Cerebral Projection of Mirrored Touch via sLORETA Imaging
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Design and Procedure
2.3. Data Analysis
- Tactile stimulation of both hands modified by mirror illusion vs. calm state with open eyes (BOTH vs. OE).
- Tactile stimulation of the left hand modified by mirror illusion vs. calm state with open eyes (LEFT vs. OE).
- Tactile stimulation of the right hand modified by mirror illusion vs. calm state with open eyes (RIGHT vs. OE).
- A modification with mirror illusion but no stimuli applied vs. calm state with open eyes (NONE vs. OE).
3. Results
3.1. Results Summary
3.2. Comparison of the Source Brain Activity during Tactile Stimulation of Both Hands Modified by Mirror Illusion vs. Calm State with Open Eyes (BOTH vs. OE)
3.3. Comparison of the Tactile Stimulation of the Left Hand Modified by Mirror Illusion vs. Calm State with Open Eyes (LEFT vs. OE)
3.4. Comparison of the Tactile Stimulation of the Right Hand Modified by Mirror Illusion vs. Calm State with Open Eyes (RIGHT vs. OE)
3.5. Comparison of the Source Brain Activity during a Modification with Mirror Illusion but No Stimuli Applied vs. Calm State with Open Eyes (NONE vs. OE)
3.6. Results of the Survey Collecting Subjective Evaluation of the Participants
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bolognini, N.; Rossetti, A.; Fusaro, M.; Vallar, G.; Miniussi, C. Sharing Social Touch in the Primary Somatosensory Cortex. Curr. Biol. 2014, 24, 1513–1517. [Google Scholar] [CrossRef] [PubMed]
- Kelly, M.A.; Nixon, L.; McClurg, C.; Scherpbier, A.; King, N.; Dornan, T. Experience of Touch in Health Care: A Meta-Ethnography Across the Health Care Professions. Qual. Health Res. 2017, 28, 200–212. [Google Scholar] [CrossRef] [PubMed]
- Muramatsu, T.; Washizawa, Y.; Hiyoshi, K. EEG Analysis of Nursing Touch for Frustrating Work. In Proceedings of the 2020 IEEE 2nd Global Conference on Life Sciences and Technologies (LifeTech), Kyoto, Japan, 10–12 March 2020. [Google Scholar]
- Bjorbækmo, W.S.; Mengshoel, A.M. A touch of physiotherapy: The significance and meaning of touch in the practice of physiotherapy. Physiother. Theory Pract. 2016, 32, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Bolognini, N.; Olgiati, E.; Xaiz, A.; Posteraro, L.; Ferraro, F.; Maravita, A. Touch to See: Neuropsychological Evidence of a Sensory Mirror System for Touch. Cereb. Cortex 2012, 22, 2055–2064. [Google Scholar] [CrossRef] [PubMed]
- Coll, M.P.; Bird, G.; Catmur, C.; Press, C. Cross-modal repetition effects in the mu rhythm indicate tactile mirroring during action observation. Cortex 2015, 63, 121–131. [Google Scholar] [CrossRef]
- Plata Bello, J.; Modrono, C.; González-Mora, J.L. The role of mirror neurons in neurosurgical patients: A few general considerations and rehabilitation perspectives. NeuroRehabilitation 2014, 35, 665–671. [Google Scholar] [CrossRef]
- Bonini, L.; Rotunno, C.; Arcuri, E.; Gallese, V. Mirror neurons 30 years later: Implications and applications. Trends Cogn. Sci. 2022, 26, 767–781. [Google Scholar] [CrossRef]
- Rizzolatti, G.; Sinigaglia, C. The mirror mechanism: A basic principle of brain function. Nat. Rev. Neurosci. 2016, 17, 757–765. [Google Scholar] [CrossRef]
- Kilner, J.M.; Lemon, R.N. What We Know Currently about Mirror Neurons. Curr. Biol. 2013, 23, R1057–R1062. [Google Scholar] [CrossRef]
- Ramachandran, V.S.; Rogers-Ramachandran, D. Synaesthesia in phantom limbs induced with mirrors. Proc. R. Soc. Lond. Ser. B Biol. Sci. 1996, 263, 377–386. [Google Scholar]
- Jančíková, V.; Konečný, P.; Horák, S. Zrcadlová terapie a její využití v neurorehabilitaci. Rehabil. A Fyzikální Lékařství 2018, 25, 139–142. [Google Scholar]
- Ramachandran, V.S.; Rogers-Ramachandran, D. Mirror feedback assisted recovery from hemiparesis following stroke. In reply to Morkisch et al.: How to perform mirror therapy after stroke? Evidence from a meta-analysis. Restor. Neurol. Neurosci. 2019, 37, 437–443. [Google Scholar] [CrossRef] [PubMed]
- Sale, P.; Franceschini, M. Action observation and mirror neuron network: A tool for motor stroke rehabilitation. Eur. J. Phys. Rehabil. Med. 2012, 48, 313–318. [Google Scholar] [PubMed]
- Bryant, L.J.; Cuevas, K. Effects of active and observational experience on EEG activity during early childhood. Psychophysiology 2019, 56, e13360. [Google Scholar] [CrossRef] [PubMed]
