A Longitudinal Study of the Relationship of Adiponectin with Reproduction in Infertile Women Undergoing IVF/ICSI Treatment, and an Experimental Study in Human Granulosa Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. IVF/ICSI Treatment Procedure
2.3. Hormonal Measurement
2.4. The KGN Cell Treatments
2.5. RNA Extraction and Real-Time Polymerase Chain Reaction (RT-PCR)
2.6. Statistical Analysis
3. Results
3.1. Demographic and Clinical Data of Subjects
3.2. Comparisons of Serum Adiponectin Levels between the Successful and Unsuccessful Pregnancies in Various Phases, as Well as FF Adiponectin Levels in Phase III of the IVF/ICSI Treatment
3.3. Comparisons of Serum Adiponectin Levels among Various Phases, as Well as between Serum and FF in Total, and Successful and Unsuccessful Pregnancies in Phase III of the IVF/ICSI Treatment
3.4. Correlations of Serum and FF Adiponectin Levels with hormonal Levels in IVF/ICSI Treatment
3.5. Summary of Results for Adiponectin in the IVF/ICSI Treatment
3.6. Effects of Adiponectin on CYP19A1 and FSHR mRNA Expression in KGN Cells
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Inhorn, M.C.; Patrizio, P. Infertility around the globe: New thinking on gender, reproductive technologies and global movements in the 21st century. Hum. Reprod. Update 2015, 21, 411–426. [Google Scholar] [CrossRef] [Green Version]
- Dupont, J.; Pollet-Villard, X.; Reverchon, M.; Mellouk, N.; Levy, R. Adipokines in human reproduction. Horm. Mol. Biol. Clin. Investig. 2015, 24, 11–24. [Google Scholar] [CrossRef]
- Barbe, A.; Bongrani, A.; Mellouk, N.; Estienne, A.; Kurowska, P.; Grandhaye, J.; Elfassy, Y.; Levy, R.; Rak, A.; Froment, P.; et al. Mechanisms of Adiponectin Action in Fertility: An Overview from Gametogenesis to Gestation in Humans and Animal Models in Normal and Pathological Conditions. Int. J. Mol. Sci. 2019, 20, 1526. [Google Scholar] [CrossRef] [Green Version]
- Sitticharoon, C.; Nway, N.C.; Chatree, S.; Churintaraphan, M.; Boonpuan, P.; Maikaew, P. Interactions between adiponectin, visfatin, and omentin in subcutaneous and visceral adipose tissues and serum, and correlations with clinical and peripheral metabolic factors. Peptides 2014, 62, 164–175. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, F.M.; Weschenfelder, J.; Sander, C.; Minkwitz, J.; Thormann, J.; Chittka, T.; Mergl, R.; Kirkby, K.C.; Fasshauer, M.; Stumvoll, M.; et al. Inflammatory cytokines in general and central obesity and modulating effects of physical activity. PLoS ONE 2015, 10, e0121971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simons, P.J.; van den Pangaart, P.S.; Aerts, J.M.; Boon, L. Pro-inflammatory delipidizing cytokines reduce adiponectin secretion from human adipocytes without affecting adiponectin oligomerization. J. Endocrinol. 2007, 192, 289–299. [Google Scholar] [CrossRef]
- Klenke, U.; Taylor-Burds, C.; Wray, S. Metabolic influences on reproduction: Adiponectin attenuates GnRH neuronal activity in female mice. Endocrinology 2014, 155, 1851–1863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wen, J.P.; Lv, W.S.; Yang, J.; Nie, A.F.; Cheng, X.B.; Yang, Y.; Ge, Y.; Li, X.Y.; Ning, G. Globular adiponectin inhibits GnRH secretion from GT1-7 hypothalamic GnRH neurons by induction of hyperpolarization of membrane potential. Biochem. Biophys. Res. Commun. 2008, 371, 756–761. [Google Scholar] [CrossRef]
