 1, 385–401. [Google Scholar] [CrossRef]
- Pini, L.; Pizzini, F.B.; Boscolo-Galazzo, I.; Ferrari, C.; Galluzzi, S.; Cotelli, M.; Gobbi, E.; Cattaneo, A.; Cotelli, M.S.; Geroldi, C.; et al. Brain network modulation in Alzheimer’s and frontotemporal dementia with transcranial electrical stimulation. Neurobiol. Aging 2022, 111, 24–34. [Google Scholar] [CrossRef]
- Boyd, L. After Watching This, Your Brain Will not be the Same [Video File]. Available online: https://www.youtube.com/watch?v=LNHBMFCzznE (accessed on 23 February 2023).
- Robitschek, C.; Ashton, M.W.; Spering, C.C.; Geiger, N.; Byers, D.; Schotts, G.C.; Thoen, M.A. Development and psychometric evaluation of the Personal Growth Initiative Scale–II. J. Couns. Psychol. 2012, 59, 274–287. [Google Scholar] [CrossRef]
- Tokuyoshi, Y.; Iwasaki, S. Development and psychometric evaluation of a Japanese version of the Personal Growth Initiative Scale-II. Shinrigaku Kenkyu 2014, 85, 178–187. [Google Scholar] [CrossRef]
- Diener, E.; Emmons, R.A.; Larsen, R.J.; Griffin, S. The Satisfaction With Life Scale. J. Pers. Assess. 1985, 49, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Shimai, S.; Otake, K.; Utsuki, N.; Ikemi, A.; Lyubomirsky, S. Development of a Japanese version of the Subjective Happiness Scale (SHS), and examination of its validity and reliability. Nihon Koshu Eisei Zasshi 2004, 51, 845–853. [Google Scholar] [PubMed]
- Lyubomirsky, S.; Lepper, H.S. A Measure of Subjective Happiness: Preliminary Reliability and Construct Validation. Soc. Indic. Res. 1999, 46, 137–155. [Google Scholar] [CrossRef]
- Kashdan, T.B.; Gallagher, M.W.; Silvia, P.J.; Winterstein, B.P.; Breen, W.E.; Terhar, D.; Steger, M.F. The Curiosity and Exploration Inventory-II: Development, Factor Structure, and Psychometrics. J. Res. Pers. 2009, 43, 987–998. [Google Scholar] [CrossRef] [Green Version]
- Duckworth, A.L.; Quinn, P.D. Development and validation of the short grit scale (grit-s). J. Pers. Assess. 2009, 91, 166–174. [Google Scholar] [CrossRef]
- Mimura, C.; Griffiths, P. A Japanese version of the Rosenberg Self-Esteem Scale: Translation and equivalence assessment. J. Psychosom. Res. 2007, 62, 589–594. [Google Scholar] [CrossRef]
- Rosenberg, M. Society and the Adolescent Self-Image; Princeton University Press: Princeton, NJ, USA, 2015. [Google Scholar]
- Cohen, S. Perceived stress in a probability sample of the United States. In The Social Psychology of Health; The Claremont Symposium on Applied Social Psychology; Sage Publications, Inc.: Thousand Oaks, CA, USA, 1988; pp. 31–67. [Google Scholar]
- Weigold, I.K.; Porfeli, E.J.; Weigold, A. Examining tenets of personal growth initiative using the personal growth initiative scale-II. Psychol. Assess. 2013, 25, 1396–1403. [Google Scholar] [CrossRef]
- Oudeyer, P.Y.; Gottlieb, J.; Lopes, M. Intrinsic motivation, curiosity, and learning: Theory and applications in educational technologies. Prog. Brain Res. 2016, 229, 257–284. [Google Scholar] [CrossRef] [Green Version]
- Bergold, S.; Steinmayr, R. Personality and Intelligence Interact in the Prediction of Academic Achievement. J. Intell. 2018, 6, 27. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Derakhshan, A.; Zhang, L.J. Researching and Practicing Positive Psychology in Second/Foreign Language Learning and Teaching: The Past, Current Status and Future Directions. Front. Psychol. 2021, 12, 731721. [Google Scholar] [CrossRef]
