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Abstract: The heterogeneity of the lung microbiome and its alteration are prevalently seen among
chronic lung diseases patients. However, studies to date have primarily focused on the bacterial
microbiome in the lung rather than fungal composition, which might play an essential role in the
mechanisms of several chronic lung diseases. It is now well established that Aspergillus spp. colonies
may induce various unfavorable inflammatory responses. Furthermore, bacterial microbiomes such
as Pseudomonas aeruginosa provide several mechanisms that inhibit or stimulate Aspergillus spp. life
cycles. In this review, we highlighted fungal and bacterial microbiome interactions in the respiratory
tract, with a focus on Aspergillus spp.
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1. Introduction

Growing evidence suggests that the human lung microbiome plays an essential role in
the control of the immunological response, the metabolic activity, and the development
of long-term inflammatory illnesses [1,2]. Classical theory reveals that the lung was con-
sidered sterile until recently, when the use of novel culture-independent methods such
as sequencing tools were invented [3,4]. The sterility of the lung has previously been the
subject of vigorous scientific investigations, because healthy adults breathe in more than
7000 L of air each day, which contains microbes [3]. By using this technique, the diversity
of the pulmonary microbiome has been revealed in the lung [2,5–7]. However, due to the
sampling techniques, investigations into the microbiome in the lung have remained limited
and the lower respiratory tract is less accessible.

Furthermore, a study by Gusareva et al. has revealed that fungi account for a signif-
icant proportion of microorganisms in the air, reaching 82% [8]. However, the study of
the microbiome has focused more on elucidating the bacterial composition in the lung,
despite identifying other microorganisms such as fungi, which may also contribute to the
pathogenesis of chronic respiratory disease [2,9–12]. Various fungi might be found to be
widely spread in the environment, some of which impact pulmonary health [2,12]. The role
of Aspergillus, as well as other molds and yeast, in promoting the exacerbation of respiratory
diseases has remained largely unexplored [2,12].
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Comprising hundreds of species, Aspergillus has the potential to be more pathogenic
owing to its potential for resilience and ubiquity in the environment [13,14]. The tremen-
dous survival capability of Aspergillus is supported by various immune evasion strategies
that allow it to adapt to hostile environments [15–18]. The co-existence of Aspergillus and
pulmonary diseases such as asthma, cystic fibrosis (CF) and chronic obstructive pulmonary
diseases (COPD) poses a high risk of worsened clinical outcomes for patients [19–23]. Con-
sequently, the clinical spectrum of aspergillosis, such as chronic pulmonary aspergillosis
(CPA) and allergic bronchopulmonary aspergillosis (ABPA), has been formed due, in part,
to these interactions [22].

Patients with pre-existing cavities caused by tuberculosis or COPD are more likely to
develop CPA [24]. Chronic pulmonary aspergillosis (CPA) has been acknowledged as a
serious lung disease, likely followed by a progressive course and associated with a diverse
spectrum of manifestations [25]. Moreover, aspergillosis might lead to allergic inflammatory
responses due to its colonization in the respiratory tract. This condition, termed allergic
bronchopulmonary aspergillosis, can be seen in patients with asthma and CF [26]. A study
by Isa et al. (2021) showed that airway inflammation in asthmatic children was affected
by indoor air particulates, including fungal spores. The airway inflammation that was
caused by eosinophil and neutrophil activation and degranulation markers is associated
with exposure to particulate matter with an aerodynamic diameter ≤ 2.5 µm (PM2.5),
nitrogen dioxide (NO2), Trichosporon asahii, Papiliotrema bandonii, and Aspergillus clavatus.
Furthermore, it was shown that there is a correlation between the asthma phenotype and
indoor pollutants, in which a fungi profile can be identified [27–29].

Fungi are commensal organisms, interacting with bacteria and the host to ensure
a healthy microbiome. Though modest in number, fungi have enormous genomes and
may operate as keystone species in the microbiome [30]. The mycobiome is the fungal
biota of the human microbiome. Members of the mycobiome possess the ability to switch
from commensalism to pathogenicity, which is frequently dependent on the presence of
colonizing microbial taxa. The disruption of commensal populations might have an impact
on both local and peripheral immune responses, as well as potentially exacerbating disease
states [31,32]. Recent research has indicated that airway microbial populations might
contribute to preserving airway health [33,34]. This review provides an overview of fungal
and bacterial interaction in the respiratory tract, with a focus on Aspergillus spp.

2. Lung and Lower Respiratory Tract Microbiome
2.1. Bacterial Microbiome

Culture-independent techniques using the 16S rRNA gene found that Firmicutes,
Proteobacteria, Bacteroidetes, and Actinobacteria occupied healthy lungs [35]. Intriguingly,
the microbiota of the lungs contains an astonishing 2000 bacterial genomes per cm2 [36–38].
The lung microbiome is predominantly formed through the aspiration of the oropharyngeal
secretion or direct contact with its mucosa. Therefore, there may be an increased possibility
of direct interaction between the microbiota of the upper and lower airways [7,39].

According to a previous study, the extent of variance from neutrality is linked to the
severity of lung disease [40]. The neutrality idea holds that all microorganisms have an
equal probability of acquiring and thriving in a particular habitat, but they also risk dying
there. This paradigm revealed several niches of interaction, including microorganism
colonies which are determined by ambient resources or inter-species relationships [40]. The
diversity of microbiota in the lung is affected by lung diseases. The loss of species richness
in the lung microbiota due to bacterial overgrowth is linked to the progression of diseases
such as cystic fibrosis [41,42].

