Novel Drugs for the Management of Diabetes Kidney Transplant Patients: A Literature Review
Abstract
:1. Introduction
2. Recommendations for the Management of Diabetes in Renal Transplant Patients
3. New Antidiabetics in Renal Transplant GLP1-Ras
3.1. Evidence and Demonstrated Benefits of GLP1-RA Use in General and Renal Transplant Populations
3.2. Potential Benefits of the Use of GLP1-RA in General and Renal Transplant Populations
4. New Antidiabetics in Renal Transplant SGLT2 Inhibitors
4.1. Evidence and Demonstrated Benefits of SGLT2i Use in General and Renal Transplant Populations
4.2. Potential Benefits of the Use of SGLT2I in General and Renal Transplant Populations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kovesdy, C.P. Epidemiology of chronic kidney disease: An update 2022. Kidney Int. Suppl. 2022, 12, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Subbiah, A.K.; Chhabra, Y.K.; Mahajan, S. Cardiovascular disease in patients with chronic kidney disease: A neglected subgroup. Heart Asia 2016, 8, 56–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collins, A.J.; Foley, R.N.; Gilbertson, D.T.; Chen, S.-C. United States Renal Data System public health surveillance of chronic kidney disease and end-stage renal disease. Kidney Int. Suppl. 2015, 5, 2–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hart, A.; Lentine, K.L.; Smith, J.M.; Miller, J.M.; Skeans, M.A.; Prentice, M.; Robinson, A.; Foutz, J.; Booker, S.E.; Israni, A.K.; et al. OPTN/SRTR 2019 Annual Data Report: Kidney. Am. J. Transplant. 2021, 21 (Suppl. S2), 21–137. [Google Scholar] [CrossRef]
- Chowdhury, T.A.; Wahba, M.; Mallik, R.; Peracha, J.; Patel, D.; De, P.; Fogarty, D.; Frankel, A.; Karalliedde, J.; Mark, P.B.; et al. Association of British Clinical Diabetologists and Renal Association guidelines on the detection and management of diabetes post solid organ transplantation. Diabet Med. 2021, 38, e14523. [Google Scholar] [CrossRef]
- Malik, R.F.; Jia, Y.; Mansour, S.G.; Reese, P.P.; Hall, I.E.; Alasfar, S.; Doshi, M.D.; Akalin, E.; Bromberg, J.S.; Harhay, M.N.; et al. Post-transplant Diabetes Mellitus in Kidney Transplant Recipients: A Multicenter Study. Kidney 2021, 2, 1296–1307. [Google Scholar] [CrossRef]
- Hecking, M.; Sharif, A.; Eller, K.; Jenssen, T. Management of post-transplant diabetes: Immunosuppression, early prevention, and novel antidiabetics. Transpl. Int. 2021, 34, 27–48. [Google Scholar] [CrossRef]
- Sharif, A.; Hecking, M.; de Vries, A.P.J.; Porrini, E.; Hornum, M.; Rasoul-Rockenschaub, S.; Berlakovich, G.; Krebs, M.; Kautzky-Willer, A.; Schernthaner, G.; et al. Proceedings from an international consensus meeting on posttransplantation diabetes mellitus: Recommendations and future directions. Am. J. Transplant. 2014, 14, 1992–2000. [Google Scholar] [CrossRef] [Green Version]
- Davidson, J.; Wilkinson, A.; Dantal, J.; Dotta, F.; Haller, H.; Hernández, D.; Kasiske, B.L.; Kiberd, B.; Krentz, A.; Legendre, C.; et al. New-onset diabetes after transplantation: 2003 International consensus guidelines. Proceedings of an international expert panel meeting. Barcelona, Spain, 19 February 2003. Transplantation 2003, 75 (Suppl. 10), SS3–SS24. [Google Scholar]
