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Abstract: Melanogenesis involves a synthesis of melanin pigment and is regulated by tyrosinase.
The addition of whitening agents with tyrosinase-inhibiting properties in cosmetics is becoming
increasingly important. In this study, the ethanolic extracts from twelve seaweeds were assessed for
tyrosinase-inhibiting activity using mushroom tyrosinase and melanin synthesis in B16F10 melanoma
cells. The highest mushroom tyrosinase inhibition (IC50) was observed with Lobophora challengeriae
(0.15 ± 0.01 mg mL−1); treatment was more effective than kojic acid (IC50 = 0.35 ± 0.05 mg mL−1), a
well-known tyrosinase inhibitor. Three seaweeds, Caulerpa racemosa, Ulva intestinalis, and L. challengeriae,
were further investigated for their ability to reduce melanogenesis in B16F10 cells. The ethanolic
extracts of C. racemosa, U. intestinalis, and L. challengeriae showed inhibitory effects by reducing
melanin and intracellular tyrosinase levels in B16F10 cells treated with α-melanocyte stimulating
hormone in a dose-dependent manner. C. racemosa (33.71%) and L. challengeriae (36.14%) at 25 µg mL−1

reduced melanin production comparable to that of kojic acid (36.18%). L. challengeriae showed a
stronger inhibition of intracellular tyrosinase (decreased from 165.23% to 46.30%) than kojic acid (to
72.50%). Thus, ethanolic extracts from C. racemosa, U. intestinalis, and L. challengeriae can be good
sources of natural tyrosinase inhibitors and therapeutic or cosmetic agents in the future.

Keywords: hyperpigmentation; intracellular tyrosinase; melanin; seaweed; whitening agent

1. Introduction

The melanin content of mammals is the main determining factor of skin and hair colors [1].
In addition, melanin protects skin cells from ultraviolet (UV) radiation damage by absorbing
UV radiation and removing reactive oxygen species (ROS) [2,3]. The overproduction of
melanin is one of the main causes of melasma, freckles, dark spots, and post-inflammatory
melanoderma [4]. Melanin is produced from epidermal melanocytes along with basal
keratinocytes, and melanocytes synthesize melanin through a process called melanogenesis.
Tyrosinase-related protein-1 (TRP-1), TRP-2, and tyrosinase are enzymes that regulate the
process of melanin production [5]. Tyrosinase (enzyme commission number (EC) 1.14.18.1)
is the rate-limiting enzyme that plays an important role in melanogenesis [6]. This enzyme
is mainly involved in the initial steps of melanogenesis; it catalyzes the hydroxylation of
L-tyrosine to L-DOPA and converts L-DOPA to dopaquinone by oxidation. Dopaquinone
can be transformed to dopachrome in the production of eumelanin, and dopaquinone itself
can also be converted to cysteinyl dopa to produce pheomelanin [7,8]. Tyrosinase inhibition
is one of the most common methods for achieving skin hypopigmentation [9]. In addition,
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tyrosinase inhibitors may be of clinical benefit in the treatment of skin cancer and some
dermatologic conditions associated with melanin hyperpigmentation [10].

Tyrosinase inhibitors are known from both natural and synthetic sources. Although
many tyrosinase inhibitors are available today, only a few can be used in cosmetics because
of their side effects. Hydroquinone, kojic acid, and arbutin are known inhibitors used
for the treatment of hyperpigmentation disorders. Some studies have emphasized that
hydroquinone can cause DNA damage, mutations and have reported various side effects,
including contact dermatitis, leukoderma, transient erythema, burning, prickling sensations,
and ochronosis [1,11–13]. Kojic acid has also been banned in some countries due to side
effects and concerns about mutagenicity [14]. Although arbutin is a natural product, it
affects the gene expression level of the skin [15]. Safe and effective tyrosinase inhibitors
from natural resources thus continue to attract attention, and in recent years seaweed has
become an increasingly promising potential source of tyrosinase inhibitors.

Several bioactive compounds from seaweed are considered excellent natural extracts
that can be used as ingredients in the development of cosmetic and pharmaceutical
products [3,16,17]. According to previous studies, seaweeds are promising sources of
novel tyrosinase inhibitors because of their anti-melanogenic effects, especially brown
seaweeds belonging to the genera Ecklonia, Laminaria, Sargassum, and Undaria [9,10,18–22].
Some studies have been reported on red seaweed [18,23,24] and green seaweed [19,25,26].

