Recovery of Aconitic Acid from Sweet Sorghum Plant Extract Using a Solvent Mixture, and Its Potential Use as a Nematicide
Abstract
:1. Introduction
2. Materials and Methods
2.1. Aconitic Acid Extraction
2.2. Nematicidal Assay for Caenorhabditis Elegans
2.3. Nematode Assay for Meloidogyne Incognita
2.4. Process Design
3. Results and Discussion
3.1. Aconitic Acid Extraction
3.2. Nematicidal Assays with C. elegans
3.3. Nematicidal Assays with M. incognita
3.4. Process Economics of Aconitic Acid Extraction from Sweet Sorghum Syrup
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Werpy, T.; Petersen, G. Top Value Added Chemicals from Biomass, Volume I: Results from Screening for Potential Candidates from Sugars and Synthesis Gas; Pacific Northwst National Laboratory and the National Renewable Energy Laboratory: Washington, DC, USA, August 2004. [Google Scholar]
- Bruni, G.O.; Klasson, K.T. Aconitic acid recovery from renewable feedstock and review of chemical and biological applications. Foods 2022, 11, 573. [Google Scholar] [CrossRef]
- Cao, H.; Zheng, Y.; Zhou, J.; Wang, W.; Pandit, A. A novel hyperbranched polyester made from aconitic acid (B3) and di(ethylene glycol) (A2). Polym. Int. 2011, 60, 630–634. [Google Scholar] [CrossRef]
- Gilfillan, W.N.; Doherty, W.O.S. Starch composites with aconitic acid. Carbohydr. Polym. 2016, 141, 60–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tzereme, A.; Christodoulou, E.; Kyzas, G.Z.; Kostoglou, M.; Bikiaris, D.N.; Lambropoulou, D.A. Chitosan grafted adsorbents for diclofenac pharmaceutical compound removal from single-component aqueous solutions and mixtures. Polymers 2019, 11, 497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, L.; Bui, V.T.; Huang, L.; Singh, R.P.; Lin, H. Facilely cross-linking polybenzimidazole with polycarboxylic acids to improve H2/CO2 separation performance. ACS Appl. Mater. Interfaces 2021, 13, 12521–12530. [Google Scholar] [CrossRef]
- Mai, A.Q.; Davies, J.; Nguyen, D.; Carranza, A.; Vincent, M.; Pojman, J.A. Microparticles and latexes prepared via suspension polymerization of a biobased vegetable oil and renewable carboxylic acid. J. Appl. Polym. Sci. 2021, 138, 50180. [Google Scholar] [CrossRef]
- Clarke, A.J.; Shepherd, A.M. Hatching agents for the potato cyst-nematode, Heterodera rostochiensis Woll. Ann. Appl. Biol. 1968, 61, 139–149. [Google Scholar] [CrossRef]
- Du, C.; Cao, S.; Shi, X.; Nie, X.; Zheng, J.; Deng, Y.; Ruan, L.; Peng, D.; Sun, M. Genetic and biochemical characterization of a gene operon for trans-aconitic acid, a novel nematicide from Bacillus thuringiensis. J. Biol. Chem. 2017, 292, 3517–3530. [Google Scholar] [CrossRef] [Green Version]
- Rocha, T.L.; Soll, C.B.; Boughton, B.A.; Silva, T.S.; Oldach, K.; Firmino, A.A.P.; Callahan, D.L.; Sheedy, J.; Silveira, E.R.; Carneiro, R.M.D.G.; et al. Prospection and identification of nematotoxic compounds from Canavalia ensiformis seeds effective in the control of the root knot nematode Meloidogyne incognita. Biotechnol. Res. Innov. 2017, 1, 87–100. [Google Scholar] [CrossRef]
- Gil Zapata, N.J. Aconitic Acid from Sugarcane: Production and Industrial Application. Doctoral Dissertation, Louisiana State University, Baton Rouge, LA, USA, December 2007. [Google Scholar]