- Cheng, F.; Li, Q.; Wang, J.; Wang, Z.; Zeng, F.; Zhang, Y. Analysis of risk factors and establishment of a risk prediction model for post-transplant diabetes mellitus after kidney transplantation. Saudi Pharm. J. 2022, 30, 1088–1094. [Google Scholar] [CrossRef]
- Sharif, A.; Baboolal, K. Risk factors for new-onset diabetes after kidney transplantation. Nat. Rev. Nephrol. 2010, 6, 415–423. [Google Scholar] [CrossRef] [PubMed]
- Porrini, E.; Díaz, J.M.; Moreso, F.; Lauzurrica, R.; Ibernon, M.; Torres, I.S.; Ruiz, R.B.; Rodríguez Rodríguez, A.E.; Mallén, P.D.; Bayés-Genís, B.; et al. Prediabetes is a risk factor for cardiovascular disease following renal transplantation. Kidney Int. 2019, 96, 1374–1380. [Google Scholar] [CrossRef] [PubMed]
- Kasiske, B.L.; Snyder, J.J.; Gilbertson, D.; Matas, A.J. Diabetes mellitus after kidney transplantation in the United States. Am. J. Transplant. 2003, 3, 178–185. [Google Scholar] [CrossRef] [PubMed]
- Shivaswamy, V.; Bennett, R.G.; Clure, C.C.; Ottemann, B.; Davis, J.S.; Larsen, J.L.; Hamel, F.G. Tacrolimus and sirolimus have distinct effects on insulin signaling in male and female rats. Transl. Res. J. Lab. Clin. Med. 2014, 163, 221–231. [Google Scholar] [CrossRef]
- Krautz, C.; Wolk, S.; Steffen, A.; Knoch, K.-P.; Ceglarek, U.; Thiery, J.; Bornstein, S.; Saeger, H.-D.; Solimena, M.; Kersting, S. Effects of immunosuppression on alpha and beta cell renewal in transplanted mouse islets. Diabetologia 2013, 56, 1596–1604. [Google Scholar] [CrossRef]
- Dienemann, T.; Fujii, N.; Li, Y.; Govani, S.; Kosaraju, N.; Bloom, R.D.; Feldman, H.I. Long-term patient survival and kidney allograft survival in post-transplant diabetes mellitus: A single-center retrospective study. Transpl. Int. 2016, 29, 1017–1028. [Google Scholar] [CrossRef] [Green Version]
- Cosio, F.G.; Pesavento, T.E.; Kim, S.; Osei, K.; Henry, M.; Ferguson, R.M. Patient survival after renal transplantation: IV. Impact of post-transplant diabetes. Kidney Int. 2002, 62, 1440–1446. [Google Scholar] [CrossRef]
- Nagib, A.M.; Elsayed Matter, Y.; Gheith, O.A.; Refaie, A.F.; Othman, N.F.; Al-Otaibi, T. Diabetic Nephropathy Following Posttransplant Diabetes Mellitus. Exp. Clin. Transplant. 2019, 17, 138–146. [Google Scholar] [CrossRef]
- Lo, C.; Toyama, T.; Oshima, M.; Jun, M.; Chin, K.L.; Hawley, C.M.; Zoungas, S. Glucose-lowering agents for treating pre-existing and new-onset diabetes in kidney transplant recipients. Cochrane Database Syst. Rev. 2020, 8, CD009966. [Google Scholar] [CrossRef]
- Montero, N.; Oliveras, L.; Soler, M.J.; Cruzado, J.M. Management of post-transplant diabetes mellitus: An opportunity for novel therapeutics. Clin. Kidney J. 2022, 15, 5–13. [Google Scholar] [CrossRef]
- Improving Global Outcomes (KDIGO) Diabetes Work Group. KDIGO 2020 Clinical Practice Guideline for Diabetes Management in Chronic Kidney Disease. Kidney Int. 2020, 98, S1–S115. [Google Scholar] [CrossRef] [PubMed]
- Improving Global Outcomes (KDIGO) Diabetes Work Group. KDIGO 2022 Clinical Practice Guideline for Diabetes Management in Chronic Kidney Disease. Kidney Int. 2022, 102, S1–S127. [Google Scholar] [CrossRef] [PubMed]