Caulerpa racemosa (Forsskål) J. Agardh (1873) [27], Ulva intestinalis Linnaeus (1753) [28],
and Lobophora challengeriae C.W. Vieira (2019) [29] are seaweeds native to the southern
Pacific Ocean and are typically distributed along the coasts of Thailand [30,31]. Currently,
C. racemosa and U. intestinalis are green algae that can be produced in large quantities
on farms and are used mainly as food or feed [32,33]. The investigation of high-value
substances from these seaweeds for nutraceuticals, cosmeceuticals, and pharmaceuticals
is still ongoing. Lobophora is a brown seaweed that has been reported to have a wide
range of bioactivities, including antioxidative, antibacterial, antiviral, and antitumoral
activities [34]. As far as is known, this is the first investigation on the inhibitory effect
of extracts from U. intestinalis and L. challengeriae on melanin synthesis in B16F10 cells.
Accordingly, the present study aimed to explore the inhibitory effect of seaweed extract
using a mushroom tyrosinase system, which is commonly used to test and screen potential
tyrosinase inhibitors. The ability of seaweed extract to inhibit melanin production and
intracellular tyrosinase activity in B16F10 cells was also tested.

2. Materials and Methods
2.1. Seaweed

Twelve samples of seaweed were collected in the coastal regions of Thailand from
May 2016 to August 2017 (Table 1). After collection, the sands, salts, and epiphytes were
removed with fresh water. Seaweed was kept at −20 ◦C for further analysis. All seaweed
samples were identified at the Algal Bioresources Research Center of the Department of
Fishery Biology at Kasetsart University.

2.2. Seaweed Extract Preparation

The samples were extracted with 95% ethanol (1:10, w/v) for 24 h at room temperature.
The extract was filtered with Whatman No. 2 filter paper. The residues were extracted
two additional times under the same conditions. The resulting filtrate was evaporated at
40 ◦C under reduced pressure in a rotary evaporator (BUCHI rotavapor R-200) until crude
extract was obtained. The extract was redissolved with 95% ethanol, filtered with a 0.45 µm
polytetrafluoroethylene (PTFE) syringe filter, blown with N2, and stored at −20 ◦C until
further analysis.
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Table 1. List of seaweed collected during this study.

Sample Code Species Location Collection Time Voucher Number

Chlorophyta
CL Caulerpa lentillifera J. Agardh (1837) [35] Chonburi Province

(12◦36′49.1′′ N 100◦55′26.2′′ E) March 2017 FIKU_119

CR Caulerpa racemosa (Forsskål) J. Agardh (1873) [27] Chonburi Province
(12◦36′49.1′′ N 100◦55′26.2′′ E) March 2017 FIKU_120

UI Ulva intestinalis Linnaeus (1753) [28] Pattani Province
(6◦52′39.4′′ N 101◦14′12.1′′ E) January 2017 FIKU_118

UR Ulva rigida C. Agardh (1823) [36] Phetchaburi Province
(13◦02′36.2′′ N 100◦05′11.0′′ E) August 2017 FIKU_127

Ochrophyta
SA Sargassum aquifolium (Turner) C. Agardh (1820) [36] Chonburi Province

(12◦36′49.1′′ N 100◦55′26.2′′ E) May 2017 FIKU_124

SP Sargassum polycystum C. Agardh (1824) [37] Chonburi Province
(12◦36′10.0′′ N 100◦57′09.7′′ E) March 2017 FIKU_121

TN Turbinaria conoides (J. Agardh) Kützing (1860) [38] Chonburi Province
(12◦36′49.1′′ N 100◦55′26.2′′ E) May 2017 FIKU_125

TT Turbinaria coniodes (J. Agardh) Kützing (1860) [38] Trat Province
(12◦11′13.2′′ N 102◦18′04.6′′ E) March 2017 FIKU_122

PA Padina australis Hauck (1887) [39] Chonburi Province
(12◦36′10.0′′ N 100◦57′09.7′′ E) April 2017 FIKU_123

PM Padina minor Yamada (1925) [40] Trat Province
(12◦11′13.2” N 102◦18′04.6” E) December 2016 FIKU_117

LC Lobophora challengeriae C. W. Vieira (2019) [29] Chonburi Province
(12◦36′49.1′′ N 100◦55′26.2′′ E) May 2017 FIKU_126

Rhodophyta
GR Gracilaria dura (C. Agardh) J. Agardh (1842) [41] Chonburi Province