There is a continuous flux of microorganisms renewing and replacing the microbial
ecosystem. Most of them are classified into Bacteroidetes and Firmicutes, which dominate
the human lung environment [35]. Meanwhile, in mice Proteobacteria and Actinobacteria
are predominate [43–49]. The human lung microbiome depicts larger spatial variation
depending on the site relative to the alveoli [44]. The analysis of low-density populations
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might be complicated, as bias is often relatively apparent due to DNA contaminants that
predominate over the authentic DNA sample. Using extraction procedures at densities of
less than 106 bacteria per mL of the material may significantly affect the composition and
quantity of the identified bacteria [50].

It has been difficult to define a “typical” microbiome that maintains a state of homeostasis
between microbiota and the host cells owing to their heterogeneity among individuals. A
lack of evidence also exists as to whether the microbiome profile can indicate or contribute to
good lung health. Moreover, symbiotic species such as Faecalibacterium prausnitzii have been
identified as likely favorable lung bacteria [51]. It has been found that most lung microbiota
might be governed by dysbiosis in lung disorders such as asthma and COPD [35,36]. The
precise role and causative relevance of this dysbiosis in the development and progression
of asthma are still unknown. The phylum classification of bronchoalveolar lavage from
severe asthmatic children differed from control subjects [36]. The most abundant phylum
was Proteobacteria, followed by Firmicutes (primarily Streptococcus), Bacteroidetes (mainly
Prevotella), and Actinobacteria in decreasing order [36]. Staphylococcus and Haemophilus were
more prevalent in asthmatic people, while Prevotella was frequent in controls [36].

2.2. Fungal Microbiome (Mycobiome)

In contrast to the bacterial microbiome, which has been investigated extensively, there
has been little discussion about the mycobiome because of several difficulties regarding
this field of study. First of all, fungal databases are limited, insufficient, and inaccurate,
including fungal taxonomic, genomes, and ribosomal databases [12,30]. Many fungi evade
identification by conventional culture procedures, and there is still a technological barrier to
molecular based-methods [30,52]. Furthermore, combination steps for nucleic acid isolation
from fungal cells are often needed, including enzymatic, chemical, and mechanical lysis,
making this process more challenging [12]. The sequencing primer choice also affects
fungal taxa differentiation [12]. Researchers also encounter difficulties in studying the
airway microbiome [53].

The average fungal variety in the lungs is smaller than that of bacteria [3], but it
has a more significant coefficient of variation, which is measured by the ratio of standard
deviation to the average when compared to similar samples of bacteria [54]. Most of
the fungi identified in the human respiratory tract belong to the phyla Basidiomycota and
Ascomycota. The most common species of fungi found in lung tissue included Cladosporium,
Eurotium, and Aspergillus [55].

There is a huge variation in the fungal species found in the respiratory tract within
the individual (Figure 1). Moreover, the fungal communities of various patients with
the same disease have even been found to be distinctive [56]. Preliminary work on the
microbiome in sputum revealed that Ascomycota predominated the fungal microbiome
in both COPD patients and healthy controls [57]. Additionally, another study investi-
gated the fungi living in the airways of asthmatic and healthy subjects and showed that
the most abundant ones were A. fumigatus and C. albicans [58]. The airway mycobiota
was a diverse population with a significant degree of individual variation. Significant
alterations in the fungus found in the lung were related to the severity and longevity of
asthma and inflammatory markers [27,58].

The correlation between Aspergillus and bronchiectasis were observed in several con-
ditions, such as in refractory asthma patients [20,59,60]. Patients with Aspergillus-dominant
mycobiomes have a higher frequency of bronchiectasis exacerbations, proven by qPCR,
which is related to airway Aspergillus terreus [59,60]. Each mycobiome profile is linked to
distinct Aspergillus-related illness states, along with “immunoallertypes” of sensitization
and its links to clinical outcomes [59]. In comparison with a house-dust mite chemokine-
dominant group, a fungal-driven pro-inflammatory group is linked with poor outcomes,
including low lung function and worsening disease severity [59,60].

Inquiries into the involvement of fungi in chronic inflammatory airway illnesses are
becoming increasingly popular. Several factors are associated with generating dysbiosis,
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which might arise from the microorganism and its milieu and the inflammation response
from the host [53]. Respiratory tract dysbiosis promotes an alteration in the immunological
response, which affects the development environment for microorganisms in the airways.
Variations in the composition of the baseline respiratory tract microbiome can elucidate the
so-called frequent-exacerbator phenotype seen in some disease states [61].

The lung mycobiome may exert significant inflammatory effects, contributing to or
exacerbating lung diseases. Fungi possess pathogen-associated molecular patterns (PAMPs)
comprised of mannans, chitin, and glucans in their cell walls. To activate the immune cells,
which subsequently yield inflammation, the PAMPs will be recognized by the structure
called pattern recognition receptors (PRRs) [62,63]. As fungi are ubiquitous in the milieu,
the respiratory epithelium might be a large structure likely to be exposed to fungi. These
processes then evoke adaptive and innate immune responses by activating macrophages
and the T cell response associated with cytokine secretion, and activating the immune
system. In a nutshell, owing to its potential to promote inflammation, the mycobiome may
have a significant influence on the way the respiratory–immune system adjusts and leads
to lung injury [64].

Life 2023, 13, x FOR PEER REVIEW 4 of 23 
 

 

linked to distinct Aspergillus-related illness states, along with “immunoallertypes” of sen-
sitization and its links to clinical outcomes [59]. In comparison with a house-dust mite 
chemokine-dominant group, a fungal-driven pro-inflammatory group is linked with poor 
outcomes, including low lung function and worsening disease severity [59,60]. 

