Non-Invasive Brain Stimulation for the Modulation of Aggressive Behavior—A Systematic Review of Randomized Sham-Controlled Studies
Abstract
:1. Introduction
1.1. Aggression Models
1.2. Neural Substrates of Aggression
1.3. Aggression Control
1.4. NIBS
1.5. Effects of NIBS Targeting PFC on Behavior
1.6. Aggression Measures
1.7. AIMS
2. Methods
2.1. Research Strategy
2.2. Eligibility Criteria
- Original quantitative research investigating the effectiveness of NIBS on human aggression;
- Publication in English-language peer-reviewed journals;
- Behavioral measures of aggression as an outcome;
- Comparison between active stimulation and sham control conditions;
- At least single-blinded.
- (a)
- Reviews and meta-analyses;
- (b)
- Articles not employing NIBS;
- (c)
- Articles not conducted in humans, not referring to the subject of interest (aggression), or not addressing behavioral modulation aims.
3. Results
3.1. Descriptive Overview by Stimulated Area
3.1.1. VLPFC
3.1.2. DLPFC
3.1.3. MPFC
3.2. Sample Size
3.3. Design
3.4. Blinding
3.5. Samples
3.6. Stimulation Tools
3.7. Stimulation Laterality
3.7.1. Right-Hemispheric Enhancement or Left-Hemispheric Reduction in Excitability
3.7.2. Left-Hemispheric Enhancement or Right-Hemispheric Reduction in Excitability
3.7.3. Bihemispheric Stimulation of Homologous Areas
3.7.4. Medial or Bihemispheric Bianodal
3.8. Intensity
3.9. Stimulation Duration
3.10. Aggression Measures
3.11. Gender Effects
4. Discussion
4.1. Relationship to the Motivational Direction Model of Frontal Asymmetry
4.2. Gender Differences
4.3. Implications for the Aggression Control Network
4.4. Promising Stimulation Protocols
4.5. Limitations of the Examined Literature
4.6. Conclusions and Future Directions
4.7. Limitations of this Review
Supplementary Materials
Funding
Conflicts of Interest
References
- Anderson, C.A.; Bushman, B.J. Human aggression. Hum. Aggress. 2002, 53, 27–51. [Google Scholar] [CrossRef]
- Lindenfors, P.; Tullberg, B.S. 2—Evolutionary Aspects of Aggression: The Importance of Sexual Selection. In Advances in Genetics; Huber, R., Bannasch, D.L., Brennan, P., Eds.; Academic Press: Cambridge, MA, USA, 2011; Volume 75, pp. 7–22. [Google Scholar] [CrossRef]
- Macdonald, K.B. Effortful control, explicit processing, and the regulation of human evolved predispositions. Psychol. Rev. 2008, 115, 1012–1031. [Google Scholar] [CrossRef]
- Hawley, P.H.; Vaughn, B.E. Aggression and Adaptive Functioning: The Bright Side to Bad Behavior. Merrill-Palmer Q. 2003, 49, 239–242. [Google Scholar] [CrossRef]
- Heilbron, N.; Prinstein, M.J. A Review and Reconceptualization of Social Aggression: Adaptive and Maladaptive Correlates. Clin. Child Fam. Psychol. Rev. 2008, 11, 176–217. [Google Scholar] [CrossRef] [PubMed]
- Hoeffler, A. What are the costs of violence? Politi Philos. Econ. 2017, 16, 422–445. [Google Scholar] [CrossRef]
- WHO. Violence Prevention Unit: Approach, Objectives and Activities. 2022–2026. 2021. Available online: https://www.who.int/publications/m/item/who-violence-prevention-unit--approach--objectives-and-activities--2022-2026 (accessed on 16 March 2023).
- Rutherford, A.; Zwi, A.B.; Grove, N.J.; Butchart, A. Violence: A priority for public health? (part 2). J. Epidemiol. Community Health 2007, 61, 764–770. [Google Scholar] [CrossRef] [PubMed]
- Bushman, B.J.; Anderson, C.A. Is It Time to Pull the Plug on the Hostile Versus Instrumental Aggression Dichotomy? Psychol. Rev. 2001, 108, 273. [Google Scholar] [CrossRef]
- Dollard, J.; Miller, N.E.; Doob, L.W.; Mowrer, O.H.; Sears, R.R. Frustration and Aggression; Yale University Press: New Haven, CT, USA, 1939; pp. viii, 213. [Google Scholar] [CrossRef]
- Breuer, J.; Elson, M. Frustration-Aggression Theory. In The Wiley Handbook of Violence and Aggression; John Wiley & Sons, Ltd.: Chichester, UK, 2017; pp. 1–12. [Google Scholar] [CrossRef]
- Berkowitz, L. On the formation and regulation of anger and aggression: A cognitive-neoassociationistic analysis. Am. Psychol. 1990, 45, 494. [Google Scholar] [CrossRef]
- Zillmann, D. Arousal and aggression Aggress. Theor. Empir. Rev. 1983, 1, 75–102. [Google Scholar]
- Bandura, A. Psychological mechanisms of aggression. Aggress. Theor. Empir. Rev. 1983, 1, 1–40. [Google Scholar]
- Mischel, W. Toward a cognitive social learning reconceptualization of personality. Psychol. Rev. 1973, 80, 252–283. [Google Scholar] [CrossRef] [PubMed]
- Mischel, W.; Shoda, Y. A cognitive-affective system theory of personality: Reconceptualizing situations, dispositions, dynamics, and invariance in personality structure. Psychol. Rev. 1995, 102, 246–268. [Google Scholar] [CrossRef]
- Huesmann, L.R. An information processing model for the development of aggression. Aggress. Behav. 1988, 14, 13–24. [Google Scholar] [CrossRef]
- Tedeschi, J.T.; Felson, R.B. Violence, Aggression, and Coercive Actions; American Psychological Association: Washington, DC, USA, 1994; pp. xii, 463. [Google Scholar] [CrossRef]
- Lischinsky, J.E.; Lin, D. Neural mechanisms of aggression across species. Nat. Neurosci. 2020, 23, 1317–1328. [Google Scholar] [CrossRef] [PubMed]
- Bayless, D.W.; Yang, T.; Mason, M.M.; Susanto, A.A.; Lobdell, A.; Shah, N.M. Limbic Neurons Shape Sex Recognition and Social Behavior in Sexually Naive Males. Cell 2019, 176, 1190–1205.e20. [Google Scholar] [CrossRef]
- Lin, D.; Boyle, M.P.; Dollar, P.; Lee, H.; Lein, E.S.; Perona, P.; Anderson, D.J. Functional identification of an aggression locus in the mouse hypothalamus. Nature 2011, 470, 221–226. [Google Scholar] [CrossRef]
- Falkner, A.L.; Grosenick, L.; Davidson, T.J.; Deisseroth, L.G.K.; Lin, D. Hypothalamic control of male aggression-seeking behavior. Nat. Neurosci. 2016, 19, 596–604. [Google Scholar] [CrossRef]
- Lipp, H.; Hunsperger, R. Threat, Attack and Flight Elicited by Electrical Stimulation of the Ventromedial Hypothalamus of the Marmoset Monkey Callithrix jacchus. Brain Behav. Evol. 1978, 15, 276–293. [Google Scholar] [CrossRef]
- Roberts, W.W.; Steinberg, M.L.; Means, L.W. Hypothalamic mechanisms for sexual, aggressive, and other motivational behaviors in the opossum, Didelphis virginiana. J. Comp. Physiol. Psychol. 1967, 64, 1–15. [Google Scholar] [CrossRef]
- Siegel, A.; Pott, C.B. Neural substrates of aggression and flight in the cat. Prog. Neurobiol. 1988, 31, 261–283. [Google Scholar] [CrossRef]
- Kang, S.; Thayananuphat, A.; Bakken, T.; El Halawani, M. Dopamine-melatonin neurons in the avian hypothalamus controlling seasonal reproduction. Neuroscience 2007, 150, 223–233. [Google Scholar] [CrossRef] [PubMed]
- Falkner, A.L.; Wei, D.; Song, A.; Watsek, L.W.; Chen, I.; Chen, P.; Feng, J.E.; Lin, D. Hierarchical Representations of Aggression in a Hypothalamic-Midbrain Circuit. Neuron 2020, 106, 637–648.e6. [Google Scholar] [CrossRef]
- Nelson, R.J.; Trainor, B.C. Neural mechanisms of aggression. Nat. Rev. Neurosci. 2007, 8, 536–546. [Google Scholar] [CrossRef] [PubMed]
- Franzini, A.; Marras, C.; Ferroli, P.; Bugiani, O.; Broggi, G. Stimulation of the Posterior Hypothalamus for Medically Intractable Impulsive and Violent Behavior. Ster. Funct. Neurosurg. 2005, 83, 63–66. [Google Scholar] [CrossRef] [PubMed]
- Mpakopoulou, M.; Gatos, H.; Brotis, A.; Paterakis, K.N.; Fountas, K.N. Stereotactic amygdalotomy in the management of severe aggressive behavioral disorders. Neurosurg. Focus 2008, 25, E6. [Google Scholar] [CrossRef]