(13◦12′30.0′′ N 100◦58′29.2′′ E) September 2016 FIKU_116

2.3. Determination of Total Phenolic Contents (TPC)

The TPC of seaweed extracts was analyzed according to the method of Park et al. [42]
with slight modifications. Briefly, 100 µL of the sample solution (10 mg mL−1) was added
to 750 µL of 10% Folin–Ciocalteu solution. After 5 min, 750 µL of 6% Na2CO3 was added,
and the mixture was incubated at room temperature for 30 min in the dark. The absorbance
of the samples was measured at 750 nm by a microplate reader (EZ Read 200 microplate
reader). The TPC of each extract was then calculated based on a gallic acid standard curve
and is reported as milligrams of the gallic acid equivalent (GAE) per gram of the extract.

2.4. Mushroom Tyrosinase Assay

The inhibitory effects of seaweed extracts were investigated according to the method
described by Chan et al. [43] with slight modifications. The tyrosinase activity was
determined using 3,4-dihydroxy-L-phenylalanine (L-DOPA) as a substrate. Briefly, 40 µL
of 500 units mL−1 mushroom tyrosinase (Sigma, St. Louis, MO, USA) in 0.1 M phosphate
buffer (pH 6.8), and 40 µL of various concentrations of the extract were added to each
well of a 96-well plate. After 10 min of incubation at room temperature, 80 µL of 2.5 mM
L-DOPA in 0.1 M phosphate buffer (pH 6.8) was added to each well and incubated for
30 min at 37 ◦C. Kojic acid was used as a positive control. The absorbance of samples at
475 nm was measured using a 96-well microplate reader, and results are expressed as a
percentage of the control value (without seaweed extract).

2.5. Melanocyte Cell Culture

The B16F10 murine melanoma cell line was obtained from the American Type Culture
Collection (ATCC, Manassas, VA, USA) and cultured in Dulbecco’s modified Eagle’s medium
(DMEM) with 10% fetal bovine serum, 100 units mL−1 penicillin, and 100 units mL−1 streptomycin
at 37 ◦C in a humidified atmosphere containing 5% CO2. Cells were subcultured every
3–4 days. The cells were harvested by trypsinization and counted by a hemocytometer.

2.6. Cell Viability Assay

The cytotoxicity of seaweed extracts on B16F10 melanoma cells was determined using
a 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide (MTT) assay according to
the method of Boonpisuttinant et al. [44] with slight modification. The cells (3 × 104 cells
well−1) were seeded in 96-well plates with culture media and allowed to adhere overnight
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at 37 ◦C in a 5% CO2 incubator. Cells were treated with various concentrations of extracts
or kojic acid and incubated for an additional 72 h. After treatment, the cells were washed
three times with phosphate buffer (pH 7.0), and 100 µL of MTT solution (5 mg mL−1 in
PBS) was added to each well and incubated at 37 ◦C for 1 h. After incubation, the MTT
solution was removed, and the formazan product in each well was dissolved by adding
100 µL of dimethyl sulfoxide (DMSO). The mixture was incubated at 37 ◦C for 10 min, and
the absorbance was measured at 560 nm using a microplate reader (Expert Plus Microplate
Reader, Biochrome, Ltd., Cambridge, UK).

2.7. Measurement of Cellular Melanin Contents

The melanin content in B16F10 melanoma cells was measured according to the method
of Chan et al. [43] with slight modifications. In brief, cells (2 × 105 cells well−1) were
suspended in 1 mL of media in 12-well plates and allowed to adhere for 24 h at 37 ◦C under
a 5% CO2 atmosphere. Cells were exposed to various concentrations of seaweed extracts
and kojic acid (2.5–25 µg mL−1) for 72 h in the presence or absence of 100 nM α-melanocyte
stimulating hormone (α-MSH), and were washed with PBS (pH 7.0). Cell pellets were lysed
in 100 mL of 1 M NaOH at 60 ◦C for 1 h. The supernatant was measured at 450 nm with
a microplate reader, and melanin content was expressed as a percentage change from the
α-MSH-treated cells. Cell changes were also observed under a microscope.