- Lu, M.; Tang, Q.; Olefsky, J.M.; Mellon, P.L.; Webster, N.J. Adiponectin activates adenosine monophosphate-activated protein kinase and decreases luteinizing hormone secretion in LbetaT2 gonadotropes. Mol. Endocrinol. 2008, 22, 760–771. [Google Scholar] [CrossRef] [Green Version]
- Payne, A.H.; Hales, D.B. Overview of steroidogenic enzymes in the pathway from cholesterol to active steroid hormones. Endocr. Rev. 2004, 25, 947–970. [Google Scholar] [CrossRef] [Green Version]
- Chabrolle, C.; Tosca, L.; Rame, C.; Lecomte, P.; Royere, D.; Dupont, J. Adiponectin increases insulin-like growth factor I-induced progesterone and estradiol secretion in human granulosa cells. Fertil. Steril. 2009, 92, 1988–1996. [Google Scholar] [CrossRef] [PubMed]
- Merhi, Z.; Bazzi, A.A.; Bonney, E.A.; Buyuk, E. Role of adiponectin in ovarian follicular development and ovarian reserve. Biomed. Rep. 2019, 1, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Bedenk, J.; Vrtacnik-Bokal, E.; Virant-Klun, I. The role of anti-Mullerian hormone (AMH) in ovarian disease and infertility. J. Assist. Reprod. Genet. 2019, 37, 89–100. [Google Scholar] [CrossRef] [PubMed]
- Brodin, T.; Hadziosmanovic, N.; Berglund, L.; Olovsson, M.; Holte, J. Antimullerian hormone levels are strongly associated with live-birth rates after assisted reproduction. J. Clin. Endocrinol. Metab. 2013, 98, 1107–1114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.H.; Tsai, E.M.; Wu, L.C.; Chen, S.Y.; Chang, Y.H.; Jong, S.B.; Chan, T.F. Higher basal adiponectin levels are associated with better ovarian response to gonadotropin stimulation during in vitro fertilization. Gynecol. Obstet. Investig. 2005, 60, 167–170. [Google Scholar] [CrossRef] [PubMed]
- Bersinger, N.A.; Birkhäuser, M.H.; Wunder, D.M. Adiponectin as a marker of success in intracytoplasmic sperm injection/embryo transfer cycles. Gynecol. Endocrinol. 2006, 22, 479–483. [Google Scholar] [CrossRef] [PubMed]
- Tan, K.C.B. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet 2004, 363, 157–163. [Google Scholar]
- Lv, Y.; Zhao, S.G.; Lu, G.; Leung, C.K.; Xiong, Z.Q.; Su, X.W.; Ma, J.L.; Chan, W.Y.; Liu, H.B. Identification of reference genes for qRT-PCR in granulosa cells of healthy women and polycystic ovarian syndrome patients. Sci. Rep. 2017, 7, 6961. [Google Scholar] [CrossRef]
- Qin, L.; Sitticharoon, C.; Petyim, S.; Keadkraichaiwat, I.; Sririwichitchai, R.; Maikeaw, P.; Churintaraphan, M.; Sripong, C. Roles of kisspeptin in IVF/ICSI-treated infertile women and in human granulosa cells. Exp. Biol. Med. 2021, 246, 996–1010. [Google Scholar] [CrossRef]
- Kawwass, J.F.; Summer, R.; Kallen, C.B. Direct effects of leptin and adiponectin on peripheral reproductive tissues: A critical review. Mol. Hum. Reprod. 2015, 21, 617–632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, K.; Cabrero, A.; Saha, P.K.; Kojima, H.; Li, L.; Chang, B.H.; Paul, A.; Chan, L. Increased beta -oxidation but no insulin resistance or glucose intolerance in mice lacking adiponectin. J. Biol. Chem. 2002, 277, 34658–34661. [Google Scholar] [CrossRef] [Green Version]
