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Abstract: Idesia polycarpa Maxim is a native dioecious tree from East Asia cultivated for its fruits and
as an ornamental plant throughout temperate regions. Given the economic potential, comparative
studies on cultivated genotypes are of current interest. This study aims to discover the dynamic
changes and potential functions of endogenous hormones in I. polycarpa, as well as the differences in
endogenous hormone contents in different growth stages among different I. polycarpa provenances.
We used High-Performance Liquid Chromatography (HPLC) to measure and compare the levels of
abscisic acid (ABA), indole-3-acetic acid (IAA), gibberellin A3 (GA3), and trans-Zeatin-riboside (tZR)
in the leaves, flowers, and fruits of I. polycarpa from various provenances between April and October.
Our findings indicated that changes in the ABA and GA3 content of plants from Jiyuan and Tokyo
were minimal from April to October. However, the levels of these two hormones in Chengdu plants
vary greatly at different stages of development. The peak of IAA content in the three plant materials
occurred primarily during the early fruit stage and the fruit expansion stage. The concentration
of tZR in the three plant materials varies greatly. Furthermore, we discovered that the contents of
endogenous hormones in I. polycarpa leaves, flowers, and fruits from Chengdu provenances were
slightly higher than those from Tokyo and Jiyuan provenances. The content of IAA was higher in
male flowers than in female flowers, and the content of ABA, GA3, and tZR was higher in female
flowers than in male flowers. According to the findings, the contents of these four endogenous
hormones in I. polycarpa are primarily determined by the genetic characteristics of the trees and are
less affected by cultivation conditions. The gender of I. polycarpa had a great influence on these four
endogenous hormones. The findings of this study will provide a theoretical foundation and practical
guidance for artificially regulating the flowering and fruiting of I. polycarpa.

Keywords: Idesia polycarpa; abscisic acid (ABA); indole-3-acetic acid (IAA); gibberellinA3 (GA3);
trans-Zeatin-riboside (tZR); High-Performance Liquid Chromatography (HPLC)

1. Introduction

Idesia polycarpa Maxim is a dioecious tree in the Salicaceae family, which is economically
significant and well-known throughout the temperate region [1,2]. There is only one species
of this genus in the world [1]. This species is native to East Asia, including China, Japan,
and Korea, and has since spread throughout the region [3]. There are obvious differences in
the growth form, development speed, environmental adaptability, and physiological and
biochemical characteristics of I. polycarpa due to long-term geographical isolation, natural
selection, and climate [4].

I. polycarpa is a tall deciduous tree that blooms from April to May. It has yellow-green
flowers with a fragrant scent. In the distribution area of I. polycarpa, the suitable annual
average temperature ranges from 13 ◦C to 21 ◦C [5,6]. I. polycarpa is also known as the
‘Beautiful Tree Oil Depot’ because its fruits have a high oil content, in addition to being
used as an ornamental and greening tree species [7]. The oil content in the flesh of the
fruits ranges between 28.38 and 48.35%. In comparison, the oil content of the seeds is
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approximately 12.6–28.17%, and the oil extracted from the fruit has high commercial and
medicinal value, with various applications, including edible oil, lubricating oil, biodiesel
production, and medicines to reduce cholesterol and blood pressure [8]. Because I. polycarpa
has an appealing color and shape and potential nutritional and medicinal value, more and
more areas are attempting to cultivate it artificially. However, most I. polycarpa is still in the
wild, and cultivation technology is not standardized or mature [9]. There are numerous
factors that influence plant growth and development, but endogenous hormones, such
as auxin (IAA), gibberellin (GA3), abscisic acid (ABA), and mitogen (tZR), play critical
regulatory roles in the growth and development of I. polycarpa [10]. Currently, most
I. polycarpa research focuses on ecology, cultivation, and breeding, with few studies on
endogenous hormones. Endogenous hormone changes during flowering and fruiting,
as well as their effects on the growth and development of I. polycarpa, remain unknown.
Therefore, it is intended to investigate the dynamic changes in the endogenous hormones
at various stages of the flowering and fruiting processes of I. polycarpa.

