The Relationship between Restrictions on Going Out and Motor Imagery among Medical University Students in Japan—Research with Small Samples
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characteristics and Measurements of Physical Performance
2.2. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yoshimoto, T.; Fujii, T.; Oka, H.; Kasahara, S.; Kawamata, K.; Matsudaira, K. Pain status and its association with physical activity, psychological stress, and telework among Japanese workers with pain during the COVID-19 pandemic. Int. J. Environ. Res. Public Health 2021, 18, 5595. [Google Scholar] [CrossRef]
- Health Sciences Council Regional Health Promotion of Overall Health Nutritional Section. Healthy Japan 21 (the second) Middle Evaluation Report. 2018. Available online: https://www.mhlw.go.jp/content/10904750/000360146.pdf (accessed on 29 September 2022).
- Bortz, W.M., II. The disuse syndrome. West J. Med. 1984, 141, 691–694. [Google Scholar]
- Clegg, A.; Young, J.; Iliffe, S.; Rikkert, M.O.; Rockwood, K. Frailty in elderly people. Lancet 2013, 381, 752–762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ubaida-Mohien, C.; Gonzalez-Freire, M.; Lyashkov, A.; Moaddel, R.; Chia, C.W.; Simonsick, E.M.; Ferrucci, L. Physical activity associated proteomics of skeletal muscle: Being physically active in daily life may protect skeletal muscle from aging. Front. Physiol. 2019, 10, 312. [Google Scholar] [CrossRef]
- Jeannerod, M. Mental imagery in the motor context. Neuropsychologia 1995, 33, 1419–1433. [Google Scholar] [CrossRef] [PubMed]
- Fansler, C.L.; Poff, C.L.; Shepard, K.F. Effects of mental practice on balance in elderly women. Phys. Ther. 1985, 65, 1332–1338. [Google Scholar] [CrossRef] [PubMed]
- Yue, G.; Cole, K.J. Strength increases from the motor program: Comparison of training with maximal voluntary and imagined muscle contractions. J. Neurophysiol. 1992, 67, 1114–1123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dickstein, R.; Dunsky, A.; Marcovitz, E. Motor imagery for gait rehabilitation in post-stroke hemiparesis. Phys. Ther. 2004, 84, 1167–1177. [Google Scholar] [CrossRef]
- Guillot, A.; Tolleron, C.; Collet, C. Does motor imagery enhance stretching and flexibility? J. Sports Sci. 2010, 28, 291–298. [Google Scholar] [CrossRef]
- Mulder, T.; Zijlstra, S.; Zijlstra, W.; Hochstenbach, J. The role of motor imagery in learning a totally novel movement. Exp. Brain Res. 2004, 154, 211–217. [Google Scholar] [CrossRef] [Green Version]
- Itotani, K.; Kawahata, K.; Takashima, W.; Mita, W.; Minematsu, H.; Fujita, H. Myofascial Release of the Hamstrings Improves Physical Performance-A Study of Young Adults. Healthcare 2021, 9, 674. [Google Scholar] [CrossRef] [PubMed]
- Douglass, J.; Thomson, G. Poor and rich: Student economic stratification and academic performance in a public research university system. Higher Educ. Q. 2012, 66, 65–89. [Google Scholar] [CrossRef]
- Podsiadlo, D.; Richardson, S. The timed “Up & Go”: A test of basic functional mobility for frail elderly persons. J. Am. Geriatr. Soc. 1991, 39, 142–148. [Google Scholar] [CrossRef]
- Guralnik, J.M.; Simonsick, E.M.; Ferrucci, L.; Glynn, R.J.; Berkman, L.F.; Blazer, D.G.; Wallace, R.B. A short physical performance battery assessing lower extremity function: Association with self-reported disability and prediction of mortality and nursing home admission. J. Gerontol. 1994, 49, M85–M94. [Google Scholar] [CrossRef] [PubMed]