- Franzini, A.; Broggi, G.; Cordella, R.; Dones, I.; Messina, G. Deep-Brain Stimulation for Aggressive and Disruptive Behavior. World Neurosurg. 2013, 80, S29.e11–S29.e14. [Google Scholar] [CrossRef]
- Harmon-Jones, E. Anger and the behavioral approach system. Pers. Individ. Differ. 2003, 35, 995–1005. [Google Scholar] [CrossRef]
- Amodio, D.M.; Frith, C.D. Meeting of minds: The medial frontal cortex and social cognition. Nat. Rev. Neurosci. 2006, 7, 268–277. [Google Scholar] [CrossRef]
- Brodmann, K. Vergleichende Lokalisationslehre der Grosshirnrinde in Ihren Prinzipien Dargestellt auf Grund des Zellenbaues; Barth: Leipzig, Germany, 1909. [Google Scholar]
- Petrides, M.; Tomaiuolo, F.; Yeterian, E.H.; Pandya, D.N. The prefrontal cortex: Comparative architectonic organization in the human and the macaque monkey brains. Cortex 2012, 48, 46–57. [Google Scholar] [CrossRef]
- Stuss, D.T.; Benson, D.F. Neuropsychological studies of the frontal lobes. Psychol. Bull. 1984, 95, 3–28. [Google Scholar] [CrossRef]
- Petrides, M.; Pandya, D.N. Dorsolateral prefrontal cortex: Comparative cytoarchitectonic analysis in the human and the macaque brain and corticocortical connection patterns. Eur. J. Neurosci. 1999, 11, 1011–1036. [Google Scholar] [CrossRef] [PubMed]
- Petrides, M.; Pandya, D.N. Comparative cytoarchitectonic analysis of the human and the macaque ventrolateral prefrontal cortex and corticocortical connection patterns in the monkey. Eur. J. Neurosci. 2002, 16, 291–310. [Google Scholar] [CrossRef]
- Denson, T.F. A social neuroscience perspective on the neurobiological bases of aggression. In Human Aggression and Violence: Causes, Manifestations, and Consequences; Shaver, P.R., Mikulincer, M., Eds.; American Psychological Association: Washington, DC, USA, 2011; pp. 105–120. [Google Scholar] [CrossRef]
- Croxson, P.L.; Johansen-Berg, H.; Behrens, T.E.J.; Robson, M.D.; Pinsk, M.A.; Gross, C.G.; Richter, W.; Richter, M.C.; Kastner, S.; Rushworth, M.F.S. Quantitative Investigation of Connections of the Prefrontal Cortex in the Human and Macaque using Probabilistic Diffusion Tractography. J. Neurosci. 2005, 25, 8854–8866. [Google Scholar] [CrossRef] [PubMed]
- Ghashghaei, H.; Hilgetag, C.C.; Barbas, H. Sequence of information processing for emotions based on the anatomic dialogue between prefrontal cortex and amygdala. Neuroimage 2007, 34, 905–923. [Google Scholar] [CrossRef] [PubMed]
- Ghashghaei, H.; Barbas, H. Pathways for emotion: Interactions of prefrontal and anterior temporal pathways in the amygdala of the rhesus monkey. Neuroscience 2002, 115, 1261–1279. [Google Scholar] [CrossRef]
- Nauta, W.J. Neural associations of the frontal cortex. Acta Neurobiol. Exp. 1971, 32, 125–140. [Google Scholar]
- Yeterian, E.H.; Pandya, D.N.; Tomaiuolo, F.; Petrides, M. The cortical connectivity of the prefrontal cortex in the monkey brain. Cortex 2012, 48, 58–81. [Google Scholar] [CrossRef]
- Baddeley, A. Working memory: Looking back and looking forward. Nat. Rev. Neurosci. 2003, 4, 829–839. [Google Scholar] [CrossRef]
- Fuster, J.M. The prefrontal cortex—An update: Time is of the essence. Neuron 2001, 30, 319–333. [Google Scholar] [CrossRef]
- Miller, E.K.; Cohen, J.D. An Integrative Theory of Prefrontal Cortex Function. Annu. Rev. Neurosci. 2001, 24, 167–202. [Google Scholar] [CrossRef]
- Norman, D.A.; Shallic, T. Attention to action. In Consciousness and Self-Regulation; Springer: Boston, MA, USA, 1986; pp. 1–18. [Google Scholar]
- Aron, A.R.; Robbins, T.W.; Poldrack, R.A. Inhibition and the right inferior frontal cortex. Trends Cogn. Sci. 2004, 8, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J.R.; Lieberman, M.D. The Common Neural Basis of Exerting Self-Control in Multiple Domains. In Self Control in Society, Mind, and Brain; Hassin, R.R., Ochsner, K.N., Trope, Y., Eds.; Oxford University Press: New York, NY, USA, 2010; pp. 141–161. [Google Scholar]
- Eisenberger, N.I.; Lieberman, M.D.; Williams, K.D. Does Rejection Hurt? An fMRI Study of Social Exclusion. Science 2003, 302, 290–292. [Google Scholar] [CrossRef] [PubMed]
- Heatherton, T.F. Neuroscience of Self and Self-Regulation. Annu. Rev. Psychol. 2011, 62, 363–390. [Google Scholar] [CrossRef] [PubMed]
- McClure, S.; Laibson, D.; Loewenstein, G.; Cohen, J. Separate nervesystemer verdsetter umiddelbare og forsinkede pengepenger. Science 2004, 306, 503–507. [Google Scholar] [CrossRef]
- Shamay-Tsoory, S.G. Empathic Processing: Its Cognitive and Affective Dimensions and Neuroanatomical Basis. Soc. Neurosci. Empathy 2009, 215–232. [Google Scholar] [CrossRef]
- Botvinick, M.M.; Cohen, J.D.; Carter, C.S. Conflict monitoring and anterior cingulate cortex: An update. Trends Cogn. Sci. 2004, 8, 539–546. [Google Scholar] [CrossRef]
- Gardner, M.P.H.; Schoenbaum, G. The orbitofrontal cartographer. Behav. Neurosci. 2021, 135, 267–276. [Google Scholar] [CrossRef]
- Luo, Q.; Nakic, M.; Wheatley, T.; Richell, R.; Martin, A.; Blair, R.J.R. The neural basis of implicit moral attitude—An IAT study using event-related fMRI. Neuroimage 2006, 30, 1449–1457. [Google Scholar] [CrossRef]
- Rolls, E.T. The Orbitofrontal Cortex; Oxford University Press: Oxford, UK, 2019. [Google Scholar]
- Stalnaker, T.A.; Cooch, N.K.; Schoenbaum, G. What the orbitofrontal cortex does not do. Nat. Neurosci. 2015, 18, 620–627. [Google Scholar] [CrossRef]
- Damasio, A.R.; Everitt, B.J.; Bishop, D. The Somatic Marker Hypothesis and the Possible Functions of the Prefrontal Cortex [and Discussion]. Philos. Trans. Biol. Sci. 1996, 351, 1413–1420. [Google Scholar]
- Brower, M.C. Advances in Neuropsychiatry: Neuropsychiatry of frontal lobe dysfunction in violent and criminal behaviour: A critical review. J. Neurol. Neurosurg. Psychiatry 2001, 71, 720–726. [Google Scholar] [CrossRef]
- Giancola, P.R. EVidence for dorsolateral and orbital prefrontal cortical involvement in the expression of aggressive behavior. Aggress. Behav. 1995, 21, 431–450. [Google Scholar] [CrossRef]
- Yang, Y.; Raine, A. Prefrontal structural and functional brain imaging findings in antisocial, violent, and psychopathic individuals: A meta-analysis. Psychiatry Res. Neuroimaging 2009, 174, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Silvers, J.A.; Insel, C.; Powers, A.; Franz, P.; Helion, C.; Martin, R.E.; Weber, J.; Mischel, W.; Casey, B.; Ochsner, K.N. vlPFC–vmPFC–Amygdala Interactions Underlie Age-Related Differences in Cognitive Regulation of Emotion. Cereb. Cortex 2017, 27, 3502–3514. [Google Scholar] [CrossRef]
- Wager, T.D.; Davidson, M.L.; Hughes, B.L.; Lindquist, M.A.; Ochsner, K.N. Prefrontal-Subcortical Pathways Mediating Successful Emotion Regulation. Neuron 2008, 59, 1037–1050. [Google Scholar] [CrossRef] [PubMed]
- Potegal, M. Temporal and frontal lobe initiation and regulation of the top-down escalation of anger and aggression. Behav. Brain Res. 2012, 231, 386–395. [Google Scholar] [CrossRef]
- Lotze, M.; Veit, R.; Anders, S.; Birbaumer, N. Evidence for a different role of the ventral and dorsal medial prefrontal cortex for social reactive aggression: An interactive fMRI study. Neuroimage 2007, 34, 470–478. [Google Scholar] [CrossRef] [PubMed]
- Repple, J.; Pawliczek, C.M.; Voss, B.; Siegel, S.; Schneider, F.; Kohn, N.; Habel, U. From provocation to aggression: The neural network. BMC Neurosci. 2017, 18, 73. [Google Scholar] [CrossRef]