2.8. Intracellular Tyrosinase Activity Assay

The intracellular tyrosinase activity in B16F10 melanoma cells was determined according
to the method of Wang et al. [45] with slight modifications. The cells (2 × 105 cells
well−1) were seeded in 6-well plates and cultured for 24 h. Cells were exposed to various
concentrations of seaweed extracts and kojic acid (2.5, 5, 10, and 25 µg mL−1) for 72 h
in the presence or absence of 100 nM α-MSH and then washed with PBS (pH 7.0). Cells’
pellets were collected after treatment with trypsin-EDTA and centrifuged at 12,000 rpm
for 5 min. The pellets were lysed with 0.1 mM protease inhibitor cocktail and 1% Triton
X-100. The lysates were frozen/thawed three times and then centrifuged at 10,000 rpm for
10 min. The supernatant was used for the measurement of tyrosinase activity. The reaction
mixture, consisting of 80 µL of cell supernatant and 80 µL of 10 mM L-DOPA, was placed
in a 96-well plate and incubated at 37 ◦C for 1 h. The absorbance was measured at 475 nm
with a microplate reader, and the results are expressed as a percentage change from the
value of α-MSH-treated cells.

2.9. Statistical Analysis

The data are presented as the mean ± standard deviation (SD). All experiments were
conducted in triplicate (n = 3). The assessment of statistical difference between mean values
was performed with IBM SPSS Statistics 28 software using one-way ANOVA followed by
Duncan’s multiple range test. p values less than 0.05 (p < 0.05) were considered statistically
significant. Pearson correlation analysis was applied to determine the relationship between
phenolic content and anti-tyrosinase or anti-melanogenic activity. Half-maximal inhibitory
concentrations (IC50) were calculated using Sigma Plot 12.0 software.

3. Results
3.1. The Extraction Yields and Total Phenolic Content of Seaweed Extracts

The extraction yields of the ethanolic extract from twelve seaweed samples are shown
in Figure 1. The highest yield was found in the brown seaweed L. challengeriae (LC)
(18.61 ± 0.29%), followed by Sargassum polycystum (SP), Turbinaria conoides (TT), and Padina
minor (PM), with extraction yields of 15.55 ± 1.14%, 15.99 ± 1.35%, and 15.33 ± 0.35%,
respectively. Moreover, U. intestinalis (UI) showed the highest yield among the green
seaweeds (13.41 ± 0.51%). The extract yield of the red seaweed Gracilaria dura (GR)
was 3.79 ± 0.46%.
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Figure 1. The extraction yields of ethanolic extracts were calculated based on the sample dry weight.
The values are expressed as mean± SD (n = 3). Significant differences are indicated by different
letters (p < 0.05).

The TPC varied significantly depending on species (Figure 2). The highest TPC was
found in L. challengeriae (LC) (47.43 ± 0.35 mg GAE g−1 dw) for brown seaweed and in
U. intestinalis (UI) (5.88 ± 0.35 mg GAE g−1 dw) for green seaweed. The TPC of G. dura
was 1.45 ± 0.08 mg GAE g−1 dw.
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3.2. Mushroom Tyrosinase Inhibitory Activity

As shown in Figure 3, the mushroom tyrosinase inhibitory activities of U. intestinalis
(96.04 ± 0.00%), S. polycystum (94.15 ± 0.00%), and L. challengeriae (91.34 ± 0.16%) showed
the highest activity at 5 mg mL−1 and were comparable to those of kojic acid (94.30 ± 0.34%).
Among the seaweed groups, the brown seaweed extracts showed the greatest tyrosinase
inhibitory activity. The half maximal inhibitory concentration (IC50) values are shown in
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Table 2. A low IC50 value indicated that the sample had strong anti-tyrosinase activity. The
ethanolic extract of L. challengeriae showed the highest mushroom tyrosinase inhibitory
activity, with IC50 values of 0.15 ± 0.01 mg mL−1. This treatment showed a higher
inhibitory effect on mushroom tyrosinase than kojic acid (IC50 = 0.35 ± 0.05 mg mL−1),
a known tyrosinase inhibitor. In addition, a moderate correlation (r = 0.480) was found
between the tyrosinase inhibitory activity of all ethanolic extracts and their phenolic content.
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Table 2. The half-maximal inhibitory concentration (IC50) values of seaweed extract on mushroom
tyrosinase activity.

Sample IC50 (mg mL −1)

Caulerpa lentillifera (CL) >5.00
Caulerpa racemose (CR) >5.00
Ulva intestinalis (UI) 3.35 ± 0.12
Ulva rigida (UR) >5.00
Sargassum aquifolium (SA) 4.56 ± 0.14
Sargassum polycystum (SP) 1.24 ± 0.24
Turbinalis coniodes (TN) >5.00
Turbinalis coniodes (TT) 4.62 ± 0.04
Padina australis (PA) 1.09 ± 0.03
Padina minor (PM) 1.23 ± 0.06
Lobophora challengeriae (LC) 0.15 ± 0.01
Gracilaria dura (GR) >5.00
Kojic acid (K) 0.35 ± 0.05

Values are expressed as mean ± standard deviation (n = 3).