- Kanitkar, A.; Aita, G.; Madsen, L. The recovery of polymerization grade aconitic acid from sugarcane molasses. J. Chem. Technol. Biotechnol. 2013, 88, 2188–2192. [Google Scholar] [CrossRef]
- Klasson, K.T.; Qureshi, N.; Powell, R.; Heckemeyer, M.; Eggleston, G. Fermentation of sweet sorghum syrup to butanol in the presence of natural nutrients and inhibitors. Sugar Tech 2018, 20, 224–234. [Google Scholar] [CrossRef]
- Uchimiya, M.; Knoll, J.E.; Anderson, W.F.; Harris-Shultz, K.R. Chemical analysis of fermentable sugars and secondary products in 23 sweet sorghum cultivars. J. Agric. Food Chem. 2017, 65, 7629–7637. [Google Scholar] [CrossRef] [PubMed]
- Blinco, J.; Griffin, G.J.; Hermans, J. Extraction of aconitic acid from cane molasses by solvent extraction. In Proceedings of the Chemeca 2000: Opportunities and Challenges for the Resource and Processing Industries, Perth Western Australia, 9–12 July 2000; pp. 644–650. [Google Scholar]
- Regna, E.A.; Bruins, P.F. Recovery of aconitic acid from molasses. Ind. Eng. Chem. 1956, 48, 1268–1277. [Google Scholar] [CrossRef]
- Producer Price Index by Commodity: Chemicals and Allied Products: Industrial Chemicals. Available online: https://fred.stlouisfed.org/series/WPS061 (accessed on 12 December 2022).
- Ventre, E.K.; Ambler, J.A.; Henry, H.C.; Byall, S.; Paine, H.S. Extraction of aconitic acid from sorgo. Ind. Eng. Chem. 1946, 38, 201–204. [Google Scholar] [CrossRef]
- Eggleston, G.; Cole, M.; Andrzejewski, B. New commercially viable processing technologies for the production of sugar feedstocks from sweet sorghum (Sorghum bicolor L. Moench) for manufacture of biofuels and bioproducts. Sugar Tech 2013, 15, 232–249. [Google Scholar] [CrossRef]
- Woods, D.R. The genetic engineering of microbial solvent production. Trends Biotechnol. 1995, 13, 259–264. [Google Scholar] [CrossRef]
- Green, E.M. Fermentative production of butanol-the industrial perspective. Curr. Opin. Biotechnol. 2011, 22, 337–343. [Google Scholar] [CrossRef]
- Gi Moon, H.; Jang, Y.S.; Cho, C.; Lee, J.; Binkley, R.; Lee, S.Y. One hundred years of clostridial butanol fermentation. FEMS Microbiol. Lett. 2016, 363, fnw001. [Google Scholar] [CrossRef] [Green Version]
- Friedl, A. Downstream process options for the ABE fermentation. FEMS Microbiol. Lett. 2016, 363, fnw073. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Cai, D.; Chen, C.; Wang, J.; Qin, P.; Tan, T. Novel distillation process for effective and stable separation of high-concentration acetone–butanol–ethanol mixture from fermentation–pervaporation integration process. Biotechnol. Biofuels 2018, 11, 286. [Google Scholar] [CrossRef] [Green Version]
- Haigh, K.F.; Petersen, A.M.; Gottumukkala, L.; Mandegari, M.; Naleli, K.; Görgens, J.F. Simulation and comparison of processes for biobutanol production from lignocellulose via ABE fermentation. Biofuels Bioprod. Bioref. 2018, 12, 1023–1036. [Google Scholar] [CrossRef]
- Qureshi, N.; Lin, X.; Liu, S.; Saha, B.C.; Mariano, A.P.; Polaina, J.; Ezeji, T.C.; Friedl, A.; Maddox, I.S.; Klasson, K.T.; et al. Global view of biofuel butanol and economics of its production by fermentation from sweet sorghum bagasse, food waste, and yellow top presscake: Application of novel technologies. Fermentation 2020, 6, 58. [Google Scholar] [CrossRef]