- Takahashi, A.; Nagayasu, K.; Nishitani, N.; Kaneko, S.; Koide, T. Control of Intermale Aggression by Medial Prefrontal Cortex Activation in the Mouse. PLoS ONE 2014, 9, e94657. [Google Scholar] [CrossRef] [PubMed]
- Centenaro, L.A.; Vieira, K.; Zimmermann, N.; Miczek, K.A.; Lucion, A.B.; De Almeida, R.M.M. Social instigation and aggressive behavior in mice: Role of 5-HT1A and 5-HT1B receptors in the prefrontal cortex. Psychopharmacology 2008, 201, 237–248. [Google Scholar] [CrossRef]
- Juhász, C.; Behen, M.E.; Muzik, O.; Chugani, D.C.; Chugani, H.T. Bilateral Medial Prefrontal and Temporal Neocortical Hypometabolism in Children with Epilepsy and Aggression. Epilepsia 2001, 42, 991–1001. [Google Scholar] [CrossRef] [PubMed]
- Golden, C.J.; Jackson, M.L.; Peterson-Rohne, A.; Gontkovsky, S.T. Neuropsychological correlates of violence and aggression: A review of the clinical literature. Aggress. Violent Behav. 1996, 1, 3–25. [Google Scholar] [CrossRef]
- DeWall, C.N.; Finkel, E.J.; Denson, T.F. Self-Control Inhibits Aggression. Soc. Pers. Psychol. Compass 2011, 5, 458–472. [Google Scholar] [CrossRef]
- Harmon-Jones, E.; Allen, J.J. Behavioral activation sensitivity and resting frontal EEG asymmetry: Covariation of putative indicators related to risk for mood disorders. J. Abnorm. Psychol. 1997, 106, 159. [Google Scholar] [CrossRef]
- Sutton, S.K.; Davidson, R.J. Prefrontal Brain Asymmetry: A Biological Substrate of the Behavioral Approach and Inhibition Systems. Psychol. Sci. 1997, 8, 204–210. [Google Scholar] [CrossRef]
- Van Honk, J.; Harmon-Jones, E.; Morgan, B.; Schutter, D.J.L.G. Socially Explosive Minds: The Triple Imbalance Hypothesis of Reactive Aggression. J. Pers. 2010, 78, 67–94. [Google Scholar] [CrossRef]
- van Honk, J.; Schutter, J.L.G. Dynamic brain systems in quest for emotional homeostasis. Behav. Brain Sci. 2005, 28, 220–221. [Google Scholar] [CrossRef]
- Belfry, K.D.; Kolla, N.J. Cold-Blooded and on Purpose: A Review of the Biology of Proactive Aggression. Brain Sci. 2021, 11, 1412. [Google Scholar] [CrossRef]
- Fanning, J.R.; Keedy, S.; Berman, M.E.; Lee, R.; Coccaro, E.F. Neural Correlates of Aggressive Behavior in Real Time: A Review of fMRI Studies of Laboratory Reactive Aggression. Curr. Behav. Neurosci. Rep. 2017, 4, 138–150. [Google Scholar] [CrossRef]
- Zhu, W.; Zhou, X.; Xia, L.-X. Brain structures and functional connectivity associated with individual differences in trait proactive aggression. Sci. Rep. 2019, 9, 7731. [Google Scholar] [CrossRef]
- Nitsche, M.A.; Paulus, W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J. Physiol. 2000, 527, 633–639. [Google Scholar] [CrossRef] [PubMed]
- Stagg, C.J.; Antal, A.; Nitsche, M.A. Physiology of Transcranial Direct Current Stimulation. J. ECT 2018, 34, 144–152. [Google Scholar] [CrossRef] [PubMed]
- Stagg, C.J.; Nitsche, M.A. Physiological Basis of Transcranial Direct Current Stimulation. Neuroscientist 2011, 17, 37–53. [Google Scholar] [CrossRef]
- Nitsche, M.A.; Cohen, L.G.; Wassermann, E.M.; Priori, A.; Lang, N.; Antal, A.; Paulus, W.; Hummel, F.; Boggio, P.S.; Fregni, F.; et al. Transcranial direct current stimulation: State of the art 2008. Brain Stimul. 2008, 1, 206–223. [Google Scholar] [CrossRef] [PubMed]
- Forogh, B.; Rafiei, M.; Arbabi, A.; Motamed, M.R.; Madani, S.P.; Sajadi, S. Repeated sessions of transcranial direct current stimulation evaluation on fatigue and daytime sleepiness in Parkinson’s disease. Neurol. Sci. 2017, 38, 249–254. [Google Scholar] [CrossRef]
- Monte-Silva, K.; Kuo, M.-F.; Hessenthaler, S.; Fresnoza, S.; Liebetanz, D.; Paulus, W.; Nitsche, M.A. Induction of Late LTP-Like Plasticity in the Human Motor Cortex by Repeated Non-Invasive Brain Stimulation. Brain Stimul. 2013, 6, 424–432. [Google Scholar] [CrossRef] [PubMed]
- Nitsche, M.A.; Fricke, K.; Henschke, U.; Schlitterlau, A.; Liebetanz, D.; Lang, N.; Henning, S.; Tergau, F.; Paulus, W. Pharmacological Modulation of Cortical Excitability Shifts Induced by Transcranial Direct Current Stimulation in Humans. J. Physiol. 2003, 553, 293–301. [Google Scholar] [CrossRef]
- Nitsche, M.A.; Jaussi, W.; Liebetanz, D.; Lang, N.; Tergau, F.; Paulus, W. Consolidation of Human Motor Cortical Neuroplasticity by D-Cycloserine. Neuropsychopharmacology 2004, 29, 1573–1578. [Google Scholar] [CrossRef]
- Rango, M.; Cogiamanian, F.; Marceglia, S.; Barberis, B.; Arighi, A.; Biondetti, P.; Priori, A. Myoinositol content in the human brain is modified by transcranial direct current stimulation in a matter of minutes: A1H-MRS study. Magn. Reson. Med. 2008, 60, 782–789. [Google Scholar] [CrossRef]
- Stagg, C.J.; Best, J.G.; Stephenson, M.C.; O’Shea, J.; Wylezinska, M.; Kincses, Z.T.; Morris, P.G.; Matthews, P.M.; Johansen-Berg, H. Polarity-Sensitive Modulation of Cortical Neurotransmitters by Transcranial Stimulation. J. Neurosci. 2009, 29, 5202–5206. [Google Scholar] [CrossRef]
- Barker, A.; Jalinous, R.; Freeston, I. Non-invasive magnetic stimulation of human motor cortex. Lancet 1985, 325, 1106–1107. [Google Scholar] [CrossRef] [PubMed]
- Tofts, P. The distribution of induced currents in magnetic stimulation of the nervous system. Phys. Med. Biol. 1990, 35, 1119–1128. [Google Scholar] [CrossRef] [PubMed]
- Vicario, C.M.; Candidi, M.; Aglioti, S.M. Cortico-Spinal Embodiment of Newly Acquired, Action-Related Semantic Associations. Brain Stimul. 2013, 6, 952–958. [Google Scholar] [CrossRef] [PubMed]
- Vicario, C.M.; Rafal, R.D.; Borgomaneri, S.; Paracampo, R.; Kritikos, A.; Avenanti, A. Pictures of disgusting foods and disgusted facial expressions suppress the tongue motor cortex. Soc. Cogn. Affect. Neurosci. 2017, 12, 352–362. [Google Scholar] [CrossRef]
- Vicario, C.M.; Rafal, R.D.; di Pellegrino, G.; Lucifora, C.; Salehinejad, M.A.; Nitsche, M.A.; Avenanti, A. Indignation for moral violations suppresses the tongue motor cortex: Preliminary TMS evidence. Soc. Cogn. Affect. Neurosci. 2022, 17, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Vicario, C.M.; Turrini, S.; Lucifora, C.; Culicetto, L.; Ferraioli, F.; Falzone, A.; Nitsche, M.A.; Avenanti, A. When defeat leaves a bad taste in the mouth: Modulation of tongue corticobulbar output during monetary loss in a gambling task. Brain Stimul. 2022, 15, 1448–1450. [Google Scholar] [CrossRef]
- Amassian, V.E.; Cracco, R.Q.; Maccabee, P.J.; Cracco, J.B.; Rudell, A.; Eberle, L. Suppression of visual perception by magnetic coil stimulation of human occipital cortex. Electroencephalogr. Clin. Neurophysiol. Potentials Sect. 1989, 74, 458–462. [Google Scholar] [CrossRef]
- Chambers, C.D.; Mattingley, J.B. Neurodisruption of selective attention: Insights and implications. Trends Cogn. Sci. 2005, 9, 542–550. [Google Scholar] [CrossRef]
- Classen, J.; Stefan, K. Changes in TMS measures induced by repetitive TMS. In The Oxford Handbook of Transcranial Stimulation; Wassermann, E.M.Z.U., Walsh, V., Paus, T., Lisanby, S., Eds.; Oxford University Press Inc.: New York, NY, USA, 2008; pp. 185–200. [Google Scholar]
- Klomjai, W.; Katz, R.; Lackmy-Vallée, A. Basic principles of transcranial magnetic stimulation (TMS) and repetitive TMS (rTMS). Ann. Phys. Rehabil. Med. 2015, 58, 208–213. [Google Scholar] [CrossRef]
- Taylor, J.L.; Loo, C.K. Stimulus waveform influences the efficacy of repetitive transcranial magnetic stimulation. J. Affect. Disord. 2007, 97, 271–276. [Google Scholar] [CrossRef]
- Ziemann, U. TMS induced plasticity in human cortex. Rev. Neurosci. 2004, 15, 253–266. [Google Scholar] [CrossRef] [PubMed]