Plant hormones are a class of organic substances that are synthesized during plant
metabolism and are required for various physiological processes in plants [11]. Plant
growth regulators have been widely used in various developmental stages to improve
plant growth and development, as well as the yield and quality of fruits, due to the
importance of plant hormones to plant growth and regulation [12]. Previous research found
that plant hormones directly affect fruit formation and development [13]. Therefore, it is
essential to study the endogenous hormones of the sprouting, flowering, and fruiting of
I. polycarpa from different origins and then apply exogenous hormones based on the local
climate in the introduction and artificial planting process of this tree species to improve the
success rate.

Auxin is a plant hormone that is essential for plant growth and development [14].
Auxin biosynthesis is important in a variety of plant development processes, including
root development, embryogenesis, endosperm development, and flower development [15].
Similarly, IAA (indole-3-acetic acid) plays an important role in fruit formation and devel-
opment [16]. Auxin response factor (ARF) controls the fate of fruit initiation events by
controlling the level of gibberellin (GA) [17] and interacts with Aux/IAA proteins [18].

Abscisic acid (ABA) is a plant hormone derived from isoprene that accumulates as
a result of a lack of water and is associated with seed dormancy, maturity, and develop-
ment [19,20]. It also has a significant impact on plant responses to various abiotic stresses,
such as drought, high temperature, low temperature, and salt [21]. ABA is also an im-
portant ripening control factor, as demonstrated by the following: (1) the content of ABA
increased clearly in the early stages of apple fruit ripening [22]; (2) the content in peach and
grapefruit fruits increases before ethylene release [23]; (3) exogenous ABA can promote
the production of several metabolites related to fruit ripening [24]; (4) the fruits in tomato
mutants lacking ABA could not maintain the normal growth pattern [25]; and (5) the
maturation stage was delayed in ABA-deficient orange mutants [26].

Gibberellin (GA3) is a plant hormone that promotes cell division and proliferation [27].
GA3 is widely used in plant growth and development for a variety of purposes, including
promoting seed germination and coping with abiotic stress [28], enhancing fruit growth [29],
accelerating stem elongation [30], flowering [31], and other physiological effects caused by
interactions with other plant hormones [32].

Trans zeatin riboside is a type of cytokinin that can promote cell division during
tomato fruit development [33]. Liu et al. discovered that tZR has a significant impact on
cucumber fruit growth and development [34]. Similarly, Honda et al. discovered that tZR
plays an important role in pepper fruit expansion [35]. Furthermore, the content of tZR
increased significantly during hop development, indicating that tZR was closely related to
hop development [36].

It is well understood that phytohormones play an important role in seed germination.
However, there is a lack of studies on how various endogenous hormones play a role in
I. polycarpa and whether there are differences in the content of endogenous hormones in
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different growth stages of I. polycarpa from different provenances. The current study aims
to quantify the changes in IAA, ABA, GA3, and tZR concentrations in the leaves, flowers,
and fruits of I. polycarpa during different stages of development for three provenances
from the natural range of the species. The findings provide a theoretical foundation for
understanding the regulation of the flowering and fruiting period and the quantity of
I. polycarpa, with potential applications in breeding, phenological manipulation, optimized
cultivation, adequate harvesting activity planning, and performance evaluation.

2. Materials and Methods
2.1. Plant Materials and Growth Conditions

Experiments were carried out at Henan Agricultural University’s Forestry Experiment
Station in Zhengzhou City, China (113◦38′ E, 34◦48′ N). The research site is located in the
warm temperate zone and has a temperate monsoon climate with an annual precipitation
of ~650 mm. The maximum, minimum, and annual mean temperatures are 43.0 ◦C,
−17.9 ◦C, and 14.2 ◦C, respectively, and the average annual sunshine duration is 2400 h
(Figure 1, Table 1). The accumulated temperature ≥10 ◦C is 4717 ◦C, with a frost-free
period of 215 d and a pH of about 7.0 in the experimental fields.
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Figure 1. Monthly, minimum, and maximum temperature in Zhengzhou City, China. Note: The data
come from https://www.tianqi24.com/zhengzhou/history2021.html (accessed on 2 January 2023).