- Qiao, L.; Yoo, H.S.; Madon, A.; Kinney, B.; Hay, W.W., Jr.; Shao, J. Adiponectin enhances mouse fetal fat deposition. Diabetes 2012, 61, 3199–3207. [Google Scholar] [CrossRef] [Green Version]
- Bersinger, N.A.; Wunder, D.M. Adiponectin isoform distribution in serum and in follicular fluid of women undergoing treatment by ICSI. Acta Obstet. Gynecol. Scand. 2010, 89, 782–788. [Google Scholar] [CrossRef]
- Scherer, P.E.; Williams, S.; Fogliano, M.; Baldini, G.; Lodish, H.F. A novel serum protein similar to C1q, produced exclusively in adipocytes. J. Biol. Chem. 1995, 270, 26746–26749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Welt, C.K.; McNicholl, D.J.; Taylor, A.E.; Hall, J.E. Female reproductive aging is marked by decreased secretion of dimeric inhibin. J. Clin. Endocrinol. Metab. 1999, 84, 105–111. [Google Scholar] [CrossRef]
- Hall, J.E.; Welt, C.K.; Cramer, D.W. Inhibin A and inhibin B reflect ovarian function in assisted reproduction but are less useful at predicting outcome. Hum. Reprod. 1999, 14, 409–415. [Google Scholar] [CrossRef] [Green Version]
- Laven, J.S.; Fauser, B.C. Inhibins and adult ovarian function. Mol. Cell. Endocrinol. 2004, 225, 37–44. [Google Scholar] [CrossRef] [PubMed]
- de Ziegler, D.; Fraisse, T.; de Candolle, G.; Vulliemoz, N.; Bellavia, M.; Colamaria, S. Outlook: Roles of FSH and LH during the follicular phase: Insight into natural cycle IVF. Reprod. Biomed. Online 2007, 15, 507–513. [Google Scholar] [CrossRef]
- Cai, J.; Lou, H.Y.; Dong, M.Y.; Lu, X.E.; Zhu, Y.M.; Gao, H.J.; Huang, H.F. Poor ovarian response to gonadotropin stimulation is associated with low expression of follicle-stimulating hormone receptor in granulosa cells. Fertil. Steril. 2007, 87, 1350–1356. [Google Scholar] [CrossRef] [PubMed]
- Ramazan Amanvermez, M.T. An Update on Ovarian Aging and Ovarian Reserve Tests. Int. J. Fertil. Steril. 2016, 9, 411. [Google Scholar]
- Massie, J.A.; Burney, R.O.; Milki, A.A.; Westphal, L.M.; Lathi, R.B. Basal follicle-stimulating hormone as a predictor of fetal aneuploidy. Fertil. Steril. 2008, 90, 2351–2355. [Google Scholar] [CrossRef] [PubMed]
- Sharif, K.; Elgendy, M.; Lashen, H.; Afnan, M. Age and basal follicle stimulating hormone as predictors of in vitro fertilisation outcome. Br. J. Obstet. Gynaecol. 1998, 105, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Martin, J.S.; Nisker, J.A.; Tummon, I.S.; Daniel, S.A.; Auckland, J.L.; Feyles, V. Future in vitro fertilization pregnancy potential of women with variably elevated day 3 follicle-stimulating hormone levels. Fertil. Steril. 1996, 65, 1238–1240. [Google Scholar] [CrossRef]
- Bassil, S.; Godin, P.A.; Gillerot, S.; Verougstraete, J.C.; Donnez, J. In vitro fertilization outcome according to age and follicle-stimulating hormone levels on cycle day 3. J. Assist. Reprod. Genet. 1999, 16, 236–241. [Google Scholar] [CrossRef] [PubMed]
- Sabatini, L.; Zosmer, A.; Hennessy, E.M.; Tozer, A.; Al-Shawaf, T. Relevance of basal serum FSH to IVF outcome varies with patient age. Reprod. Biomed. Online 2008, 17, 10–19. [Google Scholar] [CrossRef]