Inquiries into the involvement of fungi in chronic inflammatory airway illnesses are 
becoming increasingly popular. Several factors are associated with generating dysbiosis, 
which might arise from the microorganism and its milieu and the inflammation response 
from the host [53]. Respiratory tract dysbiosis promotes an alteration in the immunologi-
cal response, which affects the development environment for microorganisms in the air-
ways. Variations in the composition of the baseline respiratory tract microbiome can elu-
cidate the so-called frequent-exacerbator phenotype seen in some disease states [61]. 

The lung mycobiome may exert significant inflammatory effects, contributing to or 
exacerbating lung diseases. Fungi possess pathogen-associated molecular patterns 
(PAMPs) comprised of mannans, chitin, and glucans in their cell walls. To activate the 
immune cells, which subsequently yield inflammation, the PAMPs will be recognized by 
the structure called pattern recognition receptors (PRRs) [62,63]. As fungi are ubiquitous 
in the milieu, the respiratory epithelium might be a large structure likely to be exposed to 
fungi. These processes then evoke adaptive and innate immune responses by activating 
macrophages and the T cell response associated with cytokine secretion, and activating 
the immune system. In a nutshell, owing to its potential to promote inflammation, the 
mycobiome may have a significant influence on the way the respiratory–immune system 
adjusts and leads to lung injury [64]. 

 
Figure 1. Human microbiota composition in the gut and lung. Different bacterial and fungal micro-
biota were observed in healthy and diseases conditions, such as chronic obstructive pulmonary dis-
eases, asthma, tuberculosis, cystic fibrosis, and bronchiectasis, diseases in the lung, and inflamma-
tory bowel disease, celiac disease, and colorectal cancer in the gut [7,36,37,55,59,65–83]. 

2.3. Bacterial–Fungal Interaction 
The respiratory tract has the most extensive surface area for bacteria and fungi to 

interact. Bacteria and fungi interact using quorum-sensing molecules and proteins [84–

Figure 1. Human microbiota composition in the gut and lung. Different bacterial and fungal mi-
crobiota were observed in healthy and diseases conditions, such as chronic obstructive pulmonary
diseases, asthma, tuberculosis, cystic fibrosis, and bronchiectasis, diseases in the lung, and inflamma-
tory bowel disease, celiac disease, and colorectal cancer in the gut [7,36,37,55,59,65–83].

2.3. Bacterial–Fungal Interaction

The respiratory tract has the most extensive surface area for bacteria and fungi to in-
teract. Bacteria and fungi interact using quorum-sensing molecules and proteins [84–88].
Their dynamic interaction might affect the growth and physiological changes of bacterial
and fungal colonies in the lung (see Table 1). It is also possible that polymicrobial contact
involving the fungal community may alter the pathogenicity of the bacteria [89,90]. The
relationship between the fungal–bacterial interaction and the host could alter the colo-
nization by fungi, bacteria, or both [91]. A recent study revealed mycobiome identified in
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various types of cancer, and showed interactions with the microbiome [92]. Considerable
evidence shows that many interactions between bacteria and fungi are believed to be
mediated by secreted chemicals (Figure 2). Interestingly, such extracellular signaling
molecules are frequently implicated in quorum sensing in single-species communities,
showing that the effect of one organism on another may depend on the density of the
population of the community [89,93–98]. Fewer connections between fungal and bacte-
rial microbiota in the lung were seen in asthma patients, and this change was irreversible
after inhaled corticosteroid therapy [66].

Table 1. Fungi and bacteria interactions in the lung.

No. Mode of Interaction Source of Isolates Reference

1.
Pseudomonas aeruginosa inhibited
Aspergillus fumigatus biofilms from conidia
in CF isolates compared to non-CF.

CF and non-CF patients [99]

2.
Four typical phenazines released by
Pseudomonas aeruginosa suppressed the growth of
Aspergillus fumigatus by inducing ROS and NOS.

Murine aspergillosis models [100]

3.

Pyoverdine, a chemical made by P. aeruginosa,
may be able to collect iron from the environment,
which would prevent A. fumigatus from growing
as a result of nutritional shortage.

A. fumigatus isolates were from ATCC (ATCC 90240),
ATCC 46645 sidA ftrA mutant, while the P. aeruginosa
isolates were obtained from CF patients.

[101]

4.

P. aeruginosa produced dirhamnolipids that
promoted the secretion of dihydroxynaphthalene
(DHN) and pyo-melanin from A. fumigatus,
which surrounded their hyphae to facilitate the
P. aeruginosa binding, leading to the inhibition of
the fungi growth through the blocking of β1,3
glucan synthase (GS) activity.

Murine aspergillosis models [102]

5.
P. aeruginosa secreted alkylhydroxyquinolones,
which interfered with the integrity of the
A. fumigatus biofilm.

CF patients (pediatric) [103]

6.
P. aeruginosa-produced Pf4 bacteriophage
suppressed the A. fumigatus metabolism
through iron sequestration.

CF and non-CF patients [104]

7. A. fumigatus inhibited the biofilm formation of
P. aeruginosa through gliotoxin production. CF patients [105]

8.
A. fumigatus overcame iron starvation by
releasing its hydroxamate siderophores, thus
promoting iron and depriving P. aeruginosa.