- Klangjareonchai, T.; Eguchi, N.; Tantisattamo, E.; Ferrey, A.J.; Reddy, U.; Dafoe, D.C.; Ichii, H. Current Pharmacological Intervention and Medical Management for Diabetic Kidney Transplant Recipients. Pharmaceutics 2021, 13, 413. [Google Scholar] [CrossRef] [PubMed]
- Ong, S.C.; Rhee, C.M. Novel management of diabetes in kidney transplantation. Curr. Opin. Nephrol. Hypertens 2021, 30, 5–13. [Google Scholar] [CrossRef]
- Wilcox, J.; Waite, C.; Tomlinson, L.; Driscoll, J.; Karim, A.; Day, E.; Sharif, A. Comparing glycaemic benefits of Active Versus passive lifestyle Intervention in kidney Allograft Recipients (CAVIAR): Study protocol for a randomised controlled trial. Trials 2016, 17, 417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwaiger, E.; Krenn, S.; Kurnikowski, A.; Bergfeld, L.; Pérez-Sáez, M.J.; Frey, A.; Topitz, D.; Bergmann, M.; Hödlmoser, S.; Bachmann, F.; et al. Early Postoperative Basal Insulin Therapy versus Standard of Care for the Prevention of Diabetes Mellitus after Kidney Transplantation: A Multicenter Randomized Trial. J. Am. Soc. Nephrol. 2021, 32, 2083–2098. [Google Scholar] [CrossRef]
- Sridhar, V.S.; Ambinathan, J.P.N.; Gillard, P.; Mathieu, C.; Cherney, D.Z.I.; Lytvyn, Y.; Singh, S.K. Cardiometabolic and Kidney Protection in Kidney Transplant Recipients with Diabetes: Mechanisms, Clinical Applications, and Summary of Clinical Trials. Transplantation 2022, 106, 734–748. [Google Scholar] [CrossRef]
- Lea-Henry, T.N.; Baird-Gunning, J.; Petzel, E.; Roberts, D.M. Medication management on sick days. Aust. Prescr. 2017, 40, 168–173. [Google Scholar] [CrossRef] [Green Version]
- Sharif, A. Treatment options for post-transplantation diabetes mellitus. Curr. Diabetes Rev. 2015, 11, 155–162. [Google Scholar] [CrossRef]
- Conte, C.; Secchi, A. Post-transplantation diabetes in kidney transplant recipients: An update on management and prevention. Acta Diabetol. 2018, 55, 763–779. [Google Scholar] [CrossRef]
- Anderson, S.; Cotiguala, L.; Tischer, S.; Park, J.M.; McMurry, K. Review of Newer Antidiabetic Agents for Diabetes Management in Kidney Transplant Recipients. Ann. Pharmacother. 2021, 55, 496–508. [Google Scholar] [CrossRef] [PubMed]
- Wajchenberg, B.L. beta-cell failure in diabetes and preservation by clinical treatment. Endocr. Rev. 2007, 28, 187–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodriguez Cubillo, B.; Rodriguez, B.; Calvo, M.; de la Manzanara, V.; Bautista, J.; Perez-Flores, I.; Calvo, N.; Moreno, A.; Shabaka, A.; Delgado, J.; et al. Risk Factors of Recurrence of Diabetic Nephropathy in Renal Transplants. Transplant. Proc. 2016, 48, 2956–2958. [Google Scholar] [CrossRef]
- Coemans, M.; Van Loon, E.; Lerut, E.; Gillard, P.; Sprangers, B.; Senev, A.; Emonds, M.-P.; Van Keer, J.; Callemeyn, J.; Daniëls, L.; et al. Occurrence of Diabetic Nephropathy After Renal Transplantation Despite Intensive Glycemic Control: An Observational Cohort Study. Diabetes Care 2019, 42, 625–634. [Google Scholar] [CrossRef] [Green Version]
- Garber, A.J. Incretin-based therapies in the management of type 2 diabetes: Rationale and reality in a managed care setting. Am. J. Manag. Care 2010, 16 (Suppl. S7), S187–S194. [Google Scholar] [PubMed]