Table 1. Monthly statistics of air quality in the experimental area.

Month NO2 CO SO2 O3

2021–04 31.3 ± 1.53 0.64 ± 0.08 9.17 ± 1.75 113.5 ± 2.36
2021–05 25.9 ± 3.06 0.61 ± 0.13 9.42 ± 2.16 143.8 ± 3.78
2021–06 23.7 ± 3.51 0.71 ± 0.19 6.81 ± 2.39 178.6 ± 4.31
2021–07 16.3 ± 1.27 0.56 ± 0.11 3.40 ± 0.86 134.3 ± 4.54
2021–08 17.6 ± 2.55 0.66 ± 0.24 4.47 ± 1.59 137.9 ± 3.21
2021–09 24.1 ± 4.51 0.75 ± 0.16 5.93 ± 2.13 126.4 ± 7.52
2021–10 42.9 ± 3.72 0.81 ± 0.21 8.74 ± 2.28 84.1 ± 4.14

Note: The data came from the Henan Meteorological Service.

The experimental material was I. polycarpa grown at Henan Agricultural University’s
Forestry Experiment Station. Jiyuan (112◦57′ E, 35◦08′ N), Tokyo (139◦69′ E, 35◦68′ N),
and Chengdu (104◦07′ E, 30◦67′ N) provided the plants. Tissue samples were collected
from leaves, flowers, and fruits at various stages of development between April and
October. The sampling period was divided into seven stages based on the stage of growth
and development (Table 2, Figure 2). The plant samples were stored at −80 ◦C in liquid
nitrogen. Furthermore, each sample was divided into three replicates.

https://www.tianqi24.com/zhengzhou/history2021.html
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Table 2. Sampling Time of I. polycarpa.

Period Stage
Sample Time

Jiyuan Tokyo Chengdu

Initial Flower Early April–Late April I 24 April 2021 26 April 2021 26 April 2021
Full Bloom Late April–Early May II 28 April 2021 1 May 2021 1 May 2021

Flower Drop Early May III 4 May 2021 6 May 2021 6 May 2021
Initial Fruit Early May–Late May IV 13 May 2021 16 May 2021 16 May 2021
Expansion Late May–Middle August V 24 May 2021 26 May 2021 26 May 2021

Yellowing Middle August–Early
September VI 1 September 2021 3 September 2021 3 September 2021

Reddening Early September–Early
October VII 8 October 2021 10 October 2021 10 October 2021
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2.2. Extraction and Analysis of Phytohormones

The concentrations of IAA, ABA, GA3, and tZR were determined using High-Performance
Liquid Chromatography, which was slightly modified from Li [37]. We extracted the samples
using a C18 solid phase extraction cartridge and analyzed them by HPLC-ESI-MS/MS using
0.05% formic acid in methanol and H2O as mobile phases for HPLC because the plant samples
were different. Lyophilized samples were ground in liquid nitrogen, and 0.5 g powdered
samples were extracted with 5 mL acetonitrile extraction solvent containing 30 µg/mL antioxi-
dant. For 12 h, the extracted samples were refrigerated at 4 ◦C. After centrifuging the extract
(10,000 rpm for 20 min at 4 ◦C), the supernatants were collected and re-extracted with 5 mL of
extraction solvent before centrifuging the extraction solution (10,000 rpm for 10 min at 4 ◦C)
again. The supernatants were then combined and distilled in a rotary evaporator at 40 ◦C
before being dissolved in 4 mL of chloroform and 8 mL of phosphate buffer. The mixture was
then treated with 150 mg PVPP (polyvinylpyrrolidone) and centrifuged at 8000 rpm for 10 min
at 4 ◦C. The pH was adjusted to 3.0, and 3 mL of the mixture was treated with formic acid
and extracted three times with an equal volume of ethyl acetate. The extracted samples were
combined and distilled using a rotary evaporator (40 ◦C), after which they were redissolved in
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1 mL of methanol and filtered through a strainer (0.22 µm). Finally, each sample was injected
into the HPLC with 10 µL. The following were the mobile phase conditions: water—methanol
(52:48) with 0.5‰ formic acid; column temperature—40 ◦C; detection wavelength—254 nm;
injection volume—10 µL; flow rate—0.7 mL/min, constant gradient elution for 23 min.