3.3. Cytotoxicity of Seaweed Extracts on B16F10 Cells

The α-MSH stimulated B16F10 cells were treated with different concentrations of
twelve seaweed extracts, and kojic acid (1–1000 µg mL−1) for 72 h (Figure 4). The results
showed that none of the extracts had a significant effect on cell viability at concentrations
of 1–10 µg mL−1. At 100 µg mL−1, some of the extracts exhibited cytotoxicity (<85% viable
cells) and displayed significant toxicity (<75% viable cells) at 1000 µg mL−1, except kojic
acid. Therefore, we used seaweed extract at a concentration of 10 µg mL−1 to determine its
effect on melanin content in B16F10 cells.
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were incubated with various concentrations (1–1000 µg mL−1) of seaweed extracts and kojic acid in
the presence of α-MSH for 72 h. The values are expressed as mean ± SD (n = 3). Con; Control, K;
Kojic acid.

Later, the ethanolic extracts of C. racemosa, U. intestinalis, and L. challengeriae were
selected to evaluate the effect of extract concentration on cell viability in B16F10 cells
and compared with kojic acid. As shown in Figure 5, the cells treated with various
concentrations (2.5–25 µg mL−1) of extracts from these three species exhibited more than
90% cell viability for up to 72 h.
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stimulated B16F10 cells compared with kojic acid. Cells were incubated with various concentrations
(2.5–25 µg mL−1) of seaweed extract and kojic acid for 72 h. The values are expressed as mean ± SD
(n = 3). Con; Control, K; Kojic acid.
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3.4. Effects of Seaweed Extracts on Melanin Synthesis in B16F10 Cells

The melanin contents of B16F10 cells were measured after treatment with twelve
seaweed extracts at 10 µg mL−1 in the presence or absence of 100 nM α-MSH. As shown in
Figure 6, all the seaweed extracts and kojic acid showed a significant inhibition of melanin
production compared with the control stimulated by α-MSH. After the stimulation of
B16F10 cells with α-MSH, the melanin content increased to 126.70% of the control (cells
without α-MSH treatment). The ethanolic extracts of C. racemosa (CR), T. conoides (TT), and
L. challengeriae (LC) showed maximal reductions in melanin production of 99.08 ± 3.04,
98.12 ± 7.74, and 94.67 ± 3.07%, respectively, which were not significantly different from
that of kojic acid (96.55 ± 2.88%). In addition, a high correlation (r = 0.611) was found
between the tyrosinase inhibitory activity of all ethanolic extracts and their phenolic content.
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Moreover, when α-MSH-stimulated B16F10 cells were treated with various concentrations
(2.5–25 µg mL−1) of the ethanolic extract of C. racemosa, U. intestinalis, L. challengeriae,
and kojic acid, the melanin content of the cells decreased in a dose-dependent manner
(Figures 7 and 8). The melanin content of the α-MSH treated cells increased to 111.49% of
the control cells (cells without α-MSH treatment). At 25 µg mL−1, the ethanolic extracts
of C. racemosa, U. intestinalis, and L. challengeriae reduced melanin production in the
α-MSH-stimulated cells to 77.78 ± 2.44%, 88.20 ± 3.09%, and 75.35 ± 0.05%, respectively.
Moreover, the ability of C. racemosa and L. challengeriae to reduce melanin production was
comparable to that of kojic acid (75.31 ± 7.71% at 25 µg mL−1).