- Stefan, K. Formation of a Motor Memory by Action Observation. J. Neurosci. 2005, 25, 9339–9346. [Google Scholar] [CrossRef]
- Buccino, G.; Solodkin, A.; Small, S.L. Functions of the Mirror Neuron System: Implications for Neurohabilitation. Cogn. Behav. Neurol. 2006, 19, 55–63. [Google Scholar] [CrossRef]
- Nakanishi, K.; Watanabe, T.; Sunagawa, T.; Kurumadani, H.; Ibrahim Zehry, H.; Ochi, M.; Adachi, N. Mirror imaging of finger mechanical stimulation affects secondary somatosensory response. NeuroReport 2018, 29, 229–234. [Google Scholar] [CrossRef]
- Arya, K.N. Underlying neural mechanisms of mirror therapy: Implications for motor rehabilitation in stroke. Neurol. India 2016, 64, 38–44. [Google Scholar] [CrossRef]
- Lunghi, C.; Lo Verde, L.; Alais, D. Touch Accelerated Visual Awareness. I-Perception 2017, 8, 2041669516686986. [Google Scholar] [CrossRef]
- Salomon, R.; Galli, G.; Łukowska, M.; Faivre, N.; Ruiz, J.B.; Blanke, O. An Invisible touch: Body-related multisensory conflicts modulate visual consciousness. Neuropsychologia 2016, 88, 131–139. [Google Scholar]
- Ding, L.; He, J.; Yao, L.; Zhuang, J.; Chen, S.; Wang, H.; Jiang, N.; Jia, J. Mirror Visual Feedback Combining Vibrotactile Stimulation Promotes Embodiment Perception: An Electroencephalogram (EEG) Pilot Study. Front. Bioeng. Biotechnol. 2020, 8, 553270. [Google Scholar] [CrossRef] [PubMed]
- Gillmeister, H. A new perceptual paradigm to investigate the visual remapping of others’ tactile sensations onto one ‘s own body shows “mirror touch” for the hands. Front. Psychol. 2014, 5, 95. [Google Scholar] [CrossRef] [PubMed]
- Mancini, F.; Nash, T.; Iannetti, G.D.; Haggard, P. Pain relief by touch: A quantitative approach. Pain 2014, 155, 635–642. [Google Scholar] [CrossRef] [PubMed]
- Martínek, M.; Pánek, D.; Nováková, T.; Pavlů, D. Analysis of Intracerebral Activity during Reflex Locomotion Stimulation According to Vojta’s Principle. Appl. Sci. 2022, 12, 2225. [Google Scholar] [CrossRef]
- Rothgangel, A.; Braun, S. Mirror Therapy: Practical Protocol for Stroke Rehabilitation; Pflaun Verlag: München, Germany, 2013; pp. 1–17. [Google Scholar]
- Pascual-Marqui, R.D. Standardized low-resolution brain electromagnetic tomography (sLORETA): Technical details. Methods Find. Exp. Clin. Pharmacol. 2022, 24, 5–12. [Google Scholar]
- Rakusa, M.; Busan, P.; Battaglini, P.P.; Zidar, J. Separating the Idea from the Action: A sLORETA Study. Brain Topogr. 2018, 31, 228–241. [Google Scholar] [CrossRef]
- Pánek, D. Elektroencefalografické Koreláty Pohybového Chování a Výkonnostní Zátěže; Nakladatelství Karolinum: Prague, Czech Republic, 2016. [Google Scholar]
- Jatoi, M.A.; Kamel, N.; Malik, A.S.; Faye, I. EEG based brain source localization comparison of sLORETA and eLORETA. Australas. Phys. Eng. Sci. Med. 2014, 37, 713–721. [Google Scholar] [CrossRef]
- Dattola, S.; Morabito, F.C.; Mammone, N.; La Foresta, F. Findings about LORETA Applied to High-Density EEG—A Review. Electronics 2020, 9, 660. [Google Scholar] [CrossRef]
- Faber, J. Elektroencefalografie a Psychofyziologie; ISV: Prague, Czech Republic, 2001. [Google Scholar]
- Orel, M.; Procházka, R. Vyšetření a Výzkum Mozku: Pro Psychology, Pedagogy a Další Nelékařské Obory; Grada: Prague, Czech Republic, 2017. [Google Scholar]
- Talairach, J.; Tournoux, P. Co-Planar Stereotaxic Atlas of the Human Brain: 3-Dimensional Proportional System: An Approach to Cerebral Imaging; Thieme: New York, NY, USA, 1988. [Google Scholar]
- Baker, S.N. Oscillatory interactions between sensorimotor cortex and the periphery. Curr. Opin. Neurobiol. 2007, 17, 649–655. [Google Scholar] [CrossRef]
- Baravalle, R.; Rosso, O.A.; Montani, F. Rhytmic activities of the brain: Quantifying the high complexity of beta and gamma oscillations during visuomotor tasks. Chaos Interdiscip. J. Nonlinear Sci. 2018, 28, 075513. [Google Scholar] [CrossRef]
- Gable, P.A.; Threadgill, A.H.; Adams, D.L. Neural activity underlying motor-action preparation and cognitive narrowing in approach-motivated goal states. Cogn. Affect. Behav. Neurosci. 2016, 16, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Khanna, P.; Carmena, J.M. Neural oscillations: Beta band activity across motor networks. Curr. Opin. Neurobiol. 2015, 32, 60–67. [Google Scholar] [CrossRef]
- Cortical Functions: Reference. Available online: https://www.fmriconsulting.com/brodmann/Interact.html (accessed on 28 February 2023).
