Phytochemical Composition, Bioactive Compounds, and Antioxidant Properties of Different Parts of Andrographis macrobotrys Nees
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Chemicals and Reagents
2.3. Methanolic Extract Preparation
2.4. Determination of Phytochemical Composition
2.5. Gas Chromatography and Mass Spectroscopy (GC-MS) Analysis
2.6. In Vitro Antioxidant Activity
2.7. Statistical Analysis
3. Results
3.1. Phytochemical Composition
3.2. Gas Chromatography and Mass Spectrometry (GC-MS) Analysis
3.3. In Vitro Antioxidant Potential
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sen, S.; Chakraborty, R.; De, B. Challenges and opportunities in the advancement of herbal medicine: India’s position and role in a global context. J. Herb. Med 2011, 1, 67–75. [Google Scholar] [CrossRef]
- Subramanian, R.; Zaini Asmawi, M.; Sadikun, A. A Bitter plant with a sweet future? A comprehensive review of an oriental medicinal plant: Andrographis paniculata. Phytochem. Rev. 2012, 11, 39–75. [Google Scholar] [CrossRef]
- Ignacimuthu, S.; Ayyanar, M.; Sivaraman, K.S. Ethnobotanical investigations among tribes in Madurai district of Tamil Nadu (India). J. Ethnobiol. Ethnomed. 2006, 2, 25. [Google Scholar] [CrossRef] [PubMed]
- Dalawai, D.; Aware, C.; Jadhav, J.P.; Murthy, H.N. RP-HPLC analysis of diterpene lactones in leaves and stem of different species of Andrographis. Nat. Prod. Res. 2021, 35, 2239–2242. [Google Scholar] [CrossRef] [PubMed]
- Kshirsagar, R.D.; Singh, N.P. Some less known ethnomedicinal uses from Mysore and Coorg districts, Karnataka State, India. J. Ethnopharmacol. 2001, 75, 231–238. [Google Scholar] [CrossRef]
- Dalawai, D.; Murthy, H.N. Chemical profile and antioxidant properties of Andrographis producta (C. B. Clarke) Gamble. Pharmacogn. J. 2020, 13, 475–485. [Google Scholar] [CrossRef]
- Gamble, J.S. Flora of the Presidency of Madras, Part VI, (Scrophulariaceae to Plantaginaceae); Adlard and Son: London, UK, 1924. [Google Scholar]
- Folin, O.; Ciocalteu, V. On Tyrosine and Tryptophane determinations in proteins. J. Biol. Chem. 1927, 73, 627–650. [Google Scholar] [CrossRef]
- Prior, R.L.; Wu, X.; Schaich, K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem. 2005, 53, 4290–4302. [Google Scholar] [CrossRef]
- Schanderi, S.H. Method in Food Analysis; Academic Press: New York, NY, USA, 1970. [Google Scholar]
- Roy, S.; Rao, K.; Bhuvaneswari, C.; Giri, A.; Mangamoori, L.N. Phytochemical analysis of Andrographis paniculata extract and its antimicrobial activity. World J. Microbiol. Biotechnol. 2010, 26, 85–91. [Google Scholar] [CrossRef]