Calculation Method of Endogenous Hormone Content

The standard curve was based on different peaks, and each peak time corresponds
to different concentrations of calibration samples corresponding to plant hormones; the
hormone content was calculated using the following method [38]:

Endogenous hormone content (µg·g−1) = As·V Css Vss/(Ass Ms·Vs)
As: Peak area of the sample; V: Volume of a final constant volume of sample pre-

treatment (mL); Css: Concentration of standard sample (g·L−1); Vss: Injection volume of
standard sample (µL); Ass: Peak area of the standard sample; Ms: Dry weight of the sample
(g); Vs: Injection volume of sample (mL).

2.3. Analytical Methods

Origin 2017 was used to create the graph for each hormone analysis. Using SPSS 24.0
software (IBM, Armonk, NY, USA), analysis of variance (ANOVA) and Duncan’s test at
p = 0.05 or p = 0.01 were used to compare the variations of endogenous hormone levels in
samples from different provenances and sample time treatments.

3. Results
3.1. Changes of Hormones in Female Leaves of I. polycarpa from Different Provenances

Endogenous concentrations of ABA, GA3, IAA, and tZR in female leaves of I. polycarpa
from various provenances were examined (Figure 3). There were no discernible differences
in the ABA content of plants from Jiyuan and Tokyo. On the contrary, the ABA content
of Chengdu plants decreased rapidly, particularly from stage I to stage II. Because ABA
biosynthesis is closely related to carotenoid synthesis, we infer that the decrease in ABA is
related to the orange deepening of mature fruits. During the developmental stage I, the
ABA content of plants from Chengdu was significantly higher than that of plants from the
other two provenances (p < 0.01).
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The change in trends of GA3 content was comparable to that of ABA within the Jiyuan
and Tokyo plants. The difference is that the GA3 content of plants from Chengdu exhibited
a “W” trend, which fluctuates significantly more than the other two provenances. GA3
levels were higher in stages IV (58.567 µg·g−1) and VII (71.450 µg·g−1), indicating that GA3
could promote fruit formation and development. In every stage of development, the ABA
content of Chengdu plants was significantly higher than that of the other two provenances
(p < 0.05).

The change in IAA content in Jiyuan provenance plants showed a rising and then
falling trend. The content of IAA increased and then decreased with the typical double
peak trend in the plants from Tokyo and Chengdu, but it fluctuated more pronouncedly in
the Chengdu plants. The plants’ IAA content was highest in stages II, IV, and V. IAA was
critical in regulating plant growth, particularly during the early stages of flowering and
fruiting. Lower IAA concentrations were required for fruit ripening. During stages, I and
II, the IAA content of Chengdu plants was significantly higher than that of the other two
provenances (p < 0.05).

The overall findings revealed that there were significant differences in the content of
tZR in plants from all three provenances. The highest concentration of tZR was found in
stage IV (0.218 µg·g−1) for Jiyuan plants and stage VII (0.214 µg·g−1) for Chengdu plants.
However, the level of tZR in the Tokyo plants was highest in stage VI, with a concentration
of 0.153 µg·g−1. The highest concentration of tZR content was found in the first three
stages of fruit development, indicating that tZR could promote cell division and was closely
linked to fruit development. During stage V, the tZR content of Chengdu plants was higher
than that of the other two provenances (p < 0.05).