- Raju, G.A.; Chavan, R.; Deenadayal, M.; Gunasheela, D.; Gutgutia, R.; Haripriya, G.; Govindarajan, M.; Patel, N.H.; Patki, A.S. Luteinizing hormone and follicle stimulating hormone synergy: A review of role in controlled ovarian hyper-stimulation. J. Hum. Reprod. Sci. 2013, 6, 227–234. [Google Scholar] [CrossRef]
- Calder, M.; Chan, Y.M.; Raj, R.; Pampillo, M.; Elbert, A.; Noonan, M.; Gillio-Meina, C.; Caligioni, C.; Berube, N.G.; Bhattacharya, M.; et al. Implantation failure in female Kiss1-/- mice is independent of their hypogonadic state and can be partially rescued by leukemia inhibitory factor. Endocrinology 2014, 155, 3065–3078. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.N.; Greenwald, G.S. Synergistic effects of steroids with FSH on folliculogenesis, steroidogenesis and FSH- and hCG-receptors in hypophysectomized mice. J. Reprod. Fertil. 1993, 99, 403–413. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.; Sait, S.F. Luteinizing hormone and its dilemma in ovulation induction. J. Hum. Reprod. Sci. 2011, 4, 2–7. [Google Scholar] [CrossRef]
- Neumeier, M.; Weigert, J.; Buettner, R.; Wanninger, J.; Schäffler, A.; Müller, A.M.; Killian, S.; Sauerbruch, S.; Schlachetzki, F.; Steinbrecher, A.; et al. Detection of adiponectin in cerebrospinal fluid in humans. Am. J. Physiol. Endocrinol. Metab. 2007, 293, E965–E969. [Google Scholar] [CrossRef] [Green Version]
- Qi, Y.; Takahashi, N.; Hileman, S.M.; Patel, H.R.; Berg, A.H.; Pajvani, U.B.; Scherer, P.E.; Ahima, R.S. Adiponectin acts in the brain to decrease body weight. Nat. Med. 2004, 10, 524–529. [Google Scholar] [CrossRef] [PubMed]
- Kusminski, C.M.; McTernan, P.G.; Schraw, T.; Kos, K.; O’Hare, J.P.; Ahima, R.; Kumar, S.; Scherer, P.E. Adiponectin complexes in human cerebrospinal fluid: Distinct complex distribution from serum. Diabetologia 2007, 50, 634–642. [Google Scholar] [CrossRef]
- Spranger, J.; Verma, S.; Gohring, I.; Bobbert, T.; Seifert, J.; Sindler, A.L.; Pfeiffer, A.; Hileman, S.M.; Tschop, M.; Banks, W.A. Adiponectin does not cross the blood-brain barrier but modifies cytokine expression of brain endothelial cells. Diabetes 2006, 55, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Shi, H.; Jin, Y.; Li, X.; Pan, J.; Lai, Y.; Lin, Y.; Jin, Y.; Roy, G.; Zhao, A.; et al. Adiponectin Deficiency Leads to Female Subfertility and Ovarian Dysfunctions in Mice. Endocrinology 2016, 157, 4875–4887. [Google Scholar] [CrossRef] [PubMed]
Parameters | Success (n = 10) | Unsuccess (n = 19) | ||||
---|---|---|---|---|---|---|
P25 | Median | P75 | P25 | Median | P75 | |
Age (years) | 33.25 | 35.5 | 36.50 | 34.00 | 36.00 | 37.00 |
Body weight (kg) | 50.48 | 57.00 | 60.00 | 47.10 | 50.00 | 57.70 |
BMI (kg/m2) | 19.13 | 21.21 | 23.46 | 19.22 | 20.34 | 21.67 |
Duration of the menstrual cycle (days) | 28.75 | 29.00 | 34.00 | 27.00 | 28.00 | 29.00 |
Duration of ovarian stimulation (days) | 9.50 | 11.00 | 12.00 | 9.00 | 10.00 | 10.00 |
Serum FSH at Phase I (mIU/mL) | 5.24 | 6.35 | 7.72 | 6.97 | 7.89 | 11.22 |
Serum FSH at Phase II (mIU/mL) | 10.11 | 14.05 | 16.89 | 13.58 | 18.49 | 21.58 |