- Spivakovskii, G.I.; Tishchenko, A.I.; Zaslavskii, I.I.; Wulfson, N.S. Calculation of retention indices of compounds from their structural formulae for combined identification by Gas Chromatography-Mass Spectrometry. J. Chromatogr. A 1977, 144, 1–16. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Guarrera, M.; Turbino, L.; Rebora, A. The anti-inflammatory activity of azulene. J. Eur. Acad. Dermatol. Venerol. 2001, 15, 486–487. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Jeong, K.S.; Ryu, S.Y.; Kim, T.H. Panax ginseng prevents apoptosis in hair follicles and accelerates recovery of hair medullary cells in irradiated mice. In Vivo 1998, 12, 219–222. [Google Scholar] [PubMed]
- Jeong, J.B.; Hong, S.C.; Jeong, H.J.; Koo, J.S. Anti-inflammatory effect of 2-methoxy-4-vinylphenol via the suppression of NF-ΚB and MAPK activation, and acetylation of histone H3. Arch. Pharm. Res. 2011, 34, 2109–2116. [Google Scholar] [CrossRef]
- Rubab, M.; Chelliah, R.; Saravanakumar, K.; Barathikannan, K.; Wei, S.; Kim, J.-R.; Yoo, D.; Wang, M.-H.; Oh, D.-H. Bioactive potential of 2-methoxy-4-vinylphenol and benzofuran from Brassica oleracea L. var. capitata f, rubra (Red Cabbage) on oxidative and microbiological stability of beef meat . Foods 2020, 9, 568. [Google Scholar] [CrossRef]
- Adelakun, O.E.; Kudanga, T.; Green, I.R.; le Roes-Hill, M.; Burton, S.G. Enzymatic modification of 2,6-dimethoxyphenol for the synthesis of dimers with high antioxidant capacity. Process Biochem. 2012, 47, 1926–1932. [Google Scholar] [CrossRef]
- Zhao, F.; Wang, P.; Lucardi, R.; Su, Z.; Li, S. Natural sources and bioactivities of 2,4-di-tert-butylphenol and its analogs. Toxins 2020, 12, 35. [Google Scholar] [CrossRef]
- Chuah, X.; Okechukwu, P.; Amini, F.; Teo, S. Eicosane, pentadecane and palmitic acid: The effects in in vitro wound healing studies. Asian Pac. J. Trop. Biomed. 2018, 8, 490. [Google Scholar] [CrossRef]
- Murata, M.; Nakai, Y.; Kawazu, K.; Ishizaka, M.; Kajiwara, H.; Abe, H.; Takeuchi, K.; Ichinose, Y.; Mitsuhara, I.; Mochizuki, A.; et al. Loliolide, a carotenoid metabolite, is a potential endogenous inducer of herbivore resistance. Plant Physiol. 2019, 179, 1822–1833. [Google Scholar] [CrossRef]
- Bhardwaj, M.; Sali, V.K.; Mani, S.; Vasanthi, H.R. Neophytadiene from Turbinaria ornata suppresses LPS-induced inflammatory response in RAW 264.7 macrophages and Sprague dawley rats. Inflammation 2020, 43, 937–950. [Google Scholar] [CrossRef] [PubMed]
- Aparna, V.; Dileep, K.V.; Mandal, P.K.; Karthe, P.; Sadasivan, C.; Haridas, M. Anti-inflammatory property of n-hexadecanoic acid: Structural evidence and kinetic assessment. Chem. Biol. Drug Des. 2012, 80, 434–439. [Google Scholar] [CrossRef] [PubMed]
- Silva, R.O.; Sousa, F.B.M.; Damasceno, S.R.B.; Carvalho, N.S.; Silva, V.G.; Oliveira, F.R.M.A.; Sousa, D.P.; Aragão, K.S.; Barbosa, A.L.R.; Freitas, R.M.; et al. Phytol, a diterpene alcohol, inhibits the inflammatory response by reducing cytokine production and oxidative stress. Fundam. Clin. Pharmacol. 2014, 28, 455–464. [Google Scholar] [CrossRef]