- Brodmann’s Interactive Atlas. Available online: https://trans-cranial.com/docs/cortical_functions_ref_v1_0_pdf.pdf (accessed on 28 February 2023).
- Cavanagh, J.F. Cortical delta activity reflects reward prediction error and related behavioral adjustments, but at different times. NeuroImage 2015, 110, 205–216. [Google Scholar] [CrossRef]
- Güntekin, B.; Başar, E. Review of evoked and event-related delta responses in the human brain. Int. J. Psychophysiol. 2016, 103, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Liang, M.; Starrett, M.J.; Ekstrom, A.D. Dissociation of frontal-midline delta-theta and posterior alpha oscillations: A mobile EEG study. Psychophysiology 2018, 55, e13090. [Google Scholar] [CrossRef] [PubMed]
- Di Pellegrino, G.; Fadiga, L.; Fogassi, L.; Gallese, V.; Rizzolatti, G. Understanding motor events: A neurophysiological study. Exp. Brain Res. 1992, 91, 176–180. [Google Scholar] [CrossRef] [PubMed]
- D’Ausilio, A. Mirror-like Mechanisms and Music. Sci. World J. 2009, 9, 1415–1422. [Google Scholar] [CrossRef]
- Caramazza, A.; Anzellotti, S.; Strnad, L.; Lingnau, A. Embodied Cognition and Mirror Neurons: A Critical Assessment. Annu. Rev. Neurosci. 2014, 37, 1–15. [Google Scholar] [CrossRef]
- Jin, F.; Zheng, P.; Liu, H.; Guo, H.; Sun, Z. Functional and anatomical connectivity-based parcellation of human cingulate cortex. Brain Behav. 2018, 8, e01070. [Google Scholar] [CrossRef]
- Deconinck, F.J.; Smorenburg, A.R.; Benham, A.; Ledebt, A.; Feltham, M.G.; Savelsbergh, G.J. Reflections on mirror therapy: A systematic review of the effect of mirror visual feedback on the brain. Neurorehabilit. Neural Repair 2015, 29, 349–361. [Google Scholar] [CrossRef]
- Fox, N.A.; Bakermans-Kranenburg, M.J.; Yoo, K.H.; Bowman, L.C.; Cannon, E.N.; Vanderwert, R.E.; Ferrari, P.F.; Van IJzendoorn, M.H. Assessing human mirror activity with EEG mu rhythm: A meta-analysis. Psychol. Bull. 2016, 142, 291–313. [Google Scholar] [CrossRef] [PubMed]
- Debnath, R.; Franz, E.A. Perception of hand movement by mirror reflection evokes brain activation in the motor cortex contralateral to a non-moving hand. Cortex 2016, 81, 118–125. [Google Scholar] [CrossRef] [PubMed]
- Hötting, K.; Röder, B. Beneficial effects of physical exercise on neuroplasticity and cognition. Neurosci. Biobehav. Rev. 2013, 37, 2243–2257. [Google Scholar] [CrossRef] [PubMed]
- Gulyaeva, N.V. Molecular mechanisms of neuroplasticity: An expanding universe. Biochemistry 2017, 82, 237–242. [Google Scholar] [CrossRef] [PubMed]
Participants | Gender | Age (Years) | Height (cm) | Body Mass (kg) | BMI (kg/m2) |
---|---|---|---|---|---|
10 | 50% M, 50% F | 34.4 ± 6.422 | 171.3 ± 7.363 | 67.7 ± 12.256 | 22.98 ± 3.344 |
Pair Group | Frequency Band | Frequency Band Characteristics | Source Activity Localization | BA | Relevant BA Functions |
---|---|---|---|---|---|
BOTH vs. OE | beta-2 | Attention, focus, awareness, tactile stimulation [29,35,36,37,38]. | Frontal lobe—Premotor cortex | 6 | Motor planning, learning and imaging; movement guidance and fluency; coordination; mirror neurons; awareness; learning; memory; emotions; speech; new experiences [39,40]. |