- Berardelli, A.; Inghilleri, M.; Rothwell, J.C.; Romeo, S.; Currà, A.; Gilio, F.; Modugno, N.; Manfredi, M. Facilitation of muscle evoked responses after repetitive cortical stimulation in man. Exp. Brain Res. 1998, 122, 79–84. [Google Scholar] [CrossRef] [PubMed]
- Modugno, N.; Nakamura, Y.; MacKinnon, C.; Filipovic, S.; Bestmann, S.; Berardelli, A.; Rothwell, J. Motor cortex excitability following short trains of repetitive magnetic stimuli. Exp. Brain Res. 2001, 140, 453–459. [Google Scholar] [CrossRef] [PubMed]
- Hoogendam, J.M.; Ramakers, G.M.J.; Di Lazzaro, V. Physiology of repetitive transcranial magnetic stimulation of the human brain. Brain Stimul. 2010, 3, 95–118. [Google Scholar] [CrossRef]
- Lenz, M.; Vlachos, A. Releasing the Cortical Brake by Non-Invasive Electromagnetic Stimulation? rTMS Induces LTD of GABAergic Neurotransmission. Front. Neural Circuits 2016, 10, 96. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.-Z.; Edwards, M.J.; Rounis, E.; Bhatia, K.P.; Rothwell, J.C. Theta Burst Stimulation of the Human Motor Cortex. Neuron 2005, 45, 201–206. [Google Scholar] [CrossRef]
- Larson, J.; Wong, D.; Lynch, G. Patterned stimulation at the theta frequency is optimal for the induction of hippocampal long-term potentiation. Brain Res. 1986, 368, 347–350. [Google Scholar] [CrossRef]
- Suppa, A.; Huang, Y.-Z.; Funke, K.; Ridding, M.C.; Cheeran, B.; Di Lazzaro, V.; Ziemann, U.; Rothwell, J.C. Ten Years of Theta Burst Stimulation in Humans: Established Knowledge, Unknowns and Prospects. Brain Stimul. 2016, 9, 323–335. [Google Scholar] [CrossRef]
- Wischnewski, M.; Schutter, D.J. Efficacy and Time Course of Theta Burst Stimulation in Healthy Humans. Brain Stimul. 2015, 8, 685–692. [Google Scholar] [CrossRef]
- Thickbroom, G.W. Transcranial magnetic stimulation and synaptic plasticity: Experimental framework and human models. Exp. Brain Res. 2007, 180, 583–593. [Google Scholar] [CrossRef]
- Huang, Y.-Z.; Chen, R.-S.; Rothwell, J.C.; Wen, H.-Y. The after-effect of human theta burst stimulation is NMDA receptor dependent. Clin. Neurophysiol. 2007, 118, 1028–1032. [Google Scholar] [CrossRef]
- Alizadehgoradel, J.; Nejati, V.; Movahed, F.S.; Imani, S.; Taherifard, M.; Mosayebi-Samani, M.; Vicario, C.M.; Nitsche, M.A.; Salehinejad, M.A. Repeated stimulation of the dorsolateral-prefrontal cortex improves executive dysfunctions and craving in drug addiction: A randomized, double-blind, parallel-group study. Brain Stimul. 2020, 13, 582–593. [Google Scholar] [CrossRef]
- Marković, V.; Vicario, C.M.; Yavari, F.; Salehinejad, M.A.; Nitsche, M.A. A Systematic Review on the Effect of Transcranial Direct Current and Magnetic Stimulation on Fear Memory and Extinction. Front. Hum. Neurosci. 2021, 15, 655947. [Google Scholar] [CrossRef]
- Martin, D.M.; McClintock, S.M.; Forster, J.J.; Lo, T.Y.; Loo, C.K. Cognitive enhancing effects of rTMS administered to the prefrontal cortex in patients with depression: A systematic review and meta-analysis of individual task effects. Depress. Anxiety 2017, 34, 1029–1039. [Google Scholar] [CrossRef]
- Salehinejad, M.A.; Wischnewski, M.; Nejati, V.; Vicario, C.M.; Nitsche, M.A. Transcranial direct current stimulation in attention-deficit hyperactivity disorder: A meta-analysis of neuropsychological deficits. PLoS ONE 2019, 14, e0215095. [Google Scholar] [CrossRef]
- Salehinejad, M.A.; Nejati, V.; Mosayebi-Samani, M.; Mohammadi, A.; Wischnewski, M.; Kuo, M.-F.; Avenanti, A.; Vicario, C.M.; Nitsche, M.A. Transcranial Direct Current Stimulation in ADHD: A Systematic Review of Efficacy, Safety, and Protocol-induced Electrical Field Modeling Results. Neurosci. Bull. 2020, 36, 1191–1212. [Google Scholar] [CrossRef]
- Vicario, C.; Salehinejad, M.A.; Felmingham, K.; Martino, G.; Nitsche, M. A systematic review on the therapeutic effectiveness of non-invasive brain stimulation for the treatment of anxiety disorders. Neurosci. Biobehav. Rev. 2019, 96, 219–231. [Google Scholar] [CrossRef]
- Vicario, C.M.; Nitsche, M.A.; Hoysted, I.; Yavari, F.; Avenanti, A.; Salehinejad, M.A.; Felmingham, K.L. Anodal transcranial direct current stimulation over the ventromedial prefrontal cortex enhances fear extinction in healthy humans: A single blind sham-controlled study. Brain Stimul. 2020, 13, 489–491. [Google Scholar] [CrossRef]
- Vicario, C.M.; Salehinejad, M.A.; Avenanti, A.; Nitsche, M.A. Transcranial Direct Current Stimulation (tDCS) in Anxiety Disorders. In Non Invasive Brain Stimulation in Psychiatry and Clinical Neurosciences; Dell’Osso, B., Di Lorenzo, G., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 301–317. [Google Scholar] [CrossRef]
- Rivera-Urbina, G.N.; Nitsche, M.A.; Vicario, C.M.; Molero-Chamizo, A. Applications of transcranial direct current stimulation in children and pediatrics. Rev. Neurosci. 2016, 28, 173–184. [Google Scholar] [CrossRef]
- Vicario, C.M.; Nitsche, M.A. Non-invasive brain stimulation for the treatment of brain diseases in childhood and adolescence: State of the art, current limits and future challenges. Front. Syst. Neurosci. 2013, 7, 94. [Google Scholar] [CrossRef]
- Vicario, C.M.; Nitsche, M.A. Transcranial direct current stimulation: A remediation tool for the treatment of childhood congenital dyslexia? Front. Hum. Neurosci. 2013, 7, 139. [Google Scholar] [CrossRef] [PubMed]
- Nelson, J.T.; McKinley, R.A.; Golob, E.J.; Warm, J.S.; Parasuraman, R. Enhancing vigilance in operators with prefrontal cortex transcranial direct current stimulation (tDCS). Neuroimage 2014, 85, 909–917. [Google Scholar] [CrossRef] [PubMed]
- Brunoni, A.R.; Vanderhasselt, M.-A. Working memory improvement with non-invasive brain stimulation of the dorsolateral prefrontal cortex: A systematic review and meta-analysis. Brain Cogn. 2014, 86, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Fregni, F.; Boggio, P.S.; Nitsche, M.; Bermpohl, F.; Antal, A.; Feredoes, E.; Marcolin, M.A.; Rigonatti, S.P.; Silva, M.T.; Paulus, W.; et al. Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory. Exp. Brain Res. 2005, 166, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Bell, S.B.; DeWall, C.N. Does transcranial direct current stimulation to the prefrontal cortex affect social behavior? A meta-analysis. Soc. Cogn. Affect. Neurosci. 2018, 13, 899–906. [Google Scholar] [CrossRef]
- Khaleghi, A.; Jahromi, G.P.; Zarafshan, H.; Mostafavi, S.; Mohammadi, M.R. Effects of transcranial direct current stimulation of prefrontal cortex on risk-taking behavior. Psychiatry Clin. Neurosci. 2020, 74, 455–465. [Google Scholar] [CrossRef]
- Abend, R.; Sar-El, R.; Gonen, T.; Jalon, I.; Vaisvaser, S.; Bar-Haim, Y.; Hendler, T. Modulating Emotional Experience Using Electrical Stimulation of the Medial-Prefrontal Cortex: A Preliminary tDCS-fMRI Study. Neuromodul. Technol. Neural Interface 2019, 22, 884–893. [Google Scholar] [CrossRef]
- Feeser, M.; Prehn, K.; Kazzer, P.; Mungee, A.; Bajbouj, M. Transcranial Direct Current Stimulation Enhances Cognitive Control During Emotion Regulation. Brain Stimul. 2014, 7, 105–112. [Google Scholar] [CrossRef]
- He, Z.; Lin, Y.; Xia, L.; Liu, Z.; Zhang, D.; Elliott, R. Critical role of the right VLPFC in emotional regulation of social exclusion: A tDCS study. Soc. Cogn. Affect. Neurosci. 2018, 13, 357–366. [Google Scholar] [CrossRef]