- Duncan, P.W.; Weiner, D.K.; Chandler, J.; Studenski, S. Functional reach: A new clinical measure of balance. J. Gerontol. 1990, 45, M192–M197. [Google Scholar] [CrossRef] [PubMed]
- Itotani, K.; Suganuma, I.; Fujita, H. Are the Physical and Cognitive Functions of Older Adults Affected by Having a Driver’s License? -A Pilot Study of Suburban Dwellers. Int. J. Environ. Res. Public Health 2022, 19, 4573. [Google Scholar] [CrossRef] [PubMed]
- Beauchet, O.; Annweiler, C.; Assal, F.; Bridenbaugh, S.; Herrmann, F.R.; Kressig, R.W.; Allali, G. Imagined Timed Up & Go test: A new tool to assess higher-level gait and balance disorders in older adults? J. Neurol. Sci. 2010, 294, 102–106. [Google Scholar] [CrossRef]
- Nierat, M.C.; Demiri, S.; Dupuis-Lozeron, E.; Allali, G.; Morélot-Panzini, C.; Similowski, T.; Adler, D. When breathing interferes with cognition: Experimental inspiratory loading alters timed up-and-go test in normal humans. PLoS ONE 2016, 11, e0151625. [Google Scholar] [CrossRef]
- Subirats, L.; Allali, G.; Briansoulet, M.; Salle, J.Y.; Perrochon, A. Age and gender differences in motor imagery. J. Neurol. Sci. 2018, 391, 114–117. [Google Scholar] [CrossRef]
- Itotani, K.; Ueda, Y.; Murata, S.; Saito, T.; Ono, R. Analysis of the Relationship Between Cognitive Decline and Physical Function in Older Adults Who Participated in Health Measurement Events Using Classification and Regression Tree (CART). Top Geriatr. Rehabil. 2020, 36, 230–236. [Google Scholar] [CrossRef]
- Wang, Y.; Mukaino, M.; Ohtsuka, K.; Otaka, Y.; Tanikawa, H.; Matsuda, F.; Saitoh, E. Gait characteristics of post-stroke hemiparetic patients with different walking speeds. Int. J. Rehabil. Res. 2020, 43, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.R.; Lee, Y.Y.; Cheng, S.J.; Lin, P.Y.; Wang, R.Y. Relationships between gait and dynamic balance in early Parkinson’s disease. Gait Posture 2008, 27, 611–615. [Google Scholar] [CrossRef] [PubMed]
- Horiuchi, M.; Endo, J.; Horiuchi, Y.; Abe, D. Comparisons of energy cost and economical walking speed at various gradients in healthy, active younger and older adults. J. Exerc. Sci. Fit. 2015, 13, 79–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, H.G.; Dingwell, J.B. Effects of walking speed, strength and range of motion on gait stability in healthy older adults. J. Biomech. 2008, 41, 2899–2905. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi, H.; Prince, F.; Zabjek, K.F.; Allard, P. Sagittal-hip-muscle power during walking in old and young able-bodied men. J. Aging Phys. Act 2001, 9, 172–183. [Google Scholar] [CrossRef]
- Janssen, I.; Heymsfield, S.B.; Wang, Z.; Ross, R. Skeletal muscle mass and distribution in 468 men and women aged 18–88 yr. J. Appl. Physiol. 2000, 89, 81–88. [Google Scholar] [CrossRef] [Green Version]
- Kozakai, R.; Ando, F.; Kim, H.Y.; Yuki, A.; Otsuka, R.; Shimokata, H. Sex-differences in age-related grip strength decline: A 10-year longitudinal study of community-living middle-aged and older Japanese. J. Phys. Fitness Sports Med. 2016, 5, 87–94. [Google Scholar] [CrossRef] [Green Version]
- Vigelsø, A.; Gram, M.; Wiuff, C.; Andersen, J.L.; Helge, J.W.; Dela, F. Six weeks’ aerobic retraining after two weeks’ immobilization restores leg lean mass and aerobic capacity but does not fully rehabilitate leg strength in young and older men. J. Rehabil. Med. 2015, 47, 552–560. [Google Scholar] [CrossRef] [Green Version]
- Ciciliot, S.; Rossi, A.C.; Dyar, K.A.; Blaauw, B.; Schiaffino, S. Muscle type and fiber type specificity in muscle wasting. Int. J. Biochem. Cell Biol. 2013, 45, 2191–2199. [Google Scholar] [CrossRef]