- Mannucci, E.; Gallo, M.; Giaccari, A.; Candido, R.; Pintaudi, B.; Targher, G.; Monami, M. Effects of glucose-lowering agents on cardiovascular and renal outcomes in subjects with type 2 diabetes: An updated meta-analysis of randomized controlled trials with external adjudication of events. Diabetes Obes. Metab. 2023, 25, 444–453. [Google Scholar] [CrossRef]
- Ali, M.U.; Mancini, G.B.J.; Fitzpatrick-Lewis, D.; Lewis, R.; Jovkovic, M.; Zieroth, S.; O’Meara, E.; Connelly, K.A.; Sherifali, D. The Effectiveness of Sodium-Glucose Cotransporter 2 Inhibitors and Glucagon-like Peptide-1 Receptor Agonists on Cardiorenal Outcomes: Systematic Review and Meta-analysis. Can J. Cardiol. 2022, 38, 1201–1210. [Google Scholar] [CrossRef]
- Tuttle, K.R.; Lakshmanan, M.C.; Rayner, B.; Busch, R.S.; Zimmermann, A.G.; Woodward, D.B.; Botros, F.T. Dulaglutide versus insulin glargine in patients with type 2 diabetes and moderate-to-severe chronic kidney disease (AWARD-7): A multicentre, open-label, randomised trial. Lancet Diabetes Endocrinol. 2018, 6, 605–617. [Google Scholar] [CrossRef]
- Kristensen, S.L.; Rørth, R.; Jhund, P.S.; Docherty, K.F.; Sattar, N.; Preiss, D.; Køber, L.; Petrie, M.C.; McMurray, J.J.V. Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: A systematic review and meta-analysis of cardiovascular outcome trials. Lancet Diabetes Endocrinol. 2019, 7, 776–785. [Google Scholar] [CrossRef] [PubMed]
- Pinelli, N.R.; Patel, A.; Salinitri, F.D. Coadministration of liraglutide with tacrolimus in kidney transplant recipients: A case series. Diabetes Care 2013, 36, e171–e172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cariou, B.; Bernard, C.; Cantarovich, D. Liraglutide in whole-pancreas transplant patients with impaired glucose homoeostasis: A case series. Diabetes Metab. 2015, 41, 252–257. [Google Scholar] [CrossRef] [PubMed]
- Halden, T.A.; Egeland, E.J.; Åsberg, A.; Hartmann, A.; Midtvedt, K.; Khiabani, H.Z.; Holst, J.J.; Knop, F.K.; Hornum, M.; Feldt-Rasmussen, B.; et al. GLP-1 Restores Altered Insulin and Glucagon Secretion in Posttransplantation Diabetes. Diabetes Care. 2016, 39, 617–624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liou, J.-H.; Liu, Y.-M.; Chen, C.-H. Management of Diabetes Mellitus with Glucagonlike Peptide-1 Agonist Liraglutide in Renal Transplant Recipients: A Retrospective Study. Transplant. Proc. 2018, 50, 2502–2505. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Taufeeq, M.; Pesavento, T.E.; Washburn, K.; Walsh, D.; Meng, S. Comparison of the glucagon-like-peptide-1 receptor agonists dulaglutide and liraglutide for the management of diabetes in solid organ transplant: A retrospective study. Diabetes Obes. Metab. 2020, 22, 879–884. [Google Scholar] [CrossRef] [PubMed]
- Thangavelu, T.; Lyden, E.; Shivaswamy, V. A Retrospective Study of Glucagon-Like Peptide 1 Receptor Agonists for the Management of Diabetes After Transplantation. Diabetes Ther. Res. Treat. Educ. Diabetes Relat. Disord. 2020, 11, 987–994. [Google Scholar] [CrossRef] [Green Version]