3.2. Changes of Hormones in Male Leaves of I. polycarpa from Different Provenances

Figure 4 depicts the dynamic changes in hormones in male leaves of I. polycarpa from
April to October. Male leaf ABA content changes were comparable to female leaf ABA
content changes in Jiyuan and Tokyo. However, there was an unusual fluctuation in the
ABA content of Chengdu plants from stage II to stage IV, as shown in the figure. The
ABA content of Chengdu male leaves was significantly higher than that of the other two
provenances in stages I, II, and IV (p < 0.01).
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Changes in the GA3 content of female leaves were not visible in Jiyuan or Tokyo. The
GA3 content in Chengdu leaves was significantly higher at all stages than in the other two
provenances (p < 0.01), and the changing trend of the M-type was obvious.

The shift in IAA content was not immediately apparent from Tokyo. While the IAA
content of male leaves from Jiyuan and Chengdu was highest at stage V, the content of
other stages was comparable to Jiyuan. In stages IV and V, the IAA content from Tokyo
was significantly lower than that from the other two provenances (p < 0.01).

The tZR content in Jiyuan male leaves was highest in stage IV (0.243 µg·g−1), with the
greatest fluctuation. From stage I to stage VII, the content of tZR from Tokyo and Chengdu
had a smaller change trend, with a periodic rise and fall. In stage V, the tZR content of
male leaves from Jiyuan was significantly higher than that of the other two provenances
(p < 0.01).

3.3. Changes of Hormones in Female Flowers of I. polycarpa from Different Provenances

The levels of ABA, GA3, IAA, and tZR in female flowers differed statistically between
I. polycarpa provenances (Figure 5). Changes in the contents of ABA, GA3, IAA, and tZR
were not observed in female flowers from Jiyuan and Tokyo, but were observed in Chengdu
flowers. The maximum values of ABA, GA3, IAA, and tZR were in stages III (0.111 µg·g−1),
III (37.811 µg·g−1), I (0.357 µg·g−1), and III (0.873 µg·g−1), respectively. This indicated that
IAA promotes flower opening and fruit formation.
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The increasing ABA content in Chengdu flowers suggests that ABA is related to female
flower abscission in the later period. Similarly, the increasing content of GA3 in Chengdu
flowers suggests that GA3 is related to plant fruit setting. The increasing content of tZR
in the same Chengdu flowers, on the other hand, suggests that tZR can promote female
flower differentiation. In stages II and III, the content of ABA, GA3, and tZR in female
flowers from Chengdu was significantly higher than in the other two provenances (p <0.05).
Similarly, Chengdu’s IAA content in stage I was significantly higher than that of the other
two provenances (p < 0.05).

3.4. Changes of Hormones in Male Flowers of I. polycarpa from Different Provenances

Changes in the content of ABA, GA3, and IAA were not observed in male flowers
from Jiyuan and Tokyo, as shown in Figure 6, and the content of tZR decreased first and
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then increased. The ABA content of male flowers from Chengdu was higher in stages I
(0.114 µg·g−1) and II (0.099 µg·g−1), but lower in stage III (0.020 µg·g−1), possibly due
to ABA transfer from flowers to leaves. Chengdu flowers had significantly higher ABA
content in stages I and II than in the other two provenances (p < 0.01). The primary function
of ABA is to promote male flower differentiation and flowering.
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GA3 levels in Chengdu male flowers were highest in stages I (17.081 µg·g−1) and
II (17.476 µg·g−1). Furthermore, based on our findings, it was clear that the GA3 con-
tent in Chengdu flowers at all stages was significantly higher than that of the other two
provenances (p < 0.01).

The IAA content of male flowers from the Jiyuan and Tokyo provenances was low
throughout all stages; however, the IAA content of male flowers from Chengdu was highest
in stage II (0.683 µg·g−1), indicating that IAA promotes male flower flowering at this stage
of development. Furthermore, we discovered that the IAA content of Chengdu flowers in
stages I and II was significantly higher than that of the other two provenances (p < 0.01).