Isolates 10 AF, AF13073, Af∆sidA, AF46645,
Af∆sidC, Af∆sidF, AfS77, PA14, pvdD-, pvdD-pchE- [106]

9. P. aeruginosa may encourage fungal growth by
secreting volatile organic chemicals.

Aspergillus fumigatus CBS144-89,
Pseudomonas aeruginosa PAO1 [107]

10.
The coexistence of A. fumigatus may enhance
P. aeruginosa’s phenotypic and genetic changes,
increasing bacterial virulences.

A. fumigatus 53470 (AF53470), A. fumigatus
ATCC 36607 (AF36607), P. aeruginosa 56402
(PA56402) and P. aeruginosa ATCC27853 (PA27853)
were used in this study.

[108]
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in the severity of the disease [101,104,109–113].

Many mechanical interactions between bacteria and fungi have also been documented,
extending from direct interaction and the aggregation of bacterial cells with fungal hyphae
to the formation of biofilms between bacteria and fungi [90,114,115]. The inhibition of fun-
gal viability has been linked to such cellular interactions which may be undertaken through
the bacterial secretion of antifungal chemicals into the local milieu. The mechanisms of
toxin transfer might move directly into the fungal cell via secretion pathways or nutrition
restriction [116]. Another example of what is meant by bacterial–fungal interaction is
the environmental modification in terms of pH change [117], which can affect C. albicans
hyphae formation [118]. Mutually beneficial interactions are also possible in mixed-biofilm
environments, where the different species shield each other against an invading immune
response or antimicrobial agent [116].

Lung epithelial surface microbes may now be identified using DNA-based culture-
independent approaches. The fungi from CF and COPD patients’ sputum or bronchoalveo-
lar lavages have been studied [55,119–123]. There has been no detailed investigation of the
interaction between A. fumigatus and the lung bacteria primarily associated with COPD. By
contrast, the coexistence of A. fumigatus and P. aeruginosa has been explored in individuals
with CF, notably in elderly patients with chronic infection [124].

In response to the presence of bacteria, fungi produce an extracellular matrix to
protect themselves. Bacterial cells were always observed sticking to A. fumigatus hyphae
based on the modelling provided in previous studies [102,109]. Evidence suggests that an
extracellular component called galactosaminogalactan (GAG) from A. fumigatus is essen-
tial for P. aeruginosa adhesion, and it is produced when bacteria invade the fungus [125].
Additionally, an electron-dense substance was detected on the extracellular matrix of
P. aeruginosa–A. fumigatus mixed biofilms, which were determined to be dihydroxy
naphthalene (DHN)- and pyo-melanin [125]. Furthermore, thick cell wall production
is definitively associated with another physiological response of fungi interaction to
bacterial stress. Additionally, the hyphae become extremely ramified when bacteria are
present, with short ramifications at the terminals. Dirhamnolipids and maltophilin are
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the chemicals released by P. aeruginosa and Stenotrophomonas maltophilia, respectively,
that increase the thickness of the fungal cell wall [125–128].

The lungs of cystic fibrosis patients colonized by A. fumigatus and P. aeruginosa might be
linked to a worse disease prognosis than separate infections with both pathogens [110,129].
It is also likely that P. aeruginosa has the potential to inhibit A. fumigatus growth [130,131].
P. aeruginosa mediates this interaction via the production of quorum-sensing molecules,
and likely also its virulence factors [99,131,132]. The LasIR quorum-sensing system has
been implicated in inhibiting A. fumigatus biofilms. In addition, phenazine derivatives
pyrrolnitrin and pyocyanin have been shown to inhibit the growth of fungi [99,132].

3. Gut-Lung Microbiome Axis

The gut and respiratory mucosa layer play an essential role in the mechanical barrier
against microbe invasion. Their interaction with the typical microbiota results in pathogen
resistance [133]. A growing body of literature recognizes the importance of how the
gastrointestinal and respiratory tract communicate in terms of immune and microbial levels
(Figure 3) [134–138]. It has now been well established from various studies that fluids,
particles, and microorganisms stored in the nasal cavity of mice can be identified in the
gastrointestinal tract of the mice a short time later [139].

Extensive research has demonstrated that the gut microbiota is critical in modulating
local immune responses [140]. Crosstalk between the gut microbiome and the response
to immune mucosal system mediated by pro-inflammatory and regulatory signals also
likely promotes the extravasation of neutrophils from the bloodstream to the local immune
response [141]. Moreover, the intestinal microbiota can play an essential role in addressing
the issue of developing adaptive immune responses [142]. Non-pathogenic strains of
Salmonella might contribute to preventing the ubiquitylation of nuclear factor-κB (NF-κB)
inhibitor-α (IκBα), which was yielded to downregulate the inflammation responses in GIT
epithelial cells [143].

The invasion of the respiratory system by microorganisms provides core signals
for the development of local immune cells, which has significant effects on the organ-
ism [144]. Pre-clinical research depicts that microbes’ colonization of the airways as
associated with the maturation and control of the airway immune cells. Germ-free mice
had higher Th2-associated cytokines and IgE levels in their airways, which promotes
allergic airway inflammation [145]. The presence of commensal bacteria in the lungs
has been shown to inhibit Th2-associated cytokine production following an allergen
challenge and to stimulate the development of regulatory cells in children [144,146].
The development of resident memory B cells in the lungs also necessitates exposure
to antigens produced by the lung microbiota, which is particularly important in viral
immunization against influenza [147].