- Nakanishi, T.; Anraku, M.; Suzuki, R.; Kono, T.; Erickson, L.; Kawahara, S. Novel immunomodulatory effects of phytanic acid and its related substances in mice. J. Funct. Foods 2016, 21, 283–289. [Google Scholar] [CrossRef]
- Jumina; Nurmala, A.; Fitria, A.; Pranowo, D.; Sholikhah, E.; Kurniawan, Y.; Kuswandi, B. Monomyristin and monopalmitin derivatives: Synthesis and evaluation as potential antibacterial and antifungal agents. Molecules 2018, 23, 3141. [Google Scholar] [CrossRef] [PubMed]
- Xuanji, X.; Zengjun, G.; Hui, Z.; Xia, L.; Jun, L.; Dandan, L.; Jun, L. Chemical composition, in vitro antioxidant activity and α-glucosidase inhibitory effects of the essential oil and methanolic extract of Elsholtzia densa Benth. Nat. Prod. Res. 2016, 30, 2707–2711. [Google Scholar] [CrossRef]
- Wu, M.-R.; Hou, M.-H.; Lin, Y.-L.; Kuo, C.-F. 2,4,5-TMBA, a Natural inhibitor of cyclooxygenase-2, suppresses adipogenesis and promotes lipolysis in 3T3-L1 adipocytes. J. Agric. Food Chem. 2012, 60, 7262–7269. [Google Scholar] [CrossRef]
- Rafatian, G.; Khodagholi, F.; Farimani, M.M.; Abraki, S.B.; Gardaneh, M. Increase of autophagy and attenuation of apoptosis by salvigenin promote survival of SH-SY5Y cells following treatment with H2O2. Mol. Cell. Biochem. 2012, 371, 9–22. [Google Scholar] [CrossRef]
- Serino, E.; Chahardoli, A.; Badolati, N.; Sirignano, C.; Jalilian, F.; Mojarrab, M.; Farhangi, Z.; Rigano, D.; Stornaiuolo, M.; Shokoohinia, Y.; et al. Salvigenin, a trimethoxylated flavone from Achillea wilhelmsii C. Koch, exerts combined lipid-lowering and mitochondrial stimulatory effects. Antioxidants 2021, 10, 1042. [Google Scholar] [CrossRef]
- Huang, F.; Long, Y.; Liang, Q.; Purushotham, B.; Swamy, M.K.; Duan, Y. Safed Musli (Chlorophytum borivilianum L.) Callus-mediated biosynthesis of silver nanoparticles and evaluation of their antimicrobial activity and cytotoxicity against human colon cancer cells. J. Nanomater. 2019, 2019, 2418785. [Google Scholar] [CrossRef]
- Rao, C. Chemopreventive effect of squalene on colon cancer. Carcinogenesis 1998, 19, 287–290. [Google Scholar] [CrossRef] [PubMed]
- Achika, J.; Ndukwe, G.; Ayo, R. Isolation, Characterization and antimicrobial activity of 3β, 22E-stigmasta-5, 22-dien-3-ol from the aerial part of Aeschynomene uniflora E. Mey. J. Pharm. Res. Int. 2016, 11, 1–8. [Google Scholar] [CrossRef]
- Mulyaningsih, S.; Sporer, F.; Reichling, J.; Wink, M. Antibacterial activity of essential oils from Eucalyptus and selected components against multidrug-resistant bacterial pathogens. Pharm. Biol. 2011, 49, 893–899. [Google Scholar] [CrossRef] [PubMed]
- Thomas, C.M.; Wood, R.C.; Wyatt, J.E.; Pendleton, M.H.; Torrenegra, R.D.; Rodriguez, O.E.; Harirforoosh, S.; Ballester, M.; Lightner, J.; Krishnan, K.; et al. Anti-neoplastic activity of two flavone somers Derived from Gnaphalium elegans and Achyrocline bogotensis. PLoS ONE 2012, 7, e39806. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Singh, B.; Bajpai, V. Andrographis paniculata (Burm.f.) Nees: Traditional uses, phytochemistry, pharmacological properties and quality control/quality assurance. J. Ethnopharmacol. 2021, 275, 114054. [Google Scholar] [CrossRef] [PubMed]