- He, Z.; Liu, Z.; Zhao, J.; Elliott, R.; Zhang, D. Improving emotion regulation of social exclusion in depression-prone individuals: A tDCS study targeting right VLPFC. Psychol. Med. 2019, 50, 2768–2779. [Google Scholar] [CrossRef]
- Vanderhasselt, M.-A.; De Raedt, R.; Brunoni, A.R.; Campanhã, C.; Baeken, C.; Remue, J.; Boggio, P.S. tDCS over the Left Prefrontal Cortex Enhances Cognitive Control for Positive Affective Stimuli. PLoS ONE 2013, 8, e62219. [Google Scholar] [CrossRef] [PubMed]
- Cerruti, C.; Schlaug, G. Anodal Transcranial Direct Current Stimulation of the Prefrontal Cortex Enhances Complex Verbal Associative Thought. J. Cogn. Neurosci. 2009, 21, 1980–1987. [Google Scholar] [CrossRef] [PubMed]
- Metuki, N.; Sela, T.; Lavidor, M. Enhancing cognitive control components of insight problems solving by anodal tDCS of the left dorsolateral prefrontal cortex. Brain Stimul. 2012, 5, 110–115. [Google Scholar] [CrossRef]
- Loftus, A.M.; Yalcin, O.; Baughman, F.D.; Vanman, E.J.; Hagger, M.S. The impact of transcranial direct current stimulation on inhibitory control in young adults. Brain Behav. 2015, 5, e00332. [Google Scholar] [CrossRef]
- Schroeder, P.A.; Schwippel, T.; Wolz, I.; Svaldi, J. Meta-analysis of the effects of transcranial direct current stimulation on inhibitory control. Brain Stimul. 2020, 13, 1159–1167. [Google Scholar] [CrossRef]
- Sellaro, R.; Nitsche, M.A.; Colzato, L. The stimulated social brain: Effects of transcranial direct current stimulation on social cognition. Ann. N. Y. Acad. Sci. 2016, 1369, 218–239. [Google Scholar] [CrossRef]
- Holland, R.; Crinion, J. Can tDCS enhance treatment of aphasia after stroke? Aphasiology 2012, 26, 1169–1191. [Google Scholar] [CrossRef] [PubMed]
- Monti, A.; Cogiamanian, F.; Marceglia, S.; Ferrucci, R.; Mameli, F.; Mrakic-Sposta, S.; Vergari, M.; Zago, S.; Priori, A. Improved naming after transcranial direct current stimulation in aphasia. J. Neurol. Neurosurg. Psychiatry 2008, 79, 451–453. [Google Scholar] [CrossRef]
- Loo, C.K.; Sachdev, P.; Martin, D.; Pigot, M.; Alonzo, A.; Malhi, G.S.; Lagopoulos, J.; Mitchell, P. A double-blind, sham-controlled trial of transcranial direct current stimulation for the treatment of depression. Int. J. Neuropsychopharmacol. 2010, 13, 61–69. [Google Scholar] [CrossRef]
- Wolkenstein, L.; Plewnia, C. Amelioration of Cognitive Control in Depression by Transcranial Direct Current Stimulation. Biol. Psychiatry 2013, 73, 646–651. [Google Scholar] [CrossRef]
- Mervis, J.E.; Capizzi, R.J.; Boroda, E.; MacDonald, A.W.I. Transcranial Direct Current Stimulation over the Dorsolateral Prefrontal Cortex in Schizophrenia: A Quantitative Review of Cognitive Outcomes. Front. Hum. Neurosci. 2017, 11, 44. [Google Scholar] [CrossRef]
- Weickert, T.; Salimuddin, H.; Lenroot, R.; Bruggemann, J.; Loo, C.; Vercammen, A.; Kindler, J.; Weickert, C. Preliminary findings of four-week, task-based anodal prefrontal cortex transcranial direct current stimulation transferring to other cognitive improvements in schizophrenia. Psychiatry Res. 2019, 280, 112487. [Google Scholar] [CrossRef]
- Bertocci, M.A.; Chase, H.W.; Graur, S.; Stiffler, R.; Edmiston, E.K.; Coffman, B.A.; Greenberg, B.D.; Phillips, M.L. The impact of targeted cathodal transcranial direct current stimulation on reward circuitry and affect in Bipolar Disorder. Mol. Psychiatry 2021, 26, 4137–4145. [Google Scholar] [CrossRef]
- Doruk, D.; Gray, Z.; Bravo, G.L.; Pascual-Leone, A.; Fregni, F. Effects of tDCS on executive function in Parkinson’s disease. Neurosci. Lett. 2014, 582, 27–31. [Google Scholar] [CrossRef] [PubMed]
- Boggio, P.S.; Sultani, N.; Fecteau, S.; Merabet, L.; Mecca, T.; Pascual-Leone, A.; Basaglia, A.; Fregni, F. Prefrontal cortex modulation using transcranial DC stimulation reduces alcohol craving: A double-blind, sham-controlled study. Drug Alcohol Depend. 2008, 92, 55–60. [Google Scholar] [CrossRef]
- Daskalakis, Z.J.; Möller, B.; Christensen, B.K.; Fitzgerald, P.B.; Gunraj, C.; Chen, R. The effects of repetitive transcranial magnetic stimulation on cortical inhibition in healthy human subjects. Exp. Brain Res. 2006, 174, 403–412. [Google Scholar] [CrossRef]
- Knoch, D.; Gianotti, L.R.R.; Pascual-Leone, A.; Treyer, V.; Regard, M.; Hohmann, M.; Brugger, P. Disruption of Right Prefrontal Cortex by Low-Frequency Repetitive Transcranial Magnetic Stimulation Induces Risk-Taking Behavior. J. Neurosci. 2006, 26, 6469–6472. [Google Scholar] [CrossRef]
- Moser, D.J.; Jorge, R.E.; Manes, F.; Paradiso, S.; Benjamin, M.L.; Robinson, R.G. Improved executive functioning following repetitive transcranial magnetic stimulation: Table 1. Neurology 2002, 58, 1288–1290. [Google Scholar] [CrossRef]
- Wagner, M.; Rihs, T.; Mosimann, U.; Fisch, H.; Schlaepfer, T. Repetitive transcranial magnetic stimulation of the dorsolateral prefrontal cortex affects divided attention immediately after cessation of stimulation. J. Psychiatr. Res. 2006, 40, 315–321. [Google Scholar] [CrossRef]
- Zwanzger, P.; Steinberg, C.; Rehbein, M.A.; Bröckelmann, A.-K.; Dobel, C.; Zavorotnyy, M.; Domschke, K.; Junghöfer, M. Inhibitory repetitive transcranial magnetic stimulation (rTMS) of the dorsolateral prefrontal cortex modulates early affective processing. Neuroimage 2014, 101, 193–203. [Google Scholar] [CrossRef]
- Freitas, C.; Fregni, F.; Pascual-Leone, A. Meta-analysis of the effects of repetitive transcranial magnetic stimulation (rTMS) on negative and positive symptoms in schizophrenia. Schizophr. Res. 2009, 108, 11–24. [Google Scholar] [CrossRef]
- Hauer, L.; Scarano, G.I.; Brigo, F.; Golaszewski, S.; Lochner, P.; Trinka, E.; Sellner, J.; Nardone, R. Effects of repetitive transcranial magnetic stimulation on nicotine consumption and craving: A systematic review. Psychiatry Res. 2019, 281, 112562. [Google Scholar] [CrossRef]
- Lefaucheur, J.-P.; Aleman, A.; Baeken, C.; Benninger, D.H.; Brunelin, J.; Di Lazzaro, V.; Filipović, S.R.; Grefkes, C.; Hasan, A.; Hummel, F.C.; et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): An update (2014–2018). Clin. Neurophysiol. 2020, 131, 474–528. [Google Scholar] [CrossRef]
- Ren, C.-L.; Zhang, G.-F.; Xia, N.; Jin, C.-H.; Zhang, X.-H.; Hao, J.-F.; Guan, H.-B.; Tang, H.; Li, J.-A.; Cai, D.-L. Effect of Low-Frequency rTMS on Aphasia in Stroke Patients: A Meta-Analysis of Randomized Controlled Trials. PLoS ONE 2014, 9, e102557. [Google Scholar] [CrossRef]
- Shi, C.; Yu, X.; Cheung, E.F.; Shum, D.H.; Chan, R.C. Revisiting the therapeutic effect of rTMS on negative symptoms in schizophrenia: A meta-analysis. Psychiatry Res. 2014, 215, 505–513. [Google Scholar] [CrossRef]
- Kindler, J.; Schumacher, R.; Cazzoli, D.; Gutbrod, K.; Koenig, M.; Nyffeler, T.; Dierks, T.; Müri, R.M.; Wortman-Jutt, S.; Edwards, D.J.; et al. Theta Burst Stimulation Over the Right Broca’s Homologue Induces Improvement of Naming in Aphasic Patients. Stroke 2012, 43, 2175–2179. [Google Scholar] [CrossRef]
- Lowe, C.J.; Manocchio, F.; Safati, A.B.; Hall, P.A. The effects of theta burst stimulation (TBS) targeting the prefrontal cortex on executive functioning: A systematic review and meta-analysis. Neuropsychologia 2018, 111, 344–359. [Google Scholar] [CrossRef]
- Pabst, A.; Proksch, S.; Médé, B.; Comstock, D.C.; Ross, J.M.; Balasubramaniam, R. A systematic review and meta-analysis of the efficacy of intermittent theta burst stimulation (iTBS) on cognitive enhancement. Neurosci. Biobehav. Rev. 2022, 135, 104587. [Google Scholar] [CrossRef]