3.5. Effects of Seaweed Extracts on Intracellular Tyrosinase Activity in B16F10 Cells

We investigated the effect of the ethanolic extracts of C. racemosa, U. intestinalis,
L. challengeriae, and kojic acid on cellular tyrosinase activity in α-MSH-stimulated cells.
The cellular tyrosinase activity was significantly decreased by C. racemosa, U. intestinalis,
L. challengeriae, and kojic acid in a dose-dependent manner (Figure 9). After the stimulation
of B16F10 cells with α-MSH, intracellular tyrosinase activity increased to 165.23% of the
control (cell without α-MSH treatment). At 25 µg mL−1, C. racemosa, U. intestinalis, and
L. challengeriae reduced intracellular tyrosinase activity in the α-MSH-stimulated cells to
109.63%, 108.20%, and 46.30%, respectively. Moreover, L. challengeriae exhibited stronger
inhibitory activity on intracellular tyrosinase than kojic acid (72.50% at 25 µg mL−1).
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α-MSH-stimulated B16F10 melanoma cells compared with kojic acid. Cells were incubated with
various concentrations (2.5, 5, 10, and 25 µg mL−1) of seaweed extract. The values are expressed as
mean ± SD (n = 3). Significant differences are indicated by different letters (p < 0.05). Con; Control, K;
Kojic acid.
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Figure 8. Effect of seaweed extracts and kojic acid on cellular melanin content in α-MSH-stimulated
B16F10 melanoma cells. Cells were incubated with various concentrations of seaweed extract (2.5, 5,
10, and 25 µg mL−1) for 72 h. The melanin content (dark pigment) was observed under a microscope.
Control in the presence of α-MSH (a), kojic acid (b–e), C. racemosa extract (f–i), U. intestinalis extract
(j–m), L. challengeriae extract (n–q). Scale bar = 200 µm.
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4. Discussion

Various skin-whitening agents made from natural or synthetic chemical substances
are commercially available, but some agents have various side effects. Thus, further
research is needed to explore natural whitening agents that are effective and safe for users
to replace the chemicals currently used. Many studies have reported the skin-whitening
effects of extracts and compounds isolated from natural sources [6,12,46,47]. Currently,
many marine resources, especially seaweed, have attracted attention in the search for
bioactive compounds for drugs and cosmetics. Numerous studies have reported the
effects of seaweed extract on melanogenesis. Most of the studies focused on brown
seaweed, such as Ecklonia cava Kjellman (1885) [9,22], E. maxima (Osbeck) Papenfuss
(1940) [21], Sargassum fusiforme (Harvey) Setchell (1931) [10], S. plagiophyllum C. Agardh
(1824) [18], S. polycystum [43,48,49], Turbinaria conoides [50], and Undaria pinnatifida (Harvey)
Suringar (1873) [51]. Phlorotannins, fucoxanthin, and fucoidan from brown seaweed can
inhibit melanogenesis in B16F10 melanoma cells [9,52,53]. Some studies have reported the
anti-tyrosinase or anti-melanogenic activities of red seaweed, Kappaphycus alvarezii (Doty)
Doty ex P. C. Silva (1996) [18,54], Betaphycus gelatinus (Esper) Doty ex P. C. Silva (1996) [55],
Gracilaria fisheri (B. M. Xia and I. A. Abbott) I. A. Abbott, J. Zhang and B. M. Xia (1991) [23],
G. chouae Zhang and B. M. Xia (1992), G. blodgettii Harvey (1853), G. lemaneiformis (Bory de
Saint-Vincent) Greville (1830), Gelidium amansii (J. V. Lamouroux) J. V. Lamouroux (1813)
and Pyropia haitanensis (T. J. Chang and B. F. Zheng) N. Kikuchi and M. Miyata (2011) [55],
and Symphyocladia latiuscula (Harvey) Yamada (1941) [24]. The chemical components that
respond to their activity are a group of sulfated galactans and bromophenols. For green
seaweed, a relatively low inhibitory effect on mushroom tyrosinase has been reported
from C. racemosa [56], Ulva clathrata (Roth) C. Agardh (1811), and U. australis Areschoug
(1854) [19], U. lactuca Linnaeus (1753) [25], Caulerpa spp., and Halimida spp. [26]. However,
no information is available about the anti-melanogenic activity in B16F10 melanoma cells
of C. racemosa, U. intestinalis, and L. challengeriae.

In the present study, we investigated the anti-melanogenic potential of twelve seaweeds
from the coastal area of Thailand, with a particular focus on the abundant species. Ethanol
was used for extraction because it is known as a compatible solvent for polyphenol
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extraction, can extract a wide range of compounds that have a different polarity, and
is considered a “greener” solvent [26,57]. The highest extraction yield was found in
L. challengeriae (LC), higher than that of the ethanolic extract of L. variegata (J. V. Lamouroux)
Womersley ex E. C. Oliveira (1977) (5.36%) reported by Zárate et al. [58]. Differences in
yield can occur due to different environmental factors, such as the season, salinity, depth,
size, age, and life cycle of seaweed [59–61].