- Lim, X.Y.; Chan, J.S.W.; Tan, T.Y.C.; Teh, B.P.; Mohd Abd Razak, M.R.; Mohamad, S.; Syed Mohamed, A.F. Andrographis paniculata (Burm. F.) Wall. Ex Nees, Andrographolide, and andrographolide analogues as SARS-CoV-2 antivirals? A rapid review. Nat. Prod. Commun. 2021, 16, 1934578X2110166. [Google Scholar] [CrossRef]
- Parlapally, S.; Cherukupalli, N.; Bhumireddy, S.R.; Sripadi, P.; Anisetti, R.; Giri, C.C.; Khareedu, V.R.; Reddy Vudem, D. Chemical profiling and anti-psoriatic activity of methanolic extract of Andrographis nallamalayana J.L.Ellis. Nat. Prod. Res. 2016, 30, 1256–1261. [Google Scholar] [CrossRef]
- Zhang, H.; Li, S.; Si, Y.; Xu, H. Andrographolide and its derivatives: Current achievements and future perspectives. Eur. J. Med. Chem. 2021, 224, 113710. [Google Scholar] [CrossRef]
- Adiguna, S.P.; Panggabean, J.A.; Swasono, R.T.; Rahmawati, S.I.; Izzati, F.; Bayu, A.; Putra, M.Y.; Formisano, C.; Giuseppina, C. Evaluations of Andrographolide-rich fractions of Andrographis paniculata with enhanced potential antioxidant, anticancer, antihypertensive, and anti-Inflammatory activities. Plants 2023, 12, 1220. [Google Scholar] [CrossRef]
- Kurzawa, M.; Filipiak-Szok, A.; Kłodzińska, E.; Szłyk, E. Determination of phytochemicals, antioxidant activity and total phenolic content in Andrographis paniculata using chromatographic methods. J. Chromatogr. B 2015, 995–996, 101–106. [Google Scholar] [CrossRef]
- Gurupriya, S.; Cathrine, L. Qualitative and quantitative phytochemical analysis of Andrographis echioides leaves. Int. J. Life Sci. Pharm. Res. 2022, 11, P148–P158. [Google Scholar] [CrossRef]
- Jiang, M.; Sheng, F.; Zhang, Z.; Ma, X.; Gao, T.; Fu, C.; Li, P. Andrographis paniculata (Burm.f.) Nees and its major constituent andrographolide as potential antiviral agents. J. Ethnopharmcol. 2021, 272, 113954. [Google Scholar] [CrossRef] [PubMed]
- Low, M.; Khoo, C.S.; Münch, G.; Govindaraghavan, S.; Sucher, N.J. An in vitro study of anti-inflammatory activity of standardised Andrographis paniculata extracts and pure andrographolide. BMC Complement. Altern. Med. 2015, 15, 18. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.-J.; Gan, R.-Y.; Li, S.; Zhou, Y.; Li, A.-N.; Xu, D.-P.; Li, H.-B. Antioxidant phytochemicals for the prevention and treatment of chronic diseases. Molecules 2015, 20, 21138–21156. [Google Scholar] [CrossRef] [PubMed]
- Senguttuvan, J.; Paulsamy, S.; Karthika, K. Phytochemical analysis and evaluation of leaf and root parts of the medicinal herb, Hypochaeris radicata L. for in vitro antioxidant activities. Asian Pac. J. Trop. Biomed. 2014, 4, S359–S367. [Google Scholar] [CrossRef]