Two potential mechanisms were initially characterized as the immune regulation
via the gut-lung axis: activating the Toll-like receptor (TLR), and interfering T and
B cell homing. However, exemplar mechanisms of how the intestinal microbiome
strives to exhibit systemic immunomodulatory effects remain unexplored [148]. The
interaction likely mediates the immune signaling pathways in the intestinal between the
gut microbiota and a recognition receptor (TLR). This interaction subsequently promotes
the downstream signaling of activating transcription factor NF-κB, essential to produce
several genes that regulate innate immunity and inflammation [149]. Moreover, the
intestinal microbiota also plays a critical role in maintaining TLR signaling [150,151].

Migrating lymphocytes to specific tissues is essential for acquiring an effective immune
response. In a nutshell, interaction microbes with dendritic cells (DCs) in the intestine
might induce the activation of different T cells inside the mesenteric lymph node (MLN),
and are likely to produce several cytokines such as IL-6, TGF-β, INFγ, and IL-10. T cells
are reported, subsequently, to achieve immune homing molecules such as CCR4 and CCR9,
which enable T cells to migrate to non-Lymphoid tissues such as the gut, skin, and lung.
Additionally, T cells also receive the ability to migrate to non-lymphoid tissues through
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direct interaction with mucosal DCs, leading to the enhancement of the expression of
integrin α4β7 and CCR9 on T cells, thus facilitating T cell migration to the small intestine
via the intestinal ligand MAdCAM-1 and the chemokine CCL25 [152]. Conversely, lung
DCs favor CCR4 expression on T cells, allowing activated T cells to enter the lung through
raised CCL17 levels [153]. Lung DCs have been shown to increase the presence of gut-
homing integrin on T cells, driving them to the GI tract [154]. Once this has taken place,
activated T cells transferred to the respiratory mucosa then activate protective and anti-
inflammatory responses. Additionally, the production of essential immunomodulatory
metabolites from bacteria, such as short-chain fatty acids (SCFAs), might also adjust the
inflammation level, leading to the perturbation of the gut–lung axis [148].
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cytokines, which promotes DC maturation in the lymph node (2). DC maturation results in an adap-
tive immune response, including Th17 and anti-Aspergillus antibodies (3). Th17-derived IL22 may 
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This protein then affects the microbiome’s composition in the lungs (5). Aspergillus colonization is 
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mechanisms. Pseudomonas aeruginosa may impede Aspergillus colonization by various processes, in-
cluding the secretion of phenazine, iron competition, quorum sensing, and the creation of tiny dif-
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ginosa colonies, including gliotoxin release and phenotypic modifications (7). The metabolites of the 
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Figure 3. Dynamic interaction between fungal and bacterial microbiome and their immunolog-
ical responses. Alveolar macrophages recognize Aspergillus in the lung and recruit neutrophils,
macrophages, and dendritic cells (DC), which play a critical function as Natural Killer (NK) cells (1).
Additionally, the innate immune response to fungi adds to the generation of specific pro-inflammatory
cytokines, which promotes DC maturation in the lymph node (2). DC maturation results in an adap-
tive immune response, including Th17 and anti-Aspergillus antibodies (3). Th17-derived IL22 may
upregulate the expression of the defensin protein in the human alveolar epithelium via STAT3 (4).
This protein then affects the microbiome’s composition in the lungs (5). Aspergillus colonization is
also governed by antagonistic interactions with the P. aeruginosa colony in the lung via various mech-
anisms. Pseudomonas aeruginosa may impede Aspergillus colonization by various processes, including
the secretion of phenazine, iron competition, quorum sensing, and the creation of tiny diffusible
compounds (6). Additionally, Aspergillus used multiple inhibitory strategies against P. aeruginosa
colonies, including gliotoxin release and phenotypic modifications (7). The metabolites of the gut
microbiome, such as LPS and SCFA, may alter the lung immune response and decrease lung cytokine
production, respectively (8). DC: Dendritic Cells, NFkβ: nuclear factor kappa-light-chain-enhancer of
activated B cells, STAT3: Signal Transducer and Activator of Transcription 3.

Some studies have shown the prominent interactions between intestinal
Candida albicans and Aspergillus fumigatus residing in the lung as the representation of a
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gut–lung mycobiome axis [155–159]. The overgrowth of C. albicans and intestinal bacte-
ria caused by oral antibiotic therapy in mice results in the production of prostaglandin
E2 (PGE2) and promotes M2 macrophage polarization in the lungs [160]. The increased
concentrations of PGE2, specifically, are induced by C. albicans mannan. PGE2 pathways
constitute an important route for Th17 expressions, and both are immensely modulated
by C. albicans [159]. The crosstalk between C. albicans and A. fumigatus has caused the
modulation of Th17 in the lung and airway inflammation responses [155]. It can be con-
cluded that the constant inhalation of A. fumigatus alone is not enough to cause allergic
reactions such as in ABPA [156]. Gut dysbiosis is required, and plays an important role
in the pathogenesis of fungal allergic diseases in the lung [156,160].

It has been previously observed that the microbiome is associated with Aspergillus-
related allergic airway disease. One study, by Noverr et al., examined the evidence for
whether antibiotic and mycobiome interaction might induce allergic airway disease [161].
The allergic response was observed by increasing eosinophils, mast cells, interleukin 5,
IgE, and mucus production in mice treated with an antibiotic. The perturbation of the
GI bacterial population and the increasing yeast number were shown in the mice treated
with antibiotics and, interestingly, they also induced a CD4 T-cell-mediated allergic airway
in response to the exposure of Aspergillus fumigatus [161]. Hence, it could conceivably be
hypothesized that antibiotic exposure might alter the diversity of the GI microbiome, subse-
quently leading to the change in respiratory immune responses to Aspergillus, contributing
to allergy-induced obstructive pulmonary disease [161].