- Chung, S.W.; Hill, A.T.; Rogasch, N.C.; Hoy, K.E.; Fitzgerald, P.B. Use of theta-burst stimulation in changing excitability of motor cortex: A systematic review and meta-analysis. Neurosci. Biobehav. Rev. 2016, 63, 43–64. [Google Scholar] [CrossRef]
- Ngetich, R.; Zhou, J.; Zhang, J.; Jin, Z.; Li, L. Assessing the Effects of Continuous Theta Burst Stimulation Over the Dorsolateral Prefrontal Cortex on Human Cognition: A Systematic Review. Front. Integr. Neurosci. 2020, 14, 35. [Google Scholar] [CrossRef]
- Cosmo, C.; Baptista, A.F.; de Araújo, A.; Rosário, R.S.D.; Miranda, J.G.V.; Montoya, P.; De Sena, E. A Randomized, Double-Blind, Sham-Controlled Trial of Transcranial Direct Current Stimulation in Attention-Deficit/Hyperactivity Disorder. PLoS ONE 2015, 10, e0135371. [Google Scholar] [CrossRef]
- Jacoby, N.; Lavidor, M.; Jacoby, N.; Lavidor, M. Null tDCS Effects in a Sustained Attention Task: The Modulating Role of Learning. Front. Psychol. 2018, 9, 476. [Google Scholar] [CrossRef]
- Loo, C.K.; Husain, M.M.; McDonald, W.M.; Aaronson, S.; O’Reardon, J.P.; Alonzo, A.; Weickert, C.S.; Martin, D.M.; McClintock, S.M.; Mohan, A.; et al. International randomized-controlled trial of transcranial Direct Current Stimulation in depression. Brain Stimul. 2018, 11, 125–133. [Google Scholar] [CrossRef]
- Teo, F.; Hoy, K.E.; Daskalakis, Z.J.; Fitzgerald, P.B. Investigating the Role of Current Strength in tDCS Modulation of Working Memory Performance in Healthy Controls. Front. Psychiatry 2011, 2, 45. [Google Scholar] [CrossRef]
- Westwood, S.J.; Romani, C. Null Effects on Working Memory and Verbal Fluency Tasks When Applying Anodal tDCS to the Inferior Frontal Gyrus of Healthy Participants. Front. Neurosci. 2018, 12, 166. [Google Scholar] [CrossRef]
- Fitzgerald, P.B.; Herring, S.; Hoy, K.; McQueen, S.; Segrave, R.; Kulkarni, J.; Daskalakis, Z.J. A study of the effectiveness of bilateral transcranial magnetic stimulation in the treatment of the negative symptoms of schizophrenia. Brain Stimul. 2008, 1, 27–32. [Google Scholar] [CrossRef]
- Smits, F.M.; Schutter, D.J.L.G.; van Honk, J.; Geuze, E. Does non-invasive brain stimulation modulate emotional stress reactivity? Soc. Cogn. Affect. Neurosci. 2020, 15, 23–51. [Google Scholar] [CrossRef]
- Watanabe, T.; Kubo, N.; Chen, X.; Yunoki, K.; Matsumoto, T.; Kuwabara, T.; Sunagawa, T.; Date, S.; Mima, T.; Kirimoto, H. Null Effect of Transcranial Static Magnetic Field Stimulation over the Dorsolateral Prefrontal Cortex on Behavioral Performance in a Go/NoGo Task. Brain Sci. 2021, 11, 483. [Google Scholar] [CrossRef]
- Bond, A.; Lader, M. A method to elicit aggressive feelings and behaviour via provocation. Biol. Psychol. 1986, 22, 69–79. [Google Scholar] [CrossRef]
- Taylor, S.P. Aggressive behavior and physiological arousal as a function of provocation and the tendency to inhibit aggression1. J. Pers. 1967, 35, 297–310. [Google Scholar] [CrossRef]
- Buss, A.H.; Perry, M. The aggression questionnaire. J. Pers. Soc. Psychol. 1992, 63, 452. [Google Scholar] [CrossRef] [PubMed]
- Raine, A.; Dodge, K.; Loeber, R.; Gatzke-Kopp, L.; Lynam, D.; Reynolds, C.; Stouthamer-Loeber, M.; Liu, J. The reactive–proactive aggression questionnaire: Differential correlates of reactive and proactive aggression in adolescent boys. Aggress. Behav. 2006, 32, 159–171. [Google Scholar] [CrossRef] [PubMed]
- DeWall, C.N.; Finkel, E.J.; Lambert, N.M.; Slotter, E.B.; Bodenhausen, G.V.; Pond, R.S.; Renzetti, C.M.; Fincham, F.D. The voodoo doll task: Introducing and validating a novel method for studying aggressive inclinations. Aggress. Behav. 2013, 39, 419–439. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Liberati, A.; Tetzlaff, J. Linee guida per il reporting di revisioni sistematiche e meta-analisi: Il PRISMA Statement. Open Access 2015, 7, e1000114. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Int. J. Surg. 2021, 88, 105906. [Google Scholar] [CrossRef] [PubMed]
- Riva, P.; Lauro, L.J.R.; DeWall, C.N.; Chester, D.S.; Bushman, B.J. Reducing aggressive responses to social exclusion using transcranial direct current stimulation. Soc. Cogn. Affect. Neurosci. 2015, 10, 352–356. [Google Scholar] [CrossRef]
- KWilliams, D.; Cheung, C.K.; Choi, W. Cyberostracism: Effects of being ignored over the Internet. J. Pers. Soc. Psychol. 2000, 79, 748. [Google Scholar] [CrossRef]
- Lieberman, J.D.; Solomon, S.; Greenberg, J.; McGregor, H.A. A hot new way to measure aggression: Hot sauce allocation. Aggress. Behav. 1999, 25, 331–348. [Google Scholar] [CrossRef]
- Riva, P.; Gabbiadini, A.; Andrighetto, L.; Volpato, C.; Lauro, L.J.R.; Bushman, B.J. Neuromodulation can reduce aggressive behavior elicited by violent video games. Cogn. Affect. Behav. Neurosci. 2017, 17, 452–459. [Google Scholar] [CrossRef]
- Chen, C.-Y. Right ventrolateral prefrontal cortex involvement in proactive and reactive aggression. Neuroreport 2018, 29, 1509–1515. [Google Scholar] [CrossRef]
- Gallucci, A.; Riva, P.; Lauro, L.J.R.; Bushman, B.J. Stimulating the ventrolateral prefrontal cortex (VLPFC) modulates frustration-induced aggression: A tDCS experiment. Brain Stimul. 2020, 13, 302–309. [Google Scholar] [CrossRef] [PubMed]
- Warburton, W.A.; Bushman, B.J. The competitive reaction time task: The development and scientific utility of a flexible laboratory aggression paradigm. Aggress. Behav. 2019, 45, 389–396. [Google Scholar] [CrossRef] [PubMed]
- Dambacher, F.; Schuhmann, T.; Lobbestael, J.; Arntz, A.; Brugman, S.; Sack, A. No Effects of Bilateral tDCS over Inferior Frontal Gyrus on Response Inhibition and Aggression. PLoS ONE 2015, 10, e0132170. [Google Scholar] [CrossRef]
- Smits, F.M.; Geuze, E.; Schutter, D.J.L.G.; van Honk, J.; Gladwin, T.E. Effects of tDCS during inhibitory control training on performance and PTSD, aggression and anxiety symptoms: A randomized-controlled trial in a military sample. Psychol. Med. 2021, 52, 3964–3974. [Google Scholar] [CrossRef] [PubMed]
- Spielberger, C.D. Staxi-2: State-Trait Anger Expression Inventory-2: Professional Manual; PAR, Psychological Assessment Resources: Lutz, FL, USA, 1999. [Google Scholar]
- Hortensius, R.; Schutter, D.J.L.G.; Harmon-Jones, E. When anger leads to aggression: Induction of relative left frontal cortical activity with transcranial direct current stimulation increases the anger–aggression relationship. Soc. Cogn. Affect. Neurosci. 2012, 7, 342–347. [Google Scholar] [CrossRef]
- Dambacher, F.; Schuhmann, T.; Lobbestael, J.; Arntz, A.; Brugman, S.; Sack, A.T. Reducing proactive aggression through non-invasive brain stimulation. Soc. Cogn. Affect. Neurosci. 2015, 10, 1303–1309. [Google Scholar] [CrossRef]
- Weidler, C.; Habel, U.; Wallheinke, P.; Wagels, L.; Hofhansel, L.; Ling, S.; Blendy, J.A.; Clemens, B. Consequences of prefrontal tDCS on inhibitory control and reactive aggression. Soc. Cogn. Affect. Neurosci. 2020, 17, 120–130. [Google Scholar] [CrossRef] [PubMed]
- Lisoni, J.; Miotto, P.; Barlati, S.; Calza, S.; Crescini, A.; Deste, G.; Sacchetti, E.; Vita, A. Change in core symptoms of borderline personality disorder by tDCS: A pilot study. Psychiatry Res. 2020, 291, 113261. [Google Scholar] [CrossRef]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorder, 5th ed.; American Psychiatric Association: Washington, DC, USA, 2013; Consultato: 24 febbraio 2023. Disponibile su.; Available online: https://www.psychiatry.org:443/psychiatrists/practice/dsm (accessed on 12 May 2023).