- Yu, M.; Gouvinhas, I.; Rocha, J.; Barros, A.I.R.N.A. Phytochemical and antioxidant analysis of medicinal and food plants towards bioactive food and pharmaceutical resources. Sci. Rep. 2021, 11, 10041. [Google Scholar] [CrossRef]
Plant Part | Phenolics (mg GAE/g DW) | Flavonoids mg QE/g DW | Tannins (mg TAE/g DW) |
---|---|---|---|
Root | 124.28 ± 0.24 b | 9.06 ± 0.79 c | 59.49 ± 0.22 b |
Stem | 180.98 ± 0.76 a | 18.04 ± 0.08 b | 86.39 ± 0.06 a |
Leaf | 73.01 ± 0.35 c | 57.04 ± 0.43 a | 57.33 ± 0.14 b |
Sl. No. | Compound Name | Retention Time | Concentration (%) |
---|---|---|---|
1 | Azulene | 10.512 | 4.71 |
2 | 2,4-Di-tert-butylphenol | 14.849 | 11.46 |
3 | 4-Ethoxy-ethyl esterbenzoic acid | 15.072 | 0.28 |
4 | Eicosane | 17.125 | 1.02 |
5 | 3-Heptadecanol | 18.271 | 1.28 |
6 | Isopropyl myristate | 18.445 | 1.26 |
7 | Hexadecanoic acid, methyl ester | 19.502 | 0.93 |
8 | 2,3-Dimethyl-3-hexanol | 19.784 | 0.57 |
9 | Hexadecanoic acid | 19.895 | 0.36 |
10 | 1-Butyl-cyclohexanol | 21.002 | 0.59 |
11 | Methyl octadeca-9,12-dienoate | 21.150 | 2.73 |
12 | 6-Octadecenoic acid, methyl ester, (Z)- | 21.208 | 10.02 |
13 | Tetratriacontane | 21.440 | 5.64 |
14 | 4,4′-Thiobis[2-(1,1-dimethylethyl)-5-methyl-phenol | 21.492 | 3.79 |
15 | 2,6,10,14-Tetramethyl-hexadecane | 21.810 | 0.34 |
16 | Dotriacontane | 23.283 | 0.55 |
17 | 2-Ethylbutyric acid, eicosyl ester | 24.592 | 1.05 |
18 | Hexadecanoic acid, 2-hydroxy-1-(hydroxymethyl) ethyl ester | 24.777 | 15.47 |
19 | Asaraldehyde | 24.965 | 7.99 |
20 | Acetosyringone | 25.501 | 3.23 |
21 | alpha-Monostearin | 26.552 | 5.04 |
22 | 5-Hydroxy-7,8-dimethoxyflavone | 26.733 | 10.65 |
23 | 5-Hydroxy-6,7,4′-trimethoxyflavone/salvigenin | 29.032 | 5.55 |
24 | 3,5-Dihydroxy-6,7,8-trimethoxyflavone | 29.905 | 5.50 |
Sl. No. | Compound Name | Retention Time | Concentration (%) |
---|---|---|---|
1 | Azulene | 10.516 | 2.48 |
2 | 2-Methoxy-4-vinylphenol | 12.297 | 0.66 |
3 | 2,6-Dimethoxy-phenol or syringol | 12.774 | 0.45 |
4 | Nonadecane | 14.598 | 0.29 |
5 | 2,4-Di-tert-butylphenol | 14.851 | 11.24 |
6 | Ethyl 4-ethoxybenzoate | 15.075 | 0.28 |
7 | 4-Methyl-2,5-dimethoxybenzaldehyde | 15.526 | 0.26 |
8 | N-Phenyl aniline | 16.342 | 0.44 |
9 | Eicosane | 17.130 | 0.94 |
10 | 3-Heptadecanol | 18.275 | 1.29 |
11 | Isopropyl myristate | 18.451 | 0.69 |
12 | Neophytadiene | 18.609 | 1.52 |
13 | 6,10,14-Trimethyl-2-pentadecanone | 18.666 | 0.30 |
14 | 3,7,11,15-Tetramethyl-2-hexadecen-1-ol | 19.060 | 0.55 |
15 | Hexadecanoic acid, methyl ester | 19.509 | 3.09 |
16 | 3-Ethyl-3-pentanol | 19.783 | 1.03 |
17 | Hexadecanoic acid | 19.896 | 1.80 |
18 | 1-Butyl-cyclohexanol | 21.005 | 0.47 |
19 | 9,12-Octadecadienoic acid, methyl ester | 21.159 | 1.28 |
20 | 8,11,14-Docosatrienoic acid, methyl ester | 21.216 | 1.52 |
21 | Phytol | 21.322 | 4.13 |
22 | Octadecanoic acid, methyl ester | 21.447 | 1.66 |
23 | 2-Mono-myristin | 23.050 | 0.61 |
24 | Tetrapentacontane | 23.287 | 0.53 |