- Du, H.; King, R.B.; Chi, P. Self-esteem and subjective well-being revisited: The roles of personal, relational, and collective self-esteem. PLoS ONE 2017, 12, e0183958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robinson, S.J.; Leach, J.; Owen-Lynch, P.J.; Sünram-Lea, S.I. Stress reactivity and cognitive performance in a simulated firefighting emergency. Aviat. Space Environ. Med. 2013, 84, 592–599. [Google Scholar] [CrossRef] [PubMed]
- Ashburner, J. A fast diffeomorphic image registration algorithm. Neuroimage 2007, 38, 95–113. [Google Scholar] [CrossRef] [PubMed]
- Ashburner, J. SPM: A history. Neuroimage 2012, 62, 791–800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashburner, J. Computational anatomy with the SPM software. Magn. Reson. Imaging 2009, 27, 1163–1174. [Google Scholar] [CrossRef] [PubMed]
- Nemoto, K.; Oka, H.; Fukuda, H.; Yamakawa, Y. MRI-based Brain Healthcare Quotients: A bridge between neural and behavioral analyses for keeping the brain healthy. PLoS ONE 2017, 12, e0187137. [Google Scholar] [CrossRef] [Green Version]
- Tzourio-Mazoyer, N.; Landeau, B.; Papathanassiou, D.; Crivello, F.; Etard, O.; Delcroix, N.; Mazoyer, B.; Joliot, M. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 2002, 15, 273–289. [Google Scholar] [CrossRef]
- Kokubun, K.; Yamakawa, Y.; Nemoto, K. The link between the brain volume derived index and the determinants of social performance. Curr. Psychol. 2022. [Google Scholar] [CrossRef]
- Buschhüter, D.; Smitka, M.; Puschmann, S.; Gerber, J.C.; Witt, M.; Abolmaali, N.D.; Hummel, T. Correlation between olfactory bulb volume and olfactory function. Neuroimage 2008, 42, 498–502. [Google Scholar] [CrossRef]
- Seubert, J.; Freiherr, J.; Frasnelli, J.; Hummel, T.; Lundström, J.N. Orbitofrontal cortex and olfactory bulb volume predict distinct aspects of olfactory performance in healthy subjects. Cereb. Cortex. 2013, 23, 2448–2456. [Google Scholar] [CrossRef] [Green Version]
- Frasnelli, J.; Lundström, J.N.; Boyle, J.A.; Djordjevic, J.; Zatorre, R.J.; Jones-Gotman, M. Neuroanatomical correlates of olfactory performance. Exp. Brain Res. 2010, 201, 1–11. [Google Scholar] [CrossRef]
- Burges Watson, D.L.; Campbell, M.; Hopkins, C.; Smith, B.; Kelly, C.; Deary, V. Altered smell and taste: Anosmia, parosmia and the impact of long Covid-19. PLoS ONE 2021, 16, e0256998. [Google Scholar] [CrossRef] [PubMed]
- Pause, B.M.; Miranda, A.; Göder, R.; Aldenhoff, J.B.; Ferstl, R. Reduced olfactory performance in patients with major depression. J. Psychiatr. Res. 2001, 35, 271–277. [Google Scholar] [CrossRef] [PubMed]
- Hüttenbrink, K.B.; Hummel, T.; Berg, D.; Gasser, T.; Hähner, A. Olfactory dysfunction: Common in later life and early warning of neurodegenerative disease. Dtsch. Arztebl. Int. 2013, 110, 1–7.e1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pieniak, M.; Oleszkiewicz, A.; Avaro, V.; Calegari, F.; Hummel, T. Olfactory training—Thirteen years of research reviewed. Neurosci. Biobehav. Rev. 2022, 141, 104853. [Google Scholar] [CrossRef]
- Banks, S.J.; Sreenivasan, K.R.; Weintraub, D.M.; Baldock, D.; Noback, M.; Pierce, M.E.; Frasnelli, J.; James, J.; Beall, E.; Zhuang, X.; et al. Structural and Functional MRI Differences in Master Sommeliers: A Pilot Study on Expertise in the Brain. Front. Hum. Neurosci. 2016, 10, 414. [Google Scholar] [CrossRef] [Green Version]