- Gunderson, J.G.; Herpertz, S.C.; Skodol, A.E.; Torgersen, S.; Zanarini, M.C. Borderline personality disorder. Nat. Rev. Dis. Prim. 2018, 4, 18029. [Google Scholar] [CrossRef]
- Choy, O.; Raine, A.; Hamilton, R.H. Stimulation of the Prefrontal Cortex Reduces Intentions to Commit Aggression: A Randomized, Double-Blind, Placebo-Controlled, Stratified, Parallel-Group Trial. J. Neurosci. 2018, 38, 6505–6512. [Google Scholar] [CrossRef]
- Molero-Chamizo, A.; Riquel, R.M.; Moriana, J.A.; Nitsche, M.A.; Rivera-Urbina, G.N. Bilateral Prefrontal Cortex Anodal tDCS Effects on Self-reported Aggressiveness in Imprisoned Violent Offenders. Neuroscience 2019, 397, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Hannon, R.; Hall, D.S.; Nash, H.; Formati, J.; Hopson, T. Judgments Regarding Sexual Aggression as a Function of Sex of Aggressor and Victim. Sex Roles 2000, 43, 311–322. [Google Scholar] [CrossRef]
- Wu, Y.; Xu, W.; Liu, X.; Xu, Q.; Tang, L.; Wu, S. Adjunctive treatment with high frequency repetitive transcranial magnetic stimulation for the behavioral and psychological symptoms of patients with Alzheimer’s disease: A randomized, double-blind, sham-controlled study. Shanghai Arch. Psychiatry 2015, 27, 280. [Google Scholar] [PubMed]
- Reisberg, B.; Auer, S.R.; Monteiro, I.M. Behavioral Pathology in Alzheimer’s Disease (BEHAVE-AD) Rating Scale. Int. Psychogeriatrics 1997, 8, 301–308. [Google Scholar] [CrossRef]
- Perach-Barzilay, N.; Tauber, A.; Klein, E.; Chistyakov, A.; Ne’Eman, R.; Shamay-Tsoory, S.G. Asymmetry in the dorsolateral prefrontal cortex and aggressive behavior: A continuous theta-burst magnetic stimulation study. Soc. Neurosci. 2013, 8, 178–188. [Google Scholar] [CrossRef]
- Cherek, D.R. Manual for Point Subtraction Aggression Paradigm: A Computer Program to Measure Aggressive Responding in Human Subjects under Controlled Laboratory Conditions; The University of Texas Health Science Center: Houston, TX, USA, 1992. [Google Scholar]
- Gilam, G.; Abend, R.; Gurevitch, G.; Erdman, A.; Baker, H.; Ben-Zion, Z.; Hendler, T. Attenuating anger and aggression with neuromodulation of the vmPFC: A simultaneous tDCS-fMRI study. Cortex 2018, 109, 156–170. [Google Scholar] [CrossRef]
- Chester, D.S.; Eisenberger, N.I.; Pond, R.S.; Richman, S.B.; Bushman, B.J.; DeWall, C.N. The interactive effect of social pain and executive functioning on aggression: An fMRI experiment. Soc. Cogn. Affect. Neurosci. 2014, 9, 699–704. [Google Scholar] [CrossRef]
- Ling, S.; Raine, A.; Choy, O.; Hamilton, R. Effects of prefrontal cortical stimulation on aggressive and antisocial behavior: A double-blind, stratified, randomized, sham-controlled, parallel-group trial. J. Exp. Criminol. 2020, 16, 367–387. [Google Scholar] [CrossRef]
- Datta, A.; Bansal, V.; Diaz, J.; Patel, J.; Reato, D.; Bikson, M. Gyri-precise head model of transcranial direct current stimulation: Improved spatial focality using a ring electrode versus conventional rectangular pad. Brain Stimul. 2009, 2, 201–207.e1. [Google Scholar] [CrossRef]
- Villamar, M.F.; Volz, M.S.; Bikson, M.; Datta, A.; DaSilva, A.F.; Fregni, F. Technique and Considerations in the Use of 4x1 Ring High-definition Transcranial Direct Current Stimulation (HD-tDCS). J. Vis. Exp. 2013, 77, e50309. [Google Scholar] [CrossRef]
- Sergiou, C.S.; Santarnecchi, E.; Romanella, S.M.; Wieser, M.J.; Franken, I.H.; Rassin, E.G.; van Dongen, J.D. Transcranial Direct Current Stimulation Targeting the Ventromedial Prefrontal Cortex Reduces Reactive Aggression and Modulates Electrophysiological Responses in a Forensic Population. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2022, 7, 95–107. [Google Scholar] [CrossRef] [PubMed]
- van Dongen, J.D.M.; Brazil, I.A.; van der Veen, F.M.; Franken, I.H.A. Electrophysiological correlates of empathic processing and its relation to psychopathic meanness. Neuropsychology 2018, 32, 996–1006. [Google Scholar] [CrossRef] [PubMed]
- Jasper, H.H. The ten-twenty electrode system of the International Federation. Recomm. Pract. Clin. Neurophysiol. 1983, 10, 371–375. [Google Scholar]
- Bettencourt, B.A.; Miller, N. Gender differences in aggression as a function of provocation: A meta-analysis. Psychol. Bull. 1996, 119, 422–447. [Google Scholar] [CrossRef] [PubMed]
- Björkqvist, K. Gender differences in aggression. Curr. Opin. Psychol. 2018, 19, 39–42. [Google Scholar] [CrossRef] [PubMed]
- Archer, J. Sex Differences in Aggression in Real-World Settings: A Meta-Analytic Review. Rev. Gen. Psychol. 2004, 8, 291–322. [Google Scholar] [CrossRef]
- Eagly, A.H.; Steffen, V.J. Gender and aggressive behavior: A meta-analytic review of the social psychological literature. Psychol. Bull. 1986, 100, 309–330. [Google Scholar] [CrossRef]
- Darwin, C.R. The Descent of Man, and Selection in Relation to Sex, 1st ed.; John Murray: London, UK, 1871; Volume 1. [Google Scholar]
- Adenzato, M.; Brambilla, M.; Manenti, R.; De Lucia, L.; Trojano, L.; Garofalo, S.; Enrici, I.; Cotelli, M. Gender differences in cognitive Theory of Mind revealed by transcranial direct current stimulation on medial prefrontal cortex. Sci. Rep. 2017, 7, srep41219. [Google Scholar] [CrossRef]
- Lapenta, O.M.; Fregni, F.; Oberman, L.M.; Boggio, P.S. Bilateral temporal cortex transcranial direct current stimulation worsens male performance in a multisensory integration task. Neurosci. Lett. 2012, 527, 105–109. [Google Scholar] [CrossRef]
- Carré, J.M.; McCormick, C.M.; Hariri, A.R. The social neuroendocrinology of human aggression. Psychoneuroendocrinology 2011, 36, 935–944. [Google Scholar] [CrossRef]
- Wong, T.Y.; Sid, A.; Wensing, T.; Eickhoff, S.B.; Habel, U.; Gur, R.C.; Nickl-Jockschat, T. Neural networks of aggression: ALE meta-analyses on trait and elicited aggression. Anat. Embryol. 2019, 224, 133–148. [Google Scholar] [CrossRef] [PubMed]
- Blair, R.J.R. The Neurobiology of Impulsive Aggression. J. Child Adolesc. Psychopharmacol. 2016, 26, 4–9. [Google Scholar] [CrossRef] [PubMed]
- Lucifora, C.; Martino, G.; Curcuruto, A.; Salehinejad, M.A.; Vicario, C.M. How Self-Control Predicts Moral Decision Making: An Exploratory Study on Healthy Participants. Int. J. Environ. Res. Public Health 2021, 18, 3840. [Google Scholar] [CrossRef]
- Raine, A.; Yang, Y. Neural foundations to moral reasoning and antisocial behavior. Soc. Cogn. Affect. Neurosci. 2006, 1, 203–213. [Google Scholar] [CrossRef]
- Moll, J.; Zahn, R.; De Oliveira-Souza, R.; Krueger, F.; Grafman, J.H. The neural basis of human moral cognition. Nat. Rev. Neurosci. 2005, 6, 799–809. [Google Scholar] [CrossRef]
- Scheier, M.F.; Buss, A.H.; Buss, D.M. Self-consciousness, self-report of aggressiveness, and aggression. J. Res. Pers. 1978, 12, 133–140. [Google Scholar] [CrossRef]