25 | Octadecane | 23.634 | 0.24 |
26 | Ethyl 3-hydroxytridecanoate | 24.596 | 1.33 |
27 | Hexadecanoic acid, 2-hydroxy-1-(Hydroxymethyl) ethyl ester | 24.778 | 16.03 |
28 | Asaraldehyde | 24.953 | 1.95 |
29 | 3-Acetyl biphenyl | 25.500 | 0.42 |
30 | N-{4-[2-(1,1-Dimethylethyl)-5-oxo-1,3-dioxolan-4-Yl]butyl}formamide | 26.115 | 0.41 |
31 | alpha-Monostearin | 26.558 | 6.51 |
32 | 5-Hydroxy-7,8-dimethoxyflavone | 26.742 | 15.35 |
33 | Squalene | 27.550 | 0.81 |
34 | Stigmasta-5,22-dien-3-ol | 27.607 | 1.39 |
35 | 5-Hydroxy-6,7,4′-trimethoxyflavone/Salvigenin | 29.068 | 14.53 |
36 | (3 beta,24S)-Stigmast-5-en-3-ol | 29.375 | 3.53 |
Sl. No. | Compound Name | Retention Time | Concentration (%) |
---|---|---|---|
1 | Azulene | 10.516 | 1.62 |
2 | Nonadecane | 14.597 | 0.19 |
3 | 2,4-Di-tert-butylphenol | 14.849 | 6.92 |
4 | Ethyl 4-ethoxybenzoate | 15.076 | 0.17 |
5 | 1-{2-[3-(2-Acetyloxiran-2-yl)-1,1-dimethylpropyl]cycloprop-2-enyl}ethenone | 17.020 | 0.14 |
6 | Eicosane | 17.128 | 0.46 |
7 | Tetradecanoic acid | 17.765 | 0.36 |
8 | Loliolide | 18.008 | 0.24 |
9 | 3-Heptadecanol | 18.274 | 0.86 |
10 | Isopropyl myristate | 18.448 | 0.46 |
11 | Neophytadiene | 18.609 | 3.91 |
12 | 1-Dodecanol, 3,7,11-trimethyl- | 18.664 | 0.40 |
13 | 3,7,11,15-Tetramethyl-2-hexadecen-1-ol | 19.058 | 1.18 |
14 | Methyl palmitoleate | 19.450 | 0.26 |
15 | Hexadecanoic acid, methyl ester | 19.507 | 3.16 |
16 | 3-Ethyl-3-pentanol | 19.784 | 0.32 |
17 | Phytane | 19.817 | 0.28 |
18 | Hexadecanoic acid | 19.909 | 10.19 |
19 | 1-Butyl-cyclohexanol | 21.002 | 0.36 |
20 | 9,12-Octadecadienoic acid, methyl ester | 21.156 | 1.22 |
21 | 9,12,15-Octadecatrienoic acid, methyl ester | 21.214 | 2.76 |
22 | Phytol | 21.330 | 12.21 |
23 | Octadecanoic acid, methyl ester | 21.447 | 1.40 |
24 | 9,12-Octadecadienoic acid | 21.524 | 0.81 |
25 | cis,cis,cis-7,10,13-Hexadecatrienal | 21.587 | 2.65 |
26 | Octadecanoic acid | 21.789 | 1.83 |
27 | 3-Cyclopentylpropionic acid, 2-dimethylaminoethyl ester | 22.858 | 0.26 |
28 | Tetrapentacontane | 23.284 | 0.44 |
29 | Eicosanoic acid | 23.542 | 0.18 |
30 | 3-Cyclopentylpropionic acid, 2-dimethylaminoethyl ester | 24.350 | 0.17 |
31 | 3,4-Dihydro-2(1h)-isoquinolinecarboxamidine | 24.439 | 2.07 |
32 | 2-Ethylbutyric acid, eicosyl ester | 24.578 | 4.99 |
33 | Hexadecanoic acid, 2-hydroxy-1-(hydroxymethyl) ethyl ester | 24.773 | 8.99 |
34 | 3,7,11-Trimethyl-2,6,10-dodecatrien-1-ol, | 24.825 | 3.93 |
35 | Geranyl linalool isomer | 25.000 | 7.44 |
36 | 2,6,10,14,18-Pentamethyl-2,6,10,14,18-icosapentaene | 25.183 | 3.08 |
37 | 4,22-Stigmastadiene-3-one | 26.255 | 3.79 |
38 | alpha-Monostearin | 26.550 | 1.29 |
39 | 5-Hydroxy-7,8-dimethoxyflavone | 26.700 | 0.89 |
40 | (3 beta)-Cholest-5-en-3-ol | 26.925 | 0.57 |
41 | Squalene | 27.544 | 1.64 |
42 | (3beta)-Stigmast-5-en-3-ol | 28.116 | 2.76 |
43 | Aromadendrene | 28.293 | 0.58 |
44 | 3,5-Dihydroxy-6,7,8-trimethoxyflavone | 29.889 | 2.33 |