- Delon-Martin, C.; Plailly, J.; Fonlupt, P.; Veyrac, A.; Royet, J.P. Perfumers’ expertise induces structural reorganization in olfactory brain regions. Neuroimage 2013, 68, 55–62. [Google Scholar] [CrossRef] [Green Version]
- Filiz, G.; Poupon, D.; Banks, S.; Fernandez, P.; Frasnelli, J. Olfactory bulb volume and cortical thickness evolve during sommelier training. Hum. Brain Mapp. 2022, 43, 2621–2633. [Google Scholar] [CrossRef]
- Draganski, B.; Gaser, C.; Busch, V.; Schuierer, G.; Bogdahn, U.; May, A. Neuroplasticity: Changes in grey matter induced by training. Nature 2004, 427, 311–312. [Google Scholar] [CrossRef]
- Rebok, G.W.; Ball, K.; Guey, L.T.; Jones, R.N.; Kim, H.Y.; King, J.W.; Marsiske, M.; Morris, J.N.; Tennstedt, S.L.; Unverzagt, F.W.; et al. Ten-year effects of the advanced cognitive training for independent and vital elderly cognitive training trial on cognition and everyday functioning in older adults. J. Am. Geriatr. Soc. 2014, 62, 16–24. [Google Scholar] [CrossRef] [Green Version]
- Kashdan, T.B.; Rose, P.; Fincham, F.D. Curiosity and exploration: Facilitating positive subjective experiences and personal growth opportunities. J. Personal. Assess. 2004, 82, 291–305. [Google Scholar] [CrossRef]
- Duckworth, A.L.; Peterson, C.; Matthews, M.D.; Kelly, D.R. Grit: Perseverance and passion for long-term goals. J. Personal. Soc. Psychol. 2007, 92, 1087–1101. [Google Scholar] [CrossRef] [PubMed]
- Kwok, V.; Niu, Z.; Kay, P.; Zhou, K.; Mo, L.; Jin, Z.; So, K.F.; Tan, L.H. Learning new color names produces rapid increase in gray matter in the intact adult human cortex. Proc. Natl. Acad. Sci. USA 2011, 108, 6686–6688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wenger, E.; Kühn, S.; Verrel, J.; Mårtensson, J.; Bodammer, N.C.; Lindenberger, U.; Lövdén, M. Repeated Structural Imaging Reveals Nonlinear Progression of Experience-Dependent Volume Changes in Human Motor Cortex. Cereb. Cortex. 2017, 27, 2911–2925. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaser, C.; Schlaug, G. Brain structures differ between musicians and non-musicians. J. Neurosci. 2003, 23, 9240–9245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schippling, S.; Ostwaldt, A.C.; Suppa, P.; Spies, L.; Manogaran, P.; Gocke, C.; Huppertz, H.J.; Opfer, R. Global and regional annual brain volume loss rates in physiological aging. J. Neurol. 2017, 264, 520–528. [Google Scholar] [CrossRef]
Control | Olfactory Training | Learning of Neuroplasticity and Brain Healthcare | F | p | |
---|---|---|---|---|---|
Age, mean (range, SD) | 49.9 (46.0–53.8, 10.2) | 49.8 (46.0–53.5, 10.0) | 50.7 (46.8–54.6, 10.4) | 0.07 | 0.93 |
Number of females | 14 | 15 | 15 | - | 0.99 |
GM-BHQ, mean (range, SD), mean (range, SD) | 101.1 (84.0–113.4, 7.3) | 99.2 (84.9–108.5, 6.3) | 100.4 (89.0-116.3, 6.6) | 0.63 | 0.53 |
Personal Growth Initiative Scale-II, mean (range, SD) | 58.2 (19–83, 15.7) | 54.6 (21–79, 14.6) | 50.2 (16–96, 18.1) | 1.77 | 0.18 |
Satisfaction with life scale, mean (range, SD) | 17.5 (5–32, 7.4) | 14.7 (5–33, 7.4) | 17.9 (5–30, 7.2) | 1.66 | 0.20 |
Subjective Happiness Scale, mean (range, SD) | 16.6 (10–21, 2.5) | 16.0 (10–26, 3.8) | 17.1 (11–26, 3.3) | 0.82 | 0.45 |
The Curiosity and Exploration Inventory-II, mean (range, SD) | 30.1 (16–44, 7.5) | 31.2 (19–48, 6.0) | 28.2 (10–41, 8.7) | 1.21 | 0.30 |