- Kukla, A.; Hill, J.; Merzkani, M.; Bentall, A.; Lorenz, E.C.; Park, W.D.; D’Costa, M.; Kudva, Y.C.; Stegall, M.D.; Shah, P. The Use of GLP1R Agonists for the Treatment of Type 2 Diabetes in Kidney Transplant Recipients. Transplant. Direct. 2020, 6, e524. [Google Scholar] [CrossRef]
- Yugueros González, A.; Kanter, J.; Sancho, A.; Gavela, E.; Solá, E.; Ávila, A.; Pallardó, L.M. Institutional Experience with New Antidiabetic Drugs in Kidney Transplant. Transplant. Proc. 2021, 53, 2678–2680. [Google Scholar] [CrossRef]
- Kim, H.S.; Lee, J.; Jung, C.H.; Park, J.-Y.; Lee, W.J. Dulaglutide as an Effective Replacement for Prandial Insulin in Kidney Transplant Recipients with Type 2 Diabetes Mellitus: A Retrospective Review. Diabetes Metab. J. 2021, 45, 948–953. [Google Scholar] [CrossRef]
- Vigara, L.A.; Villanego, F.; Orellana, C.; Naranjo, J.; Torrado, J.; Garcia, T.; Mazuecos, A. Effectiveness and safety of glucagon-like peptide-1 receptor agonist in a cohort of kidney transplant recipients. Clin. Transplant. 2022, 36, e14633. [Google Scholar] [CrossRef]
- Sweiss, H.; Hall, R.; Zeilmann, D.; Escamilla, J.; Bhayana, S.; Patel, R.; Long, C. Single-center Evaluation of Safety & Efficacy of Glucagon-Like Peptide-1 Receptor Agonists in Solid Organ Transplantation. Prog. Transplant. 2022, 32, 357–362. [Google Scholar]
- Vanhove, T.; Remijsen, Q.; Kuypers, D.; Gillard, P. Drug-drug interactions between immunosuppressants and antidiabetic drugs in the treatment of post-transplant diabetes mellitus. Transplant. Rev. 2017, 31, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Blonde, L.; Umpierrez, G.E.; Reddy, S.S.; McGill, J.B.; Berga, S.L.; Bush, M.; Chandrasekaran, S.; DeFronzo, R.A.; Einhorn, D.; Galindo, R.J.; et al. American Association of Clinical Endocrinology Clinical Practice Guideline: Developing a Diabetes Mellitus Comprehensive Care Plan-2022 Update. Endocr. Pract. 2022, 28, 923–1049. [Google Scholar] [CrossRef] [PubMed]
- Bendotti, G.; Montefusco, L.; Lunati, M.E.; Usuelli, V.; Pastore, I.; Lazzaroni, E.; Assi, E.; Seelam, A.J.; El Essawy, B.; Jang, J.; et al. The anti-inflammatory and immunological properties of GLP-1 Receptor Agonists. Pharmacol. Res. 2022, 182, 106320. [Google Scholar] [CrossRef] [PubMed]
- Scheen, A.J.; Esser, N.; Paquot, N. Antidiabetic agents: Potential anti-inflammatory activity beyond glucose control. Diabetes Metab. 2015, 41, 183–194. [Google Scholar] [CrossRef]
- Dai, C.; Walker, J.T.; Shostak, A.; Padgett, A.; Spears, E.; Wisniewski, S.; Poffenberger, G.; Aramandla, R.; Dean, E.D.; Prasad, N.; et al. Tacrolimus- and sirolimus-induced human β cell dysfunction is reversible and preventable. JCI Insight. 2020, 5, 130770. [Google Scholar] [CrossRef]
- Muskiet, M.H.A.; Tonneijck, L.; Smits, M.M.; van Baar, M.J.B.; Kramer, M.H.H.; Hoorn, E.J.; Joles, J.A.; van Raalte, D.H. GLP-1 and the kidney: From physiology to pharmacology and outcomes in diabetes. Nat. Rev. Nephrol. 2017, 13, 605–628. [Google Scholar] [CrossRef]
- Thomas, M.C. The potential and pitfalls of GLP-1 receptor agonists for renal protection in type 2 diabetes. Diabetes Metab. 2017, 43 (Suppl. S1), 22S20–22S27. [Google Scholar] [CrossRef]