- Johnson, T.; Fendrich, M. Modeling Sources of Self-report Bias in a Survey of Drug Use Epidemiology. Ann. Epidemiol. 2005, 15, 381–389. [Google Scholar] [CrossRef] [PubMed]
- Vigil-Colet, A.; Ruiz-Pamies, M.; Anguiano-Carrasco, C.; Lorenzo-Seva, U. The impact of social desirability on psychometric measures of aggression. Psicothema 2012, 24, 310–315. [Google Scholar]
- Detry, M.A.; Ma, Y. Analyzing Repeated Measurements Using Mixed Models. JAMA 2016, 315, 407–408. [Google Scholar] [CrossRef]
- Fleiss, J.L. A critique of recent research on the two-treatment crossover design. Control Clin. Trials 1989, 10, 237–243. [Google Scholar] [CrossRef]
- Woods, J.R.; Williams, J.G.; Tavel, M. The Two-Period Crossover Design in Medical Research. Ann. Intern. Med. 1989, 110, 560–566. [Google Scholar] [CrossRef] [PubMed]
- Wellek, S.; Blettner, M. On the Proper Use of the Crossover Design in Clinical Trials. Dtsch. Ärzteblatt Int. 2012, 109, 276–281. [Google Scholar] [CrossRef] [PubMed]
- Fox, M.D.; Buckner, R.L.; Liu, H.; Chakravarty, M.M.; Lozano, A.M.; Pascual-Leone, A. Resting-state networks link invasive and noninvasive brain stimulation across diverse psychiatric and neurological diseases. Proc. Natl. Acad. Sci. USA 2014, 111, E4367–E4375. [Google Scholar] [CrossRef]
- Jones, K.T.; Stephens, J.A.; Alam, M.; Bikson, M.; Berryhill, M.E. Longitudinal Neurostimulation in Older Adults Improves Working Memory. PLoS ONE 2015, 10, e0121904. [Google Scholar] [CrossRef] [PubMed]
- Polanía, R.; Nitsche, M.A.; Ruff, C.C. Studying and modifying brain function with non-invasive brain stimulation. Nat. Neurosci. 2018, 21, 174–187. [Google Scholar] [CrossRef] [PubMed]
- Karabanov, A.N.; Saturnino, G.B.; Thielscher, A.; Siebner, H.R. Can Transcranial Electrical Stimulation Localize Brain Function? Front. Psychol. 2019, 10, 213. [Google Scholar] [CrossRef]
- Di Lazzaro, V.; Pilato, F.; Dileone, M.; Profice, P.; Oliviero, A.; Mazzone, P.; Insola, A.; Ranieri, F.; Meglio, M.; Tonali, P.A.; et al. The physiological basis of the effects of intermittent theta burst stimulation of the human motor cortex. J. Physiol. 2008, 586, 3871–3879. [Google Scholar] [CrossRef]
- Neuling, T.; Ruhnau, P.; Weisz, N.; Herrmann, C.; Demarchi, G. Faith and oscillations recovered: On analyzing EEG/MEG signals during tACS. Neuroimage 2017, 147, 960–963. [Google Scholar] [CrossRef]
- Voss, U.; Holzmann, R.; Hobson, A.; Paulus, W.; Koppehele-Gossel, J.; Klimke, A.; Nitsche, M.A. Induction of self awareness in dreams through frontal low current stimulation of gamma activity. Nat. Neurosci. 2014, 17, 810–812. [Google Scholar] [CrossRef]
- Fries, P. Rhythms for Cognition: Communication through Coherence. Neuron 2015, 88, 220–235. [Google Scholar] [CrossRef]
- Lisman, J.; Buzsaki, G. A Neural Coding Scheme Formed by the Combined Function of Gamma and Theta Oscillations. Schizophr. Bull. 2008, 34, 974–980. [Google Scholar] [CrossRef] [PubMed]
- Turi, Z.; Mittner, M.; Lehr, A.; Bürger, H.; Antal, A.; Paulus, W. θ-γ Cross-Frequency Transcranial Alternating Current Stimulation over the Trough Impairs Cognitive Control. Eneuro 2020, 7, ENEURO.0126-20.2020. [Google Scholar] [CrossRef] [PubMed]
- Antal, A.; Paulus, W. Transcranial alternating current stimulation (tACS). Front. Hum. Neurosci. 2013, 7, 317. [Google Scholar] [CrossRef] [PubMed]
- Hosseinian, T.; Yavari, F.; Biagi, M.C.; Kuo, M.-F.; Ruffini, G.; Nitsche, M.A.; Jamil, A. External induction and stabilization of brain oscillations in the human. Brain Stimul. 2021, 14, 579–587. [Google Scholar] [CrossRef]
- Hosseinian, T.; Yavari, F.; Kuo, M.-F.; Nitsche, M.A.; Jamil, A. Phase synchronized 6 Hz transcranial electric and magnetic stimulation boosts frontal theta activity and enhances working memory. Neuroimage 2021, 245, 118772. [Google Scholar] [CrossRef]
- Thut, G.; Veniero, D.; Romei, V.; Miniussi, C.; Schyns, P.; Gross, J. Rhythmic TMS Causes Local Entrainment of Natural Oscillatory Signatures. Curr. Biol. 2011, 21, 1176–1185. [Google Scholar] [CrossRef] [PubMed]
- Bang, H.; Ni, L.; Davis, C.E. Assessment of blinding in clinical trials. Control Clin. Trials 2004, 25, 143–156. [Google Scholar] [CrossRef]
- James, K.E.; Bloch, D.A.; Lee, K.K.; Kraemer, H.C.; Fuller, R.K. An Index for Assessing Blindness in a Multi-Centre Clinical Trial: Disulfiram for Alcohol Cessation—A Va Cooperative Study. Stat. Med. 1996, 15, 1421–1434. [Google Scholar] [CrossRef]
- Rosenthal, R.; Rosnow, R.L. Artifacts in Behavioral Research: Robert Rosenthal and Ralph L. Rosnow’s Classic Books; Oxford University Press: Oxford, UK, 2009. [Google Scholar]
- Carré, J.M.; McCormick, C.M. Aggressive behavior and change in salivary testosterone concentrations predict willingness to engage in a competitive task. Horm. Behav. 2008, 54, 403–409. [Google Scholar] [CrossRef]
- Klinesmith, J.; McAndrew, F.T.; Kasser, T. Guns, Testosterone, and Aggression. Psychol. Sci. 2006, 17, 568–571. [Google Scholar] [CrossRef]
- Berlim, M.T.; McGirr, A.; dos Santos, N.R.; Tremblay, S.; Martins, R. Efficacy of theta burst stimulation (TBS) for major depression: An exploratory meta-analysis of randomized and sham-controlled trials. J. Psychiatr. Res. 2017, 90, 102–109. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Casula, A.; Milazzo, B.M.; Martino, G.; Sergi, A.; Lucifora, C.; Tomaiuolo, F.; Quartarone, A.; Nitsche, M.A.; Vicario, C.M. Non-Invasive Brain Stimulation for the Modulation of Aggressive Behavior—A Systematic Review of Randomized Sham-Controlled Studies. Life 2023, 13, 1220. https://doi.org/10.3390/life13051220
Casula A, Milazzo BM, Martino G, Sergi A, Lucifora C, Tomaiuolo F, Quartarone A, Nitsche MA, Vicario CM. Non-Invasive Brain Stimulation for the Modulation of Aggressive Behavior—A Systematic Review of Randomized Sham-Controlled Studies. Life. 2023; 13(5):1220. https://doi.org/10.3390/life13051220
Chicago/Turabian StyleCasula, Antony, Bianca M. Milazzo, Gabriella Martino, Alessandro Sergi, Chiara Lucifora, Francesco Tomaiuolo, Angelo Quartarone, Michael A. Nitsche, and Carmelo M. Vicario. 2023. "Non-Invasive Brain Stimulation for the Modulation of Aggressive Behavior—A Systematic Review of Randomized Sham-Controlled Studies" Life 13, no. 5: 1220. https://doi.org/10.3390/life13051220
APA StyleCasula, A., Milazzo, B. M., Martino, G., Sergi, A., Lucifora, C., Tomaiuolo, F., Quartarone, A., Nitsche, M. A., & Vicario, C. M. (2023). Non-Invasive Brain Stimulation for the Modulation of Aggressive Behavior—A Systematic Review of Randomized Sham-Controlled Studies. Life, 13(5), 1220. https://doi.org/10.3390/life13051220