The content of tZR revealed that its peak levels of flowers from Jiyuan, Tokyo, and
Chengdu occurred in stage I, followed by a drop in stages II and III. This phenomenon
demonstrated that tZR was associated with the formation of male flowers. Overall, the tZR
content of the Chengdu flowers in stage II was significantly higher than that of the other
two provenances (p < 0.01).

3.5. Changes of Hormones in Fruits of I. polycarpa from Different Provenances

Figure 7 depicts the changes in hormone concentrations. The concentration of ABA
did not change significantly in fruits from Jiyuan and Tokyo, but it did fall and then rise in
Chengdu fruits. The ABA content of Chengdu fruits in stages VI and VII was significantly
higher than that of the other two provenances (p < 0.05). This phenomenon may be associated
with the production of stress-resistant proteins in response to external stress.
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The content of GA3 was unchanged in the fruits from Jiyuan and Tokyo, but increased
gradually and then decreased in the fruits from Chengdu. The highest level of GA3 in the
latter case was stage VI (0.043 µg·g−1). The GA3 content in Chengdu fruits in stages VI
and VII was significantly higher than in the other two provenances (p < 0.05).

The content of IAA in the fruits from Jiyuan did not change significantly, while the
content of IAA in the fruits from Tokyo and Chengdu had the highest peak values of
0.074 µg·g−1 and 0.138 µg·g−1 in stage IV, respectively. The lower IAA content in stage VI
suggested that fruit ripening is more sensitive to IAA, whereas higher IAA content could
have the opposite effect.

The content of tZR in the fruits from Tokyo and Chengdu had maximum values at
stage VII (0.151 µg·g−1) and stage IV (0.415 µg·g−1), respectively. In the case of the fruits
from Jiyuan, the maximum level was in stage VI, with a peak value of 0.100 µg·g−1. The
tZR content of Chengdu fruits in stages IV, VI, and VII was significantly higher than that
of the other two provenances (p < 0.05). The tZR content in the fruits from the three
provenances was similar in stage V, indicating that a certain amount of tZR could promote
fruit differentiation.

4. Discussion

The growth and development of I. polycarpa were the results of the combined action
of many endogenous hormones, including ABA, GA3, IAA, and tZR, each of which had
different effects on different organs and stages. The literature currently lacks information on
whether cultivation conditions affect the four endogenous hormones in different organs and
stages; thus, this study provides a research foundation for its cultivation and development.

Earlier research suggested that ABA could accelerate or delay the flowering time in
different plant species and developmental stages. In this study, the ABA content of female
flowers from Chengdu increased significantly during the falling flowers period. Many plant
hormones, such as abscisic acid, ethylene, and jasmonic acid, are important in regulating
organ aging and abscission mechanisms, according to Mohd Gulfishan [39]. In the study of
the molecular mechanism of ABA-induced leaf senescence [40], it was also demonstrated
that ABA can promote organ dormancy and abscission and has a role in modulating plant
stress resistance. Furthermore, the ABA content of Chengdu provenance fruits increased
over time. In woodland strawberries, ABA was found to play a coordinating role in fruit
growth and ripening [41].
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The content of GA3 increased in female flowers from Chengdu, but decreased in
male flowers during the falling flowers period, indicating that GA3 was related to fruit
setting and male flower differentiation. Watanabe et al. discovered that exogenous GA3
could promote apple fruit formation [42]. Gibberellin could activate and maintain cell
division of the ovary wall in citrus, leading to fruit setting [43]. Other research has found
that GA3 can promote vegetative growth and flower bud differentiation [44]. From the
initial fruit period to the fruit yellowing period, the content of GA3 in Chengdu fruits has
increased. Gibberellin was discovered to promote parthenocarpy and fruit expansion in
sweet cherries, as evidenced by the qPCR results of related genes, the fruit setting rate,
and the parthenocarpy fruit size [45]. More interestingly, high temperature promotes the
content of endogenous hormones for seed germination in I. polycarpa, causing the balance
of endogenous hormone content to break and the ratio of GA3/ABA to increase toward
seed germination. Our data showed that the content of GA3 and ABA in the fruit showed
an inverse trend and that in the later fruit, both were increased, implying that a balance
between them was achieved in the fruit.