- Sloan, L.A. Review of glucagon-like peptide-1 receptor agonists for the treatment of type 2 diabetes mellitus in patients with chronic kidney disease and their renal effects. J. Diabetes 2019, 11, 938–948. [Google Scholar] [CrossRef] [Green Version]
- Yaribeygi, H.; Maleki, M.; Sathyapalan, T.; Jamialahmadi, T.; Sahebkar, A. Anti-inflammatory potentials of incretin-based therapies used in the management of diabetes. Life Sci. 2020, 241, 117152. [Google Scholar] [CrossRef]
- Dai, C.; Hang, Y.; Shostak, A.; Poffenberger, G.; Hart, N.; Prasad, N.; Phillips, N.; Levy, S.E.; Greiner, D.L.; Shultz, L.D.; et al. Age-dependent human β cell proliferation induced by glucagon-like peptide 1 and calcineurin signaling. J. Clin. Investig. 2017, 127, 3835–3844. [Google Scholar] [CrossRef]
- Rodriguez-Rodriguez, A.E.; Porrini, E.; Torres, A. Beta-Cell Dysfunction Induced by Tacrolimus: A Way to Explain Type 2 Diabetes? Int. J. Mol. Sci. 2021, 22, 10311. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.W.; Jin, L.; Jin, J.; Yang, C.W. Effect of Exendin-4 on Autophagy Clearance in Beta Cell of Rats with Tacrolimus-induced Diabetes Mellitus. Sci. Rep. 2016, 6, 29921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zinman, B.; Wanner, C.; Lachin, J.M.; Fitchett, D.; Bluhmki, E.; Hantel, S.; Mattheus, M.; Devins, T.; Johansen, O.E.; Woerle, H.J.; et al. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N. Engl. J. Med. 2015, 373, 2117–2128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wanner, C.; Inzucchi, S.E.; Lachin, J.M.; Fitchett, D.; von Eynatten, M.; Mattheus, M.; Johansen, O.E.; Woerle, H.J.; Broedl, U.C.; Zinman, B. Empagliflozin and Progression of Kidney Disease in Type 2 Diabetes. N. Engl. J. Med. 2016, 375, 323–334. [Google Scholar] [CrossRef] [PubMed]
- Neal, B.; Perkovic, V.; Matthews, D.R. Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. N. Engl. J. Med. 2017, 377, 2099. [Google Scholar] [CrossRef]
- Wiviott, S.D.; Raz, I.; Bonaca, M.P.; Mosenzon, O.; Kato, E.T.; Cahn, A.; Silverman, M.G.; Zelniker, T.A.; Kuder, J.F.; Murphy, S.A.; et al. Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes. N. Engl. J. Med. 2019, 380, 347–357. [Google Scholar] [CrossRef]
- ElSayed, N.; Aleppo, G.; Aroda, V.; Bannuru, R.; Brown, F.; Bruemmer, D.; Collins, B.; Hilliard, M.; Isaacs, D.; Johnson, E.; et al. 9. Pharmacologic Approaches to Glycemic Treatment: Standards of Medical Care in Diabetes-2022. Diabetes Care 2022, 45 (Suppl. S1), S125–S143. [Google Scholar]
- DeFronzo, R.A.; Norton, L.; Abdul-Ghani, M. Renal, metabolic and cardiovascular considerations of SGLT2 inhibition. Nat. Rev. Nephrol. 2017, 13, 11–26. [Google Scholar] [CrossRef]
- DeFronzo, R.A.; Reeves, W.B.; Awad, A.S. Pathophysiology of diabetic kidney disease: Impact of SGLT2 inhibitors. Nat. Rev. Nephrol. 2021, 17, 319–334. [Google Scholar] [CrossRef]
- Perkovic, V.; Jardine, M.J.; Neal, B.; Bompoint, S.; Heerspink, H.J.L.; Charytan, D.M.; Edwards, R.; Agarwal, R.; Bakris, G.; Bull, S.; et al. Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy. N. Engl. J. Med. 2019, 380, 2295–2306. [Google Scholar] [CrossRef] [Green Version]