beta-3 | Cingulate gyrus—Anterior part | 24 | Motor planning, imaging; visual attention; mirror neurons; memory; emotions; self-reflection; new experiences [39,40]. | ||
Cingulate gyrus—Posterior part | 31 | Learning complex motor skills; motor visual stimuli; memory; emotions; precaution; fear; speech; self-reflection [39,40]. | |||
LEFT vs. OE | |||||
beta-2 | Superior parietal lobe—Secondary sensorimotor cortex | 5, 7 | Somatosensory fcs; visuomotor attention; spatial perception and memory; object localization; mirror neurons; self-reflection during decision making [39,40]. | ||
RIGHT vs. OE | delta | Memory, intelligence, decision making, stimuli detection, anticipation, spatial orientation [29,41,42,43]. | Frontal lobe—gyrus rectus. Inferior frontal gyrus | 11, 47 | Speech, semantics; smell; hearing; decision making; negative emotion inhibition; attribution of intentions to others; intuition [39,40]. |
NONE vs. OE | beta-3 | Attention, focus, awareness, tactile stimulation [29,35,36,37,38]. | Temporal lobe—inferior and medial part | 20, 21 | Speech; complex processing of visual inputs; recognition; attribution of intention to others, motion observation [39,40]. |
Occipital lobe—secondary visual area | 18 | Visual integration; speech; memory; emotions; visual imaging [39,40]. |
BOTH vs. OE | LEFT vs. OE | RIGHT vs. OE | NONE vs. OE | Comments Total | |
---|---|---|---|---|---|
Comments total | 15 | 27 | 22 | 13 | |
Overall evaluation | |||||
Pleasant | 4 | 3 | 2 | 1 | 10 |
Unpleasant | 4 | 1 | 5 | ||
Neutral | 2 | 2 | 4 | ||
Peculiar | 2 | 2 | |||
Pleasant yet peculiar | 1 | 2 | 1 | 1 | 5 |
Emotional reaction | |||||
Confusion | 1 | 2 | 3 | ||
Insecurity | 1 | 1 | 2 | ||
Nervousness | 1 | 1 | 1 | 1 | 4 |
Expectation | 2 | 2 | |||
Vegetative reaction | |||||
Higher pulse rate | 1 | 1 | 2 | 1 | 5 |
Perspiration | 1 | 1 | 2 | ||
Cold | 1 | 1 | 2 | ||
Sensations on upper limbs/ body scheme shifts | |||||
Temperature difference | 1 | 1 | |||
* Paresthesia | 6 | 1 | 7 | ||
Urge to move limb | 2 | 1 | 1 | 4 | |
Touch outside of limb | 1 | 1 | 2 | ||
“Alienated” limb | 1 | 1 | 1 | 3 | |
3 limbs—self | 2 | 2 | |||
3 limbs—researcher | 1 | 1 | |||
Hypesthesia | 1 | 1 | 2 | ||
Touch expectation | 1 | 1 | |||
Other | |||||
Urge to close eyes | 1 | 1 | 1 | 1 | 4 |
Illusion burn-out | 1 | 1 | 1 | 1 | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dubová, D.; Dvořáčková, D.; Pavlů, D.; Pánek, D. Cerebral Projection of Mirrored Touch via sLORETA Imaging. Life 2023, 13, 1201. https://doi.org/10.3390/life13051201
Dubová D, Dvořáčková D, Pavlů D, Pánek D. Cerebral Projection of Mirrored Touch via sLORETA Imaging. Life. 2023; 13(5):1201. https://doi.org/10.3390/life13051201
Chicago/Turabian StyleDubová, Dita, Dominika Dvořáčková, Dagmar Pavlů, and David Pánek. 2023. "Cerebral Projection of Mirrored Touch via sLORETA Imaging" Life 13, no. 5: 1201. https://doi.org/10.3390/life13051201
APA StyleDubová, D., Dvořáčková, D., Pavlů, D., & Pánek, D. (2023). Cerebral Projection of Mirrored Touch via sLORETA Imaging. Life, 13(5), 1201. https://doi.org/10.3390/life13051201