- Pudjiastuti, L.; Widjaja, T.; Iskandar, K.K.; Sahid, F.; Nurkhamidah, S.; Altway, A.; Putra, A.P. Modelling and simulation of multicomponent acetone-butanol-ethanol distillation process in a sieve tray column. Heliyon 2021, 7, e06641. [Google Scholar] [CrossRef] [PubMed]
- Jones, D.T.; Woods, D.R. Acetone-butanol fermentation revisited. Microbiol. Rev. 1986, 50, 484–524. [Google Scholar] [CrossRef]
- Datta, R.; Zeikus, J.G. Modulation of acetone-butanol-ethanol fermentation by carbon monoxide and organic acids. Appl. Environ. Microbiol. 1985, 49, 522–529. [Google Scholar] [CrossRef] [Green Version]
- Yerushalmi, L.; Volesky, B.; Szczesny, T. Effect of increased hydrogen partial pressure on the acetone-butanol fermentation by Clostridium acetobutylicum. Appl. Microbiol. Biotechnol. 1985, 22, 103–107. [Google Scholar] [CrossRef]
- Anbarasan, P.; Baer, Z.C.; Sreekumar, S.; Gross, E.; Binder, J.B.; Blanch, H.W.; Clark, D.S.; Dean Toste, F. Integration of chemical catalysis with extractive fermentation to produce fuels. Nature 2012, 491, 235–239. [Google Scholar] [CrossRef]
- Klasson, K.T.; Qureshi, N.; Heckemeyer, M.; Eggleston, G. Biobutanol production from sweet sorghum biorefinery byproducts. In Proceedings of the Advances in Sugar Crop Processing and Conversion, New Orleans, LA, USA, 15–18 March 2018; pp. 274–281. [Google Scholar]
- Corsi, A.K. A biochemist’s guide to Caenorhabditis elegans. Anal. Biochem. 2006, 359, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Day, R.W.; Quinn, G.P. Comparisons of treatments after an analysis of variance in ecology. Ecol. Monogr. 1989, 59, 433–463. [Google Scholar] [CrossRef]
- Kearn, J.; Ludlow, E.; Dillon, J.; O’Connor, V.; Holden-Dye, L. Fluensulfone is a nematicide with a mode of action distinct from anticholinesterases and macrocyclic lactones. Pestic. Biochem. Physiol. 2014, 109, 44–57. [Google Scholar] [CrossRef] [Green Version]
- DiLegge, M.J.; Manter, D.K.; Vivanco, J.M. A novel approach to determine generalist nematophagous microbes reveals Mortierella globalpina as a new biocontrol agent against Meloidogyne spp. nematodes. Sci. Rep. 2019, 9, 7521. [Google Scholar] [CrossRef] [Green Version]
- Porta-de-la-Riva, M.; Fontrodona, L.; Villanueva, A.; Cerón, J. Basic Caenorhabditis elegans methods: Synchronization and observation. J. Visual. Exp. 2012, 64, e4019. [Google Scholar] [CrossRef] [Green Version]
- Stiernagle, T. Maintenance of C. elegans (February 11, 2006). In WormBook, ed.; The C. elegans Research Community; Available online: http://www.wormbook.org (accessed on 19 January 2023). [CrossRef] [Green Version]
- Watson, T.T. Sensitivity of Meloidogyne enterolobii and M. incognita to fluorinated nematicides. Pest Manage. Sci. 2022, 78, 1398–1406. [Google Scholar] [CrossRef]
- Klasson, K.T.; Cole, M.R.; Pancio, B.T.; Heckemeyer, M. Development of an enzyme cocktail to bioconvert untapped starch in sweet sorghum processing by-products: Part II. Application and economic potential. Ind. Crops Prod. 2022, 176, 114370. [Google Scholar] [CrossRef]
- Cheng, M.H.; Huang, H.; Dien, B.S.; Singh, V. The costs of sugar production from different feedstocks and processing technologies. Biofuels Bioprod. Bioref. 2019, 13, 723–739. [Google Scholar] [CrossRef]
- Intratec. Commodity Production Costs. Available online: https://www.intratec.us/products/commodity-production-costs (accessed on 15 December 2022).