Bioactive Compounds | Root | Stem | Leaves | RT | KI | Biological Activity | References |
---|---|---|---|---|---|---|---|
Azulene | + | + | + | 10.516 | 518.92 | Anti-inflammatory | [15] |
2-Methoxy-4-vinylphenol | − | + | − | 12.297 | 905.88 | Anticancer, anti-inflammatory, and antioxidant | [16,17,18] |
2,6-Dimethoxy-phenol or Syringol | − | + | − | 12.774 | 1000 | Antioxidant | [19] |
2,4-Di-tert-butylphenol | + | + | + | 14.849 | 1372.27 | Anticancer, anti-inflammatory, and antioxidant | [20] |
Eicosane | + | + | + | 17.128 | 1725.4 | anti-inflammatory, analgesic, and antipyretic | [21] |
Loliolide | − | − | + | 18.008 | 1849.32 | Herbivore resistance | [22] |
Neophytadiene | − | + | + | 18.609 | 1930.51 | Anti-inflammatory | [23] |
Hexadecanoic acid, methyl ester | + | + | + | 19.507 | 2047.07 | Anti-Inflammatory | [24] |
Phytol | − | + | + | 21.322 | 2267.1 | Anti-inflammatory and immunomodulating | [25,26] |
2-Mono-myristin | − | + | − | 23.05 | 2459.83 | Antimicrobial | [27] |
Tetrapentacontane | − | + | − | 23.287 | 2485.13 | Antimicrobial, antioxidant | [28] |
Asaraldehyde | + | − | − | 24.965 | 2657.22 | Anti-obesity | [29] |
5-Hydroxy-7,8-dimethoxyflavone | + | + | + | 26.733 | 2826.44 | Neuroprotective and lipid lowering | [30,31] |
Squalene | − | + | + | 27.544 | 2900.36 | Antioxidant, antitumor, and colon cancer | [32,33] |
Stigmasta-5,22-dien-3-ol | − | + | − | 27.607 | 2906.28 | Antimicrobial | [34] |
Aromadendrene | − | − | + | 28.293 | 2966.72 | Antibacterial activity | [35] |
5-Hydroxy-6,7,4′-trimethoxyflavone/Salvigenin | + | − | − | 29.032 | 3030.49 | Neuroprotective and lipid lowering | [30,31] |
3,5-Dihydroxy-6,7,8-trimethoxyflavone | + | − | − | 29.905 | 3103.76 | Antitumor | [36] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dalawai, D.; Murthy, H.N.; Dewir, Y.H.; Sebastian, J.K.; Nag, A. Phytochemical Composition, Bioactive Compounds, and Antioxidant Properties of Different Parts of Andrographis macrobotrys Nees. Life 2023, 13, 1166. https://doi.org/10.3390/life13051166
Dalawai D, Murthy HN, Dewir YH, Sebastian JK, Nag A. Phytochemical Composition, Bioactive Compounds, and Antioxidant Properties of Different Parts of Andrographis macrobotrys Nees. Life. 2023; 13(5):1166. https://doi.org/10.3390/life13051166
Chicago/Turabian StyleDalawai, Dayanand, Hosakatte Niranjana Murthy, Yaser Hassan Dewir, Joseph Kadanthottu Sebastian, and Anish Nag. 2023. "Phytochemical Composition, Bioactive Compounds, and Antioxidant Properties of Different Parts of Andrographis macrobotrys Nees" Life 13, no. 5: 1166. https://doi.org/10.3390/life13051166
APA StyleDalawai, D., Murthy, H. N., Dewir, Y. H., Sebastian, J. K., & Nag, A. (2023). Phytochemical Composition, Bioactive Compounds, and Antioxidant Properties of Different Parts of Andrographis macrobotrys Nees. Life, 13(5), 1166. https://doi.org/10.3390/life13051166