- Geiger, M.; Bonnyaud, C.; Fery, Y.A.; Bussel, B.; Roche, N. Evaluating the effect of cognitive dysfunction on mental imagery in patients with stroke using temporal congruence and the imagined ‘Timed Up and Go’Test (iTUG). PLoS ONE 2017, 12, e0170400. [Google Scholar] [CrossRef]
Variables | Mean (SD) or Number (%) | ||
---|---|---|---|
Total | |||
n = 83 | |||
Age, y | 19.6 | (0.6) | |
GPA, score | 2.7 | (0.5) | |
Height, cm | 167.1 | (8.7) | |
Weight, kg | 59.6 | (9.6) | |
BMI, kg/m2 | 21.2 | (2.3) | |
Sex, male | 43 | (51.8) | |
Primary means of commuting to university | |||
Walking | 0 | (0) | |
Bicycle | 15 | (18.1) | |
Motorcycle | 0 | (0) | |
Train | 68 | (81.9) | |
Other | 0 | (0) |
Variables | Mean (SD) or Number (%) | ||||||
---|---|---|---|---|---|---|---|
R-Group | NR-Group | p Value | Effect Size | ||||
n = 42 | n = 41 | (r,φ) | |||||
Age, y | 19.6 | (0.5) | 19.6 | (0.6) | n.s. | 0.03 | |
GPA, score | 2.8 | (0.3) | 2.7 | (0.5) | n.s. | 0.13 | |
Height, cm | 165.4 | (7.8) | 167.1 | (8.7) | n.s. | 0.10 | |
Weight, kg | 58.6 | (10.6) | 59.6 | (9.6) | n.s. | 0.05 | |
BMI, kg/m2 | 21.3 | (2.7) | 21.2 | (2.3) | n.s. | 0.02 | |
Sex, male | 20 | (47.6) | 23 | (56.1) | n.s. | 0.09 | |
Primary means of commuting to university | |||||||
Walking | 0 | (0) | 0 | (0) | n.s. | 0.04 | |
Bicycle | 7 | (16.7) | 8 | (19.5) | |||
Motorcycle | 0 | (0) | 0 | (0) | |||
Train | 35 | (83.3) | 33 | (80.5) | |||
Other | 0 | (0) | 0 | (0) | |||
MWS, m/s | 2.3 | (0.4) | 2.1 | (0.3) | n.s. | 0.11 | |
TUG, s | 7.3 | (1.6) | 7.6 | (1.2) | n.s. | 0.11 | |
iTUG, s | 5.8 | (1.4) | 7.4 | (1.6) | <0.001 | 0.48 | |
ΔTUG, % | 15.4 | (16.3) | 1.7 | (10.9) | <0.001 | 0.43 | |
FRT, cm | 41.7 | (6.2) | 39.8 | (5.7) | n.s. | 0.16 | |
Grasp strength, kg | 32.9 | (8.7) | 36.4 | (9.1) | n.s. | 0.19 | |
5CS, s | 5.7 | (1.0) | 5.5 | (0.9) | n.s. | 0.04 |
Number (%) | Main Effect | Interaction Effect | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Variable | R-Group | NR-Group | (Restriction of Outings) | (Sex × Restriction of Outings) | ||||||
Sex | n = 42 | n = 41 | F | p Value | Effect Size (η2) | F | p Value | Effect Size (η2) | ||
male | 20 | (47.6) | 23 | (56.1) | 18.95 | <0.001 | 0.19 | 0.168 | 0.683 | 0.002 |
female | 22 | (52.4) | 18 | (43.9) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Itotani, K.; Suganuma, I.; Morimoto, S.; Nakai, H.; Ogawa, N. The Relationship between Restrictions on Going Out and Motor Imagery among Medical University Students in Japan—Research with Small Samples. Life 2023, 13, 797. https://doi.org/10.3390/life13030797
Itotani K, Suganuma I, Morimoto S, Nakai H, Ogawa N. The Relationship between Restrictions on Going Out and Motor Imagery among Medical University Students in Japan—Research with Small Samples. Life. 2023; 13(3):797. https://doi.org/10.3390/life13030797
Chicago/Turabian StyleItotani, Keisuke, Ippei Suganuma, Seiji Morimoto, Hideaki Nakai, and Noriyuki Ogawa. 2023. "The Relationship between Restrictions on Going Out and Motor Imagery among Medical University Students in Japan—Research with Small Samples" Life 13, no. 3: 797. https://doi.org/10.3390/life13030797
APA StyleItotani, K., Suganuma, I., Morimoto, S., Nakai, H., & Ogawa, N. (2023). The Relationship between Restrictions on Going Out and Motor Imagery among Medical University Students in Japan—Research with Small Samples. Life, 13(3), 797. https://doi.org/10.3390/life13030797