It is now well established due to a previous study that a population with a healthy
microbiome has an essential role in maintaining balanced immunity and preventing the
overgrowth of fungi [162]. The presence of commensal bacteria might suppress the level of
IgE and basophil in circulation, which play a critical role in the allergic response. It is known
that IgE antibodies might potentially enhance IL-3 responsiveness when they interact with
bone marrow-resident basophil precursors. Subsequently, this interaction increases the
number of mature basophils and aggravates the allergen-induced inflammation [162].

4. Discussion
4.1. The Fungal and Bacterial Interface in Specific Respiratory Diseases Entities

Complex interactions between fungi and bacteria in the lung are still limited and unex-
plored. However, previous studies which focused on several diseases are provided here.

4.1.1. Chronic Obstructive Pulmonary Disease (COPD)

Impairing the innate immune system caused by repeated exacerbation in individuals
with persistent COPD might lead to the perturbation of the lung microbiome with regard
to quantity, variety, and composition [61,163–168]. A significant analysis of the bacterial
load and airway inflammation when comparing individuals with stable and exacerbated
COPD, conducted by Singh et al., demonstrated that exacerbations of COPD increase the
prevalence and load of bacteria in the airways. Among patients in a stable condition, larger
bacterial loads in the airways were associated with more severe airflow restrictions and
higher inhaled corticosteroid doses [169]. Additionally, it has also conclusively been shown
that greater levels of interleukin (IL)-1, IL-10, and tumor necrosis factor (TNF)- in sputum
were correlated with an increased bacterial load in the airways [170].

Moreover, individuals with stable COPD might be associated with a level of airway
inflammation. Reducing the alveolar surface generated by emphysematous destruction
has been suggested as a possible explanation for the relative growth of Proteobacteria and,
to a limited extent, Actinobacteria. These bacteria are linked to the entry of neutrophils,
eosinophils, and B cells in lung tissue [171]. Furthermore, a previous study by Segal et al.
also found that the existence of oral microorganisms in the lung microbiome, which is
enriched with Prevotella and Veillonella (supraglottic-characteristic bacteria), was associated
with increased inflammation markers such as lymphocyte/neutrophil and highly linked to
the increase of the Th17 lymphocyte [172,173].



Life 2023, 13, 1017 10 of 22

Compared to Prevotella, Haemophilus has been demonstrated to have a nearly threefold
inflammatory potential. Haemophilus species induce the expression of CD83, CD40, and
CD86 in dendritic cells generated from human monocytes [174]. An intriguing finding is
that the oral taxonomic enrichment of the lung microbiome increases microbiota metabolite
concentrations and decreases alveolar macrophage TLR4 responses, with the latter leading
to reduced infection clearance [172,174].

Several retrospective investigations utilizing culture-dependent methodologies
have examined the incidence of A. fumigatus culture from lower airway specimens
in patients with COPD [175,176]. In a large cohort of COPD patients hospitalized
for severe exacerbation, Aspergillus was identified from 17% of patients’ sputum [177].
Running in parallel, the isolation of other pathogens, particularly Pseudomonas aeruginosa,
was closely linked with an increased probability of the isolation of Aspergillus [160].
Tiew et al. (2021) provided the data of the COPD mycobiome in lower fungal diversity
during acute exacerbation with two-year mortality. In this study, Penicillium, Aspergillus,
and Curvularia were characterized as constituting a “high-risk” mycobiome. This group
was found to show more exacerbation and greater symptoms compared to the group
whose mycobiome was dominated by Saccharomyces. Additionally, this “high-risk” group
tended to exhibit worse clinical outcomes and higher mortality; thus, early identification
and clinical follow-up play a major role.

The investigation of the mycobiome also depends on the type of clinical samples ob-
tained during study. Using oral wash and BAL from COPD patients, Cui et al. compared the
topography of the mycobiome between these two types of respiratory samples [178]. The
study found that Ceriporia lacerata, Saccharomyces cerevisiae, and Penicillium brevicompactum
were significantly more abundant in BAL compared with oral wash [178]. A previous
study reported that these three species might cause opportunistic lung infection [179–181].
Importantly, none of the control samples contained these species, implying the probability
of these species existing as environmental contamination is implausible. The mycobiomes
from patients with HIV infection and COPD were dominated with Pneumocystis jirovecii.
These studies have demonstrated provocative associations between fungal and bacterial
microbiota in the lung and COPD [21,22,178,182].

The remaining question, of how far the microbiome alteration in COPD might lead to
Aspergillus colonization in COPD, has received considerable critical attention. The previous
study investigated the usage of bronchodilators, and corticosteroid inhalation might be
associated with altering the lung microbiome [121]. It has been hypothesized that steroid
therapy will decrease some patients’ immunological response to the lung microbiota. As a
result, the lung microbiome is likely to persist or expand [183].

The relevance of the mycobiome in the clinical progression of chronic respiratory
diseases is clearly supported by the current findings. A recent study showed that the most
common allergens detected in the houses of COPD patients were fungal allergens [184].
Moreover, the quantity of these allergens significantly correlated with the occurrence
of COPD symptoms and decreased lung functions [184]. The variety of geographical
aspects, the genetic defects of the immune system, and the crosstalk between organisms
in the microbiome affect the clinical spectrum and the management of chronic respiratory
diseases [60,184]. The management of chronic respiratory diseases might include the control
of allergens related to the mycobiome aspect.