The initial flowering stage and full flowering stage of Chengdu flowers had higher
IAA content. Physiological and molecular research on Arabidopsis thaliana revealed that
polar auxin transport was required for flower formation [46]. High-performance liquid
chromatography (HPLC) [47] was used to investigate the relationship between IAA and
flower formation, and it was discovered that high levels of IAA promoted flower bud
induction in apple trees (Malus pumila), whereas Liu et al. discovered that low levels of
IAA promote flowering in loquat (Eriobotrya japonica) [48]. Furthermore, endogenous auxin
concentration was the limiting factor in controlling apple fruit size [49]. Almudena Bermejo
discovered that IAA can regulate GA metabolism in citrus, resulting in significant changes
in the level of active GA1 in the ovule and pericarp and, ultimately, fruit setting [50].
Increased ethylene production, which directly regulates fruit ripening, necessitates higher
IAA concentrations for fruit ripening [51]. Our research also revealed that the IAA content
in the fruits of the three provenances was higher before the fruit turned yellow, but then
dropped until the fruit was fully ripe.

The tZR content of Jiyuan flowers was higher during the early flowering stage. tZR
typically promotes female flower development, as evidenced by the higher tZR content in
female flowers from the initial flowering stage to the falling flowers stage in a study on
Glycyrrhiza uralensis [52]. Male flowers had a relatively high tZR content at the start of flower
formation, which is supported by the fact that high IAA and tZR contents during the flower
bud differentiation stage are conducive to flower bud differentiation [53]. tZR also inhibited
many developmental processes, such as bud and root elongation, cell differentiation, bud
regeneration, and meristem activity [54,55].

Previous research has shown that high IAA and tZR contents promote flower bud
differentiation, whereas high GA and ABA contents promote flower and fruit abscission [52].
High levels of IAA and tZR regulate plant vegetative growth and flower induction [56].
Furthermore, ABA promotes flowering, whereas GA3 and IAA do not [57]. A similar study
on the changes in endogenous hormones during the flowering period of Gnetum parvifolium
found that high levels of GA3 and tZR promote male flower differentiation, while high
levels of IAA promote female flower differentiation [58]. The peak contents of different
plant organs’ endogenous hormones may be related to the transfer of such hormones to
different organs at different stages.

Plants can change their growth and development in response to their surroundings,
which is controlled by endogenous plant hormones. Several endogenous hormones, in-
cluding ABA, GA3, IAA, and tZR, act together to promote the growth and development
of I. polycarpa. Each hormone had a distinct effect on different organs and developmental
stages. The fluctuation was obvious, and the concentrations of several endogenous hor-
mones in various organs of the Chengdu provenance were significantly higher than those
of the other two provenances. Geographical location and environmental factors, such as
light intensity/availability, soil quality, and precipitation, may all have a causal relationship
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with endogenous hormone concentration variation. Nonetheless, these environmental
influences have a minor impact. According to the findings, the contents of these four
endogenous hormones in I. polycarpa are primarily determined by genetic characteristics of
the trees and are less affected by cultivation conditions. The gender in I. polycarpa had a
great influence on these four endogenous hormones.

5. Conclusions

The materials used in the experiment came from the Forestry Experimental Station of
Henan Agricultural University. The differences in hormone contents between provenances
could be due to genetic differences in I. polycarpa. The contents of various endogenous
hormones in different organs of the Chengdu provenance were significantly higher than
those of the other two provenances, with a clear fluctuation. This discovery may provide
insight into how differences in endogenous hormone concentration can lead to differences
in flowering and fruiting time and quantity, providing cultural direction. In the future, we
will increase the sample size and lengthen the period of observation to confirm the results.
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