Short Grit Scale, mean (range, SD) | 27.6 (10–38, 6.4) | 25.5 (16–32, 4.1) | 26.3 (12–35, 5.6) | 1.15 | 0.32 |
Rosenberg Self Esteem Scale, mean (range, SD) | 27.3 (15–39, 5.6) | 23.8 (12–39, 6.7) | 26.5 (15–38, 6.3) | 2.63 | 0.08 |
Perceived Stress Scale, mean (range, SD) | 37.2 (21–52, 6.4) | 40.1 (30–52, 5.4) | 38.1 (26–50, 6.4) | 1.69 | 0.19 |
Control | Olfactory Training | Learning of Neuroplasticity and Brain Healthcare | ||||
---|---|---|---|---|---|---|
r | p | r | p | r | p | |
Personal Growth Initiative Scale-II | −0.09 | 0.32 | 0.29 | 0.07 | 0.39 * | 0.02 |
Satisfaction with life scale | 0.19 | 0.16 | 0.08 | 0.35 | 0.18 | 0.18 |
Subjective Happiness Scale | 0.22 | 0.13 | 0.24 | 0.11 | 0.24 | 0.10 |
The Curiosity and Exploration Inventory-II | 0.27 | 0.8 | 0.40 * | 0.02 | 0.56 * | <0.01 |
Short Grit Scale | 0.19 | 0.17 | 0.29 | 0.07 | 0.35 * | 0.03 |
Rosenberg Self Esteem Scale | −0.08 | 0.34 | −0.04 | 0.43 | 0.17 | 0.18 |
Perceived Stress Scale | 0.22 | 0.13 | 0.12 | 0.26 | −0.18 | 0.17 |
r | p | |
---|---|---|
Did you enjoy the training? | 0.34 | 0.07 |
Did you feel a sense of achievement? | 0.42 * | 0.02 |
Did you feel a burden from training? | −0.20 | 0.29 |
Did you feel fatigued from training? | −0.19 | 0.31 |
Have you become interested in scents? | 0.36 * | 0.048 |
Has your sense of smell improved? | 0.37 * | 0.04 |
Has your sense of taste improved? | 0.15 | 0.44 |
Control | Olfactory Training | t | p | |
---|---|---|---|---|
Left Insula | −0.33 ± 2.00 | −1.00 ± 1.80 | 1.39 | 0.08 |
Right Insula | −0.05 ± 2.10 | −1.10 ± 1.90 | 2.07 | 0.02 |
Left Olfactory cortex | −0.01 ± 3.34 | −0.35 ± 2.34 | 0.45 | 0.33 |
Right Olfactory cortex | 0.18 ± 3.00 | −0.82 ± 2.60 | 1.37 | 0.09 |
Left orbital Superior frontal gyrus | 0.07 ± 3.20 | −1.00 ± 2.80 | 1.38 | 0.09 |
Right orbital Superior frontal gyrus | −0.02 ± 2.56 | −0.68 ± 2.30 | 1.02 | 0.16 |
Left orbital Middle frontal gyrus | 0.06 ± 3.40 | −1.40 ± 3.10 | 1.73 | 0.04 |
Right orbital Middle frontal gyrus | −0.32 ± 4.60 | −0.70 ± 2.50 | 0.39 | 0.35 |
Left medial orbital Superior frontal gyrus | −0.10 ± 2.90 | −1.60 ± 3.00 | 2.05 | 0.02 |
Right medial orbital Superior frontal gyrus | −0.18 ± 2.80 | −1.40 ± 2.30 | 1.87 | 0.03 |
Left orbital Inferior frontal gyrus | −0.50 ± 2.60 | −1.20 ± 2.70 | 0.99 | 0.16 |
Right orbital Inferior frontal gyrus | −0.74 ± 2.40 | −0.97 ± 1.90 | 0.4 | 0.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Watanabe, K.; Kokubun, K.; Yamakawa, Y. Altered Grey Matter-Brain Healthcare Quotient: Interventions of Olfactory Training and Learning of Neuroplasticity. Life 2023, 13, 667. https://doi.org/10.3390/life13030667
Watanabe K, Kokubun K, Yamakawa Y. Altered Grey Matter-Brain Healthcare Quotient: Interventions of Olfactory Training and Learning of Neuroplasticity. Life. 2023; 13(3):667. https://doi.org/10.3390/life13030667
Chicago/Turabian StyleWatanabe, Keita, Keisuke Kokubun, and Yoshinori Yamakawa. 2023. "Altered Grey Matter-Brain Healthcare Quotient: Interventions of Olfactory Training and Learning of Neuroplasticity" Life 13, no. 3: 667. https://doi.org/10.3390/life13030667
APA StyleWatanabe, K., Kokubun, K., & Yamakawa, Y. (2023). Altered Grey Matter-Brain Healthcare Quotient: Interventions of Olfactory Training and Learning of Neuroplasticity. Life, 13(3), 667. https://doi.org/10.3390/life13030667