4.1.2. Cystic Fibrosis (CF)

To date, a previous study has demonstrated that more than 50% of cystic fibrosis pa-
tients had A. fumigatus colonization, while the incidence of invasive aspergillosis among
those patients was low [185]. As mentioned in the prior study, ABPA is likely the most
clinical manifestation of Aspergillus-related disease in CF patients. A study conducted
to observe bacterial microbiomes in CF patients has revealed that the colonization of
Pseudomonas or Streptococci is predominant in CF patients in different states of diseases,
either exacerbations or stable disease, respectively [186]. Both bacteria and fungi might
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be able to produce biofilms, and their interactions with pathogens potentially affect
pathogenicity. Quorum sensing (QS) and cell-to-cell signaling are essential among the
pathogen to ensure survival in the lungs of CF patients. Complex interactions between
Pseudomonas and Aspergillus have been highlighted as being critical in the etiology of
CF [111]. Intriguingly, the use of antibiotics against Pseudomonas spp. in CF patients was
followed by a lowering number of aspergillosis in the sputum. These findings emphasize
the critical role of Pseudomonas spp. and Aspergillus in the pulmonary milieu. Moreover,
evidence has been reported that aspergillosis-metabolites produced are likely to affect
the polymicrobial complex in CF patients [187].

It is believed that the mycobiome accounts for as little as 0.1 percent of the entire
microbiome [30]. However, microbial environment perturbation induced by Aspergillus spp.
and Candida spp. also might induce pulmonary diseases. Previous studies showed that
mice deficient in dectin-1, a receptor in the fungal cell wall for β-glucans associated with
innate immune response, had more potential to develop colitis due to an increase in the op-
portunistic fungi. They were also likely to generate an impaired immune response to those
commensal fungi [188]. What is surprising is that the disruption induced by dectin-1, which
also detects β-glucans from A. fumigatus, might alter the pulmonary immune response to
fungi around the local environment. Likewise, genetic variations affecting dectin-1 have
been previously linked to an increased risk of developing invasive aspergillosis (IA) in
hematological patients [189,190]. Conclusively, studying dectin-1 might be a potential issue
for providing additional insight into the structure and function of microbiota in genetic
regulation perception.

Regarding microbiome interaction, P. aeruginosa colonies depict a different mecha-
nism in inhibiting A. fumigatus among CF and non-CF patients [99]. They release a viru-
lence factor called phenazines, which might disrupt the mitochondrial of A. fumigatus by
producing reactive oxygen species (ROS) and reactive nitrogen species [100]. It has also
been found that phenazines are associated with a better prognosis and more frequent
pulmonary exacerbations [191].

Several studies have investigated the manner in which the P. aeruginosa QS system
plays an essential role in interfering with the growth of A. fumigatus [131,132,192].
The QS system enables bacteria to enhance their pathogenicity, including migration
and biofilm formation. Moreover, P. aeruginosa releases heat-soluble and diffusible
molecules that mimic the QS molecule, leading to the decreased biofilm formation of
A. fumigatus [131,132]. Furthermore, the QS system regulates other virulency molecules
released by P. aeruginosa, including rhamnolipids and alkylhydroxyquinolones. Both
molecules run their function; respectively, to disrupt the cell wall and biofilm integrity
of A. fumigatus [102,103]. Furthermore, P. aeruginosa enhances its ability to inhibit the
colonization of A. fumigatus through pyoverdine production. This molecule functions by
capturing the iron from the milieu, inhibiting the biofilm formation of A. fumigatus [56,106].

Interestingly, amid the fungicidal mechanisms provided by P. aeruginosa, A. fumigatus
seems able to thrive in CF patients. In fact, A. fumigatus might demonstrate the abil-
ity to reverse the antagonist activity of P. aeruginosa and may potentially restrict the
growth of bacteria [131,193]. This is exemplified in the production of an antibacte-
rial from A. fumigatus, well known as gliotoxin, which inhibits the biofilm formation of
P. aeruginosa [105]. Additionally, the potential of A. fumigatus to generate its siderophores
enables it to store iron, which is essential for survival, in the critical iron depletion envi-
ronment. Moreover, to avoid antagonism by P. aeruginosa, A. fumigatus promotes the bio-
transformation of phenazine into a beneficial form such as phenazine-1-carboxylic acid
(PCA), converting into 1-HP molecules leading to the self-generating of siderophore [194].

The most striking point regarding the interaction of A. fumigatus and P. aeruginosa
is that these species provide a cooperative interaction model. The high prevalence of
A. fumigatus colonies in CF patients after infection with P. aeruginosa suggests an exciting fact;
that this bacteria colony may facilitate A. fumigatus growth [107,195]. Phenazine, known
as one of the virulence factors released by P. aeruginosa, might enhance iron bioactivity at
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its low concentration, leading to A. fumigatus biofilm establishment. Moreover, the iron-
chelating properties of phenazine also allowed A. fumigatus to adapt to the iron shortage,
revealing its ability to adapt to the antagonist effect of P. aeruginosa [100,196]. On the other
hand, P. aeruginosa may exhibit enhanced virulence due to phenotypic adaptations and
genetic mutations accelerated by A. fumigatus [197].

4.1.3. Chronic Pulmonary Aspergillosis (CPA)

CPA is likely characterized by infection with the Aspergillus genus, primarily as-
sociated with A. fumigatus, in individuals with pre-existing disease, especially chronic
obstructive pulmonary diseases (COPD) or prior tuberculosis with no evident immunosup-
pression. This condition can be distinguished from invasive aspergillosis (IA) and allergic
bronchopulmonary aspergillosis (ABPA), which are linked to immune dysfunction and
hyperactivity (atopic), respectively. CPA is a severe lung disease within the pulmonary
aspergillosis spectrum, and can progress to destroy parts of the lung [198,199].