- Herrington, W.G.; Staplin, N.; Wanner, C.; Green, J.B.; Hauske, S.J.; Emberson, J.R.; Preiss, D.; Judge, P.; Mayne, K.J.; Ng, S.Y.A.; et al. Empagliflozin in Patients with Chronic Kidney Disease. N. Engl. J. Med. 2023, 388, 117–127. [Google Scholar]
- Tesař, V. SGLT2 inhibitors in non-diabetic kidney disease. Adv. Clin. Exp. Med. 2022, 31, 105–107. [Google Scholar] [CrossRef] [PubMed]
- Heerspink, H.J.L.; Kosiborod, M.; Inzucchi, S.E.; Cherney, D.Z.I. Renoprotective effects of sodium-glucose cotransporter-2 inhibitors. Kidney Int. 2018, 94, 26–39. [Google Scholar] [CrossRef] [PubMed]
- De Nicola, L.; Cozzolino, M.; Genovesi, S.; Gesualdo, L.; Grandaliano, G.; Pontremoli, R. Can SGLT2 inhibitors answer unmet therapeutic needs in chronic kidney disease? J. Nephrol. 2022, 35, 1605–1618. [Google Scholar] [CrossRef] [PubMed]
- ElSayed, N.A.; Aleppo, G.; Aroda, V.R.; Bannuru, R.R.; Brown, F.M.; Bruemmer, D.; Collins, B.S.; Hilliard, M.E.; Isaacs, D.; Johnson, E.L.; et al. 9. Pharmacologic Approaches to Glycemic Treatment: Standards of Care in Diabetes-2023. Diabetes Care 2023, 46 (Suppl. S1), S140–S157. [Google Scholar] [CrossRef]
- Hecking, M.; Jenssen, T. Considerations for SGLT2 inhibitor use in post-transplantation diabetes. Nat. Rev. Nephrol. 2019, 15, 525–526. [Google Scholar] [CrossRef]
- Oikonomaki, D.; Dounousi, E.; Duni, A.; Roumeliotis, S.; Liakopoulos, V. Incretin based therapies and SGLT-2 inhibitors in kidney transplant recipients with diabetes: A systematic review and meta-analysis. Diabetes Res. Clin. Pract. 2021, 172, 108604. [Google Scholar] [CrossRef]
- Nissaisorakarn, P.; Pavlakis, M.; Aala, A. Novel Glucose-Lowering Therapies in the Setting of Solid Organ Transplantation. Adv. Chronic. Kidney Dis. 2021, 28, 361–370. [Google Scholar] [CrossRef]
- Kanbay, M.; Demiray, A.; Afsar, B.; Karakus, K.E.; Ortiz, A.; Hornum, M.; Covic, A.; Sarafidis, P.; Rossing, P. Sodium-glucose cotransporter 2 inhibitors for diabetes mellitus control after kidney transplantation: Review of the current evidence. Nephrology 2021, 26, 1007–1017. [Google Scholar] [CrossRef]
- Chewcharat, A.; Prasitlumkum, N.; Thongprayoon, C.; Bathini, T.; Medaura, J.; Vallabhajosyula, S.; Cheungpasitporn, W. Efficacy and Safety of SGLT-2 Inhibitors for Treatment of Diabetes Mellitus among Kidney Transplant Patients: A Systematic Review and Meta-Analysis. Med. Sci. 2020, 8, 47. [Google Scholar] [CrossRef]
- Schwarzenbach, M.; Bernhard, F.E.; Czerlau, C.; Sidler, D. Chances and risks of sodium-glucose cotransporter 2 inhibitors in solid organ transplantation: A review of literatures. World J. Transplant. 2021, 11, 254–262. [Google Scholar] [CrossRef]
- Patel, N.; Hindi, J.; Farouk, S.S. Sodium-Glucose Cotransporter 2 Inhibitors and Kidney Transplantation: What Are We Waiting For? Kidney 2021, 2, 1174–1178. [Google Scholar] [CrossRef]
- Rajasekeran, H.; Kim, S.J.; Cardella, C.J.; Schiff, J.; Cattral, M.; Cherney, D.Z.I.; Singh, S.K.S. Use of Canagliflozin in Kidney Transplant Recipients for the Treatment of Type 2 Diabetes: A Case Series. Diabetes Care 2017, 40, e75–e76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shah, M.; Virani, Z.; Rajput, P.; Shah, B. Efficacy and Safety of Canagliflozin in Kidney Transplant Patients. Indian J. Nephrol. 2019, 29, 278–281. [Google Scholar] [CrossRef] [PubMed]