Phenolic compounds are a group of secondary metabolites that have important
functions in plants and seaweed. Recently, many researchers have reported the bioactivity
of phenolic compounds [62]. Phenolic compounds are also the largest groups of tyrosinase
inhibitors, including flavonoids and phlorotannins [6,7,22]. The results of this study
showed that the highest level of TPC per seaweed dry weight was found in the Dictyotaceae
species L. challengeriae (47.43 ± 0.35 mg GAE g−1 dw, 4.74% dw). Dictyotales are known for
their high levels of TPC among brown seaweeds [26,61]. This result was consistent with
Targett et al. [63], who reported that the TPC in L. variegata ranged from 4.27% to 25.47% dw.
However, this study reported a lower TPC than that of L. variegata (29.18% dw) reported
by Zubia et al. [64]. TPC varies according to numerous factors, such as species, season,
age, geographical location, and environmental conditions. Numerous studies on brown
algae have reported high TPC levels, characterized by extremely high biological activity
and higher content than green and red algae [65–67]. Moreover, the higher TPC of brown
seaweed may be caused by phlorotannins, olymers of phloroglucinol, which are found only
in brown seaweed [68,69].

Many melanocyte-related enzymes are involved in melanogenesis, especially tyrosinase, the
rate-limiting enzyme that plays an important role in melanin biosynthesis [6]. Thus, compounds
that can inhibit tyrosinase activity are considered to have potential as anti-melanogenic agents.
According to the effects on mushroom tyrosinase activity, the ethanolic extract of L. challengeriae
showed a high inhibitory activity on tyrosinase with an IC50 of 0.15 ± 0.01 mg mL−1 and a
relatively stronger tyrosinase inhibitory effect than kojic acid (IC50 = 0.35 ± 0.05 mg mL−1),
a well-known tyrosinase inhibitor. Moreover, the ethanolic extract of L. challengeriae in this
study had stronger tyrosinase inhibitory activity than the ethanolic extract of L. variegata
(IC50 > 0.25 mg mL−1) reported by Zárate et al. [58] and E. stolonifera Okamura (1913)
(IC50 = 0.345 mg mL−1) reported by Kang et al. [19]. However, for tyrosinase inhibitors in
the literature, the IC50 values might be incomparable due to the varied assay conditions,
including different substrate concentrations, different incubation times, and different lots
of commercial mushrooms tyrosinase [6]. However, the cell-free mushroom tyrosinase
inhibition assay is a commonly used screening method for potential skin-whitening. This
assay is simple and inexpensive to use. However, the ability of the extracts to inhibit mushroom
tyrosinase were not fully consistent with the results of in vivo depigmentation [49].

In this study, B16F10 melanoma cells were used as a model because they are commonly
used in studies of melanogenesis and depigmentation. The cells can produce melanin by
associating with intracellular tyrosinase activity, responding to stimulation by α-MSH, and
exhibiting most melanogenic properties similar to those of normal human melanocytes [23].
Therefore, we examined the effect of twelve seaweed extracts on B16F10 cells. All seaweed
extracts and kojic acid at 10 µg mL−1 showed a significant inhibition of melanin production
compared with the control in the presence of α-MSH (Figure 6). The ethanolic extract of
L. challengeriae (LC) showed the strongest ability to reduce melanin production (by 32.03%),
followed by T. conoides (TT) and C. racemosa (CR), which reduced melanin production by 28.58
and 26.92%, respectively; these results were not significantly different from those of kojic acid
(by 30.15%). These results are consistent with the results for 1,9-dihydroxy-crenulide and
epiloliolide isolated from Dictyota coriacea (Holmes) I. K. Wang, H.-S. Kim and W. J. Lee
(2004), at a concentration of 30 µg mL−1, which reduced melanin production by 27.8 and
22.6%, respectively [70].