Patients at a higher risk of CPA have a high variation in the pulmonary myco-
biome [58,200,201]. The outcomes of the metagenomic study and real-time multiplex
PCR show that patients at risk of CPA had a high Aspergillus prevalence [200,202]. It
is vital to identify potential pathogenic fungi because HIV-positive patients are fre-
quently misdiagnosed with pulmonary tuberculosis (PTB) when they may actually have
CPA [200,203]. To avoid inaccurate diagnosis and unnecessary antibiotic use, means of
identifying Mycobacterium spp. should also be tested [200].

A study by Zhao (2021) also shows that the interface between bacteria and fungi
caused worsened clinical features. Aspergillus was the most common fungi detected in
fungal and bacterial coinfection (43.8%) and fungal infection (36.6%) from the total of
119 patients [112]. Pulmonary cavity and immunocompromised status were identified as
risk factors for fungal and bacterial co-infections [112]. There was a probability of CPA
from the data mentioned since a proportion of the patients’ characteristics showed cavity
lesions in CT imaging [112]. However, to have more reliable and conclusive data in the
future, the analysis of different risk groups, a larger sample size, a more diversified range
of patients, and healthy patients for comparison with the mycobiota in the study should be
examined [200]. Increasing the sensitivity of the metagenomic approach by improving the
collection of pure fungal DNA from the biological sample is also important [200].

4.2. Challenges in the Detection of the Lung Microbiome

Few studies have investigated lung microbiota systematically, owing to the challenge
of describing the human lung environment using standard culture techniques relying on
bacterial growth in bronchoalveolar lavage material [204,205]. This is because the lung has
a lesser bacterial load than the other parts of the body, such as the gut and urinary tract.
Additionally, there is debate regarding the possibility of microbial contamination from the
lower respiratory tract with upper airways—this issue yields to the exclusion of the lung
from the earlier study mapping the microbiome [204,206].

Several challenges also need to be taken into account regarding mycobiome sequenc-
ing. An essential consideration attributed to the contamination and DNA degradation
with the fungal cell wall lysis might be a challenge in sample processing. Additionally,
some bias emanating from the primer and amplification, target accuracy, and data repro-
ducibility in the targeted amplicon sequencing process also contributed as a limitation
in the sequencing of the mycobiome. In the stage of shotgun metagenomic sequencing,
the issues attributed to the lesser fungal abundance compared to bacteria, difficulties of
fungal detection due to enrichment of DNA host, and their high cost are also considered
challenges to the sequencing.

Furthermore, some of the challenges might be associated with studying the respi-
ratory tract microbiome. It is well known that there is an alteration in the microbiome
distribution in chronic respiratory diseases; however, the frequency and distribution of
these alterations are unknown. Additionally, regarding the sampling procedure, sputum
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might be the best sample to study the microbiome in the respiratory tract because it
avoids invasive procedures. However, there is no denying that obtaining samples from
the lower respiratory tract, like a peripheral bronchial tree and alveolar surfaces, likely
provides reliable information. The contamination of the upper airway microbiome might
be a confounding factor during the observational study of the lower airway microbiome.
Furthermore, a systematic understanding of how complex microbiome–host interac-
tions in different body sites contribute to respiratory diseases is still lacking. Analyzing
the delicate crosstalk between host and microbiome in various human body sites may
exhibit a remote impact from microbial communities and probably help to dissect the
progression of chronic respiratory disease [207].

Another significant limitation in the microbiome study is related to the database
analysis. Preliminary research must pick the relevant question and then select a suitable
methodology from a selection of accessible bioinformatics tools [208]. It is also essential to
evaluate the variation of the microbiome study, including sample heterogeneity, technical
sampling, and the biases arising from DNA extraction sequencing [209]. An additional
method, including metagenomic analysis, is necessary as 16S rRNA gene sequencing
cannot reveal information about fungi and viruses in detail. Moreover, protocols must be
standardized to conduct studies on the pulmonary microbiome involving sample collection,
processing, and bioinformatics analysis [207].

Furthermore, regarding the condition of the respiratory system, several diseases,
including CF and COPD, might reduce the diversity of the human microbiome in the respi-
ratory tract. A similar pattern also can be seen in the gut microbiome, indicating that these
phenomena might be linked to the operational taxonomic unit. A better understanding
of the factors contributing to this loss of microbiomes, such as competition inter-species,
antibiotic treatment, and host immunological responses, is essential [207].

5. Conclusions

Taken together, this review has elucidated that Aspergillus spp. induced a host immune
response associated with a diverse range of bacteria–fungal interaction, comprised of
cooperation and counter inhibition, in the respiratory tract, which influences microbiome
colonization and the immunopathogenesis of CPA. However, this review was limited
by the absence of a comparison between healthy and diseased lung models associated
with microbiome colonization. Furthermore, there are several unexplored questions that
should be investigated in the future as to whether the interaction between bacterial and
fungal microbiomes in the normal respiratory tract reveals the same pattern in specific lung
diseases. Additionally, due to several limitations in order to detect the lung microbiome,
the combination of metagenomics and sequencing is urgently needed to explore the variety
of the microbiome in the respiratory tract. Moreover, considerably more work will need
to be carried out to determine the best sampling method for use in the lung to avoid
contamination from the upper respiratory tract.
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