Serum FSH at Phase III (mIU/mL) | 9.03 | 9.89 | 10.68 | 6.96 | 10.05 | 12.87 |
Serum LH at Phase I (mIU/mL) | 3.57 | 4.55 | 6.30 | 4.56 | 5.15 | 7.55 |
Serum LH at Phase II (mIU/mL) | 1.17 | 1.76 | 4.01 | 1.03 | 1.89 | 2.83 |
Serum LH at Phase III (mIU/mL) | 0.77 | 3.21 | 3.95 | 0.37 | 0.56 | 3.12 |
Parameters | Success (n = 10) | Unsuccess (n = 19) | p-Value |
---|---|---|---|
Serum adiponectin (Phase I) (ng/mL) | 6402.98 ± 4304.51 | 7401.69 ± 3658.97 | 0.516 |
Serum adiponectin (Phase II) (ng/mL) | 6410.69 ± 3980.85 | 7725.20 ± 3939.70 | 0.407 |
Serum adiponectin (Phase III) (ng/mL) | 6109.20 ± 3060.51 | 7708.91 ± 3860.96 | 0.287 |
FF adiponectin (ng/mL) | 3619.07 ± 1150.10 | 4128.02 ± 745.42 | 0.195 |
Parameters | All (n = 30) | Success (n = 10) | Unsuccess (n = 19) | ||||
---|---|---|---|---|---|---|---|
R | p | R | p | R | p | ||
Serum adiponectin (Phase I) | Serum adiponectin (Phase II) | 0.977 | <0.001 *** | 0.964 | <0.001 *** | 0.982 | <0.001 *** |
Serum adiponectin (Phase III) | 0.935 | <0.001 *** | 0.667 | 0.050 | 0.961 | <0.001 *** | |
Serum FSH (Phase I) | Serum adiponectin (Phase I) | 0.320 | 0.084 | −0.648 | 0.043 * | 0.528 | 0.020 * |
Serum adiponectin (Phase II) | 0.336 | 0.075 | −0.648 | 0.043 * | 0.491 | 0.038 * | |
Serum adiponectin (Phase III) | 0.392 | 0.035 * | −0.567 | 0.112 | 0.481 | 0.037 * | |
FF adiponectin | Serum adiponectin (Phase I) | 0.386 | 0.051 | 0.429 | 0.289 | 0.424 | 0.090 |
Serum adiponectin (Phase II) | 0.395 | 0.051 | 0.238 | 0.570 | 0.482 | 0.059 | |
Serum adiponectin (Phase III) | 0.345 | 0.084 | −0.095 | 0.823 | 0.480 | 0.051 | |
Serum LH (Phase III) | 0.082 | 0.691 | −0.714 | 0.047 * | 0.346 | 0.173 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, L.; Sitticharoon, C.; Petyim, S.; Keadkraichaiwat, I.; Sririwichitchai, R.; Maikaew, P.; Churintaraphan, M. A Longitudinal Study of the Relationship of Adiponectin with Reproduction in Infertile Women Undergoing IVF/ICSI Treatment, and an Experimental Study in Human Granulosa Cells. Life 2023, 13, 994. https://doi.org/10.3390/life13040994
Qin L, Sitticharoon C, Petyim S, Keadkraichaiwat I, Sririwichitchai R, Maikaew P, Churintaraphan M. A Longitudinal Study of the Relationship of Adiponectin with Reproduction in Infertile Women Undergoing IVF/ICSI Treatment, and an Experimental Study in Human Granulosa Cells. Life. 2023; 13(4):994. https://doi.org/10.3390/life13040994
Chicago/Turabian StyleQin, Lixian, Chantacha Sitticharoon, Somsin Petyim, Issarawan Keadkraichaiwat, Rungnapa Sririwichitchai, Pailin Maikaew, and Malika Churintaraphan. 2023. "A Longitudinal Study of the Relationship of Adiponectin with Reproduction in Infertile Women Undergoing IVF/ICSI Treatment, and an Experimental Study in Human Granulosa Cells" Life 13, no. 4: 994. https://doi.org/10.3390/life13040994
APA StyleQin, L., Sitticharoon, C., Petyim, S., Keadkraichaiwat, I., Sririwichitchai, R., Maikaew, P., & Churintaraphan, M. (2023). A Longitudinal Study of the Relationship of Adiponectin with Reproduction in Infertile Women Undergoing IVF/ICSI Treatment, and an Experimental Study in Human Granulosa Cells. Life, 13(4), 994. https://doi.org/10.3390/life13040994