As it showed the highest inhibition of mushroom tyrosinase activity and melanin
production in B16F10 cells, L. challengeriae was selected for further study. Two other species
of green seaweed, U. intestinalis and C. racemosa, were also selected for study because of the
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high anti-mushroom tyrosinase activity of U. intestinalis (96.04% at 5 mg mL−1) and the
ability to reduce melanin synthesis in B16F10 cells of C. racemosa (26.92% at 10 µg mL−1).
Furthermore, these two species can be cultivated on a large scale in a pond [49,71], which
might be useful for future utilization. Then, we studied the effect of extract concentration on
melanin production and intracellular tyrosinase activity in B16F10 melanoma cells of these
three species. The results showed that C. racemosa, U. intestinalis, L. challengeriae, and kojic
acid reduced melanin synthesis in the α-MSH-treated B16F10 cells in a dose-dependent
manner. The ethanolic extracts of C. racemosa and L. challengeriae at a concentration of
25 µg mL−1 reduced melanin content by 33.71 and 36.14%, respectively, which was not
significantly different (p < 0.05) from that of kojic acid (36.18%). However, the ethanolic
extract of U. intestinalis reduced melanin content by 23.29%. In addition, C. racemosa,
U. intestinalis, L. challengeriae, and kojic acid showed a significant inhibition of intracellular
tyrosinase activity in the α-MSH-treated cells. The ethanolic extract of L. challengeriae
showed a strong inhibitory effect on intracellular tyrosinase activity (reduced from 165.23%
to 46.30%), which was significantly higher than that of kojic acid (to 72.50%).

The mushroom tyrosinase assay was used to determine the direct effect of seaweed
extract on tyrosinase activity. The ethanolic extract of C. racemosa had a weak ability
to inhibit mushroom tyrosinase (25.84 ± 1.27% at 5 mg mL−1). However, there was a
dose-dependent decrease in intracellular tyrosinase activity in B16F10 melanoma cells after
treatment with C. racemosa at concentrations of 2.5–25 µg mL−1. In addition, ethanolic
extracts of U. intestinalis, L. challengeriae, and kojic acid inhibited both mushroom tyrosinase
activity and intracellular tyrosinase activity. This result suggests that the inhibition of
melanogenesis by C. racemosa extract does not directly inhibit tyrosinase activity, but may
inhibit intracellular tyrosinase expression. The results with C. racemosa are consistent with
the findings of the ethanolic extract of S. polycystum and sulfated galactan isolated from
G. fisheri, which did not show an inhibitory effect on mushroom tyrosinase but reduced
intracellular tyrosinase activity in B16F10 melanoma cells [23,43]. The commonly used
mushroom tyrosinase assay still has some limitations in the application of the fungal
tyrosinase inhibitor since fugal tyrosinase and human tyrosinase are different. Mushroom
tyrosinase is a cytosolic enzyme, while melanocyte tyrosinase is membrane-bound enzyme;
thus, the effect of anti-melanogenic agents on these tyrosinases may not be the same. Since
the target cells of the agents are melanocytes, it would be more reliable to use tyrosinase
derived from melanin-producing cells instead of fungi [6,43].

Melanin production in human skin is a complex process involving many enzymatic
cascades, including those of tyrosinase, TRP-1, TRP-2, and their transcription factors, such
as microphthalmia-associated transcription factor (MITF), cyclic adenosine monophosphate
(cAMP) response element binding protein (CREB), and extracellular-regulated kinase
(ERK) [5]. The agents that inhibit the expression and activity of those enzymes or proteins
may have value as potential anti-melanogenic agents. It has been reported that extracts
from seaweed, G. fisheri, and Undaria pinnatifida (Harvey) Suringar (1873) mediate the
inhibition of melanogenesis in cells through the regulation of MITF [23,51]. The inhibitory
effect of Ishige foliacea Okamura (1935) and S. serratifolium (C. Agardh) C. Agardh (1820) on
α-MSH-stimulated melanogenesis via the extracellular signal-regulated kinase (ERK) signaling
pathway has also been reported [72,73]. Therefore, the mechanism by which seaweed extracts
inhibit MITF or the expression of other related proteins needs further study.

5. Conclusions

In the cosmetics industry, skin lighteners are often added to products. Most of them
are substances that reduce melanin pigmentation by inhibiting the activity of the enzyme
tyrosinase. However, some of the chemicals currently used have also shown dangerous
side effects. Therefore, the idea of using natural extracts as substitutes has been raised.
Seaweeds are an interesting resource, and several studies have reported the inhibition of
tyrosinase activity and melanin production by their extracts.
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The results of the present study show that the ethanolic extracts of C. racemosa,
U. intestinalis, and L. challengeriae can inhibit mushroom tyrosinase activity and reduce
melanin synthesis in α-MSH-stimulated B16F10 cells. These results suggest that the extracts
of these algae are promising candidates for the development of safe pharmacological or
cosmetic agents that have potent inhibitory effects on tyrosinase activity and melanin
synthesis. However, the purification, structure, and mechanisms of the active components
of these selected algae need further investigation.
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