- Schwaiger, E.; Burghart, L.; Signorini, L.; Ristl, R.; Kopecky, C.; Tura, A.; Pacini, G.; Wrba, T.; Antlanger, M.; Schmaldienst, S.; et al. Empagliflozin in posttransplantation diabetes mellitus: A prospective, interventional pilot study on glucose metabolism, fluid volume, and patient safety. Am. J. Transplant. 2019, 19, 907–919. [Google Scholar] [CrossRef] [Green Version]
- Halden, T.A.S.; Kvitne, K.E.; Midtvedt, K.; Rajakumar, L.; Robertsen, I.; Brox, J.; Bollerslev, J.; Hartmann, A.; Åsberg, A.; Jenssen, T. Efficacy and Safety of Empagliflozin in Renal Transplant Recipients with Posttransplant Diabetes Mellitus. Diabetes Care 2019, 42, 1067–1074. [Google Scholar] [CrossRef] [PubMed]
- Mahling, M.; Schork, A.; Nadalin, S.; Fritsche, A.; Heyne, N.; Guthoff, M. Sodium-Glucose Cotransporter 2 (SGLT2) Inhibition in Kidney Transplant Recipients with Diabetes Mellitus. Kidney Blood Press. Res. 2019, 44, 984–992. [Google Scholar] [CrossRef]
- Attallah, N.; Yassine, L. Use of Empagliflozin in Recipients of Kidney Transplant: A Report of 8 Cases. Transplant. Proc. 2019, 51, 3275–3280. [Google Scholar] [CrossRef] [PubMed]
- Kong, J.; Joon, J.; Chul, Y.; Eun, W.; Hyuk, K.; Hyun, S.S. SP770 Sodium/glucose cotransporter 2 inhibotor for the treatment of diabetes in kidney transplant patients. Nephrol. Dial. Transplant. 2019, 34 (Suppl. S1), gfz103-SP770. [Google Scholar] [CrossRef]
- AlKindi, F.; Al-Omary, H.L.; Hussain, Q.; Al Hakim, M.; Chaaban, A.; Boobes, Y. Outcomes of SGLT2 Inhibitors Use in Diabetic Renal Transplant Patients. Transplant. Proc. 2020, 52, 175–178. [Google Scholar] [CrossRef]
- Song, C.C.; Brown, A.; Winstead, R.; Yakubu, I.; Demehin, M.; Kumar, D.; Gupta, G. Early initiation of sodium-glucose linked transporter inhibitors (SGLT-2i) and associated metabolic and electrolyte outcomes in diabetic kidney transplant recipients. Endocrinol. Diabetes Metab. 2021, 4, e00185. [Google Scholar] [CrossRef] [PubMed]
- Lemke, A.; Brokmeier, H.M.; Leung, S.B.; Mara, K.C.; Mour, G.K.; Wadei, H.M.; Hill, J.M.; Stegall, M.; Kudva, Y.C.; Shah, P.; et al. Sodium-glucose cotransporter 2 inhibitors for treatment of diabetes mellitus after kidney transplantation. Clin. Transplant. 2022, 36, e14718. [Google Scholar] [CrossRef] [PubMed]
- Fructuoso, A.I.S.; Raba, A.B.; Deras, E.B.; Sánchez, L.V.; Cecilio, R.V.S.; Esteve, A.F.; Vega, L.C.; Martínez, E.G.; Garcia, M.G.; Coronado, P.S.; et al. Sodium-glucose cotransporter-2 inhibitor therapy in kidney transplant patients with type 2 or post-transplant diabetes: An observational multicenter study. Clin. Kidney J. 2023. ahead of print. [Google Scholar]
- Lim, J.-H.; Kwon, S.; Jeon, Y.; Kim, Y.H.; Kwon, H.; Kim, Y.S.; Lee, H.; Kim, Y.-L.; Kim, C.-D.; Park, S.-H.; et al. The Efficacy and Safety of SGLT2 Inhibitor in Diabetic Kidney Transplant Recipients. Transplantation 2022, 106, e404–e412. [Google Scholar] [CrossRef] [PubMed]
- Topitz, D.; Schwaiger, E.; Frommlet, F.; Werzowa, J.; Hecking, M. Cardiovascular events associate with diabetes status rather than with early basal