- Almodares, A.; Ranjbar, M.; Hadi, M.R. Effects of nitrogen treatments and harvesting stages on the aconitic acid, invert sugar and fiber in sweet sorghum cultivars. J. Environ. Biol. 2010, 31, 1001–1005. [Google Scholar] [PubMed]
- Amorim, H.V. Challenges to produce ethanol from sweet sorghum in Brazil. In Proceedings of the Sweet Sorghum Association 2015 Annual Conference, Orlando, FL, USA, 27–29 January 2015. [Google Scholar]
- Klasson, K.T. The inhibitory effects of aconitic acid on bioethanol production. Sugar Tech 2018, 20, 88–94. [Google Scholar] [CrossRef]
- Piper, P.; Calderon, C.O.; Hatzixanthis, K.; Mollapour, M. Weak acid adaptation: The stress response that confers yeasts with resistance to organic acid food preservatives. Microbiology 2001, 147, 2635–2642. [Google Scholar] [CrossRef] [Green Version]
- Khanna, N.; Cressman Iii, C.P.; Tatara, C.P.; Williams, P.L. Tolerance of the nematode Caenorhabditis elegans to pH, salinity, and hardness in aquatic media. Arch. Environ. Contam. Toxicol. 1997, 32, 110–114. [Google Scholar] [CrossRef]
- Melakeberhan, H.; Dey, J.; Baligar, V.C.; Carter, T.E., Jr. Effect of soil pH on the pathogenesis of Heterodera glycines and Meloidogyne incognita on Glycine max genotypes. Nematology 2004, 6, 585–592. [Google Scholar] [CrossRef]
Weight Fraction | Molar Fraction | ||||
---|---|---|---|---|---|
Acetone | Butanol | Ethanol | Acetone | Butanol | Ethanol |
0.00 | 0.93 | 0.07 | 0.00 | 0.89 | 0.11 |
0.08 | 0.84 | 0.07 | 0.10 | 0.79 | 0.11 |
0.19 | 0.74 | 0.07 | 0.22 | 0.68 | 0.11 |
0.31 | 0.62 | 0.07 | 0.35 | 0.55 | 0.11 |
Cost Item | Cost |
---|---|
Total Capital Investment | USD 3,211,000 |
Annual Operating Cost (AOC) | USD 29,059,000 |
Raw Materials | USD 26,475,000 (91% of AOC) |
Labor | USD 2,108,000 (7% of AOC) |
Facilities/Laboratory | USD 425,000 (1% of AOC) |
Utilities | USD 51,200 (0.2% of AOC) |
Credits (sugars and ABE) | USD 4,406,000 (15% of AOC) |
Net Production Cost | USD 16.64/kg of extract |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klasson, K.T.; Qi, Y.; Bruni, G.O.; Watson, T.T.; Pancio, B.T.; Terrell, E. Recovery of Aconitic Acid from Sweet Sorghum Plant Extract Using a Solvent Mixture, and Its Potential Use as a Nematicide. Life 2023, 13, 724. https://doi.org/10.3390/life13030724
Klasson KT, Qi Y, Bruni GO, Watson TT, Pancio BT, Terrell E. Recovery of Aconitic Acid from Sweet Sorghum Plant Extract Using a Solvent Mixture, and Its Potential Use as a Nematicide. Life. 2023; 13(3):724. https://doi.org/10.3390/life13030724
Chicago/Turabian StyleKlasson, K. Thomas, Yunci Qi, Gillian O. Bruni, Tristan T. Watson, Bretlyn T. Pancio, and Evan Terrell. 2023. "Recovery of Aconitic Acid from Sweet Sorghum Plant Extract Using a Solvent Mixture, and Its Potential Use as a Nematicide" Life 13, no. 3: 724. https://doi.org/10.3390/life13030724
APA StyleKlasson, K. T., Qi, Y., Bruni, G. O., Watson, T. T., Pancio, B. T., & Terrell, E. (2023). Recovery of Aconitic Acid from Sweet Sorghum Plant Extract Using a Solvent Mixture, and Its Potential Use as a Nematicide. Life, 13(3), 724. https://doi.org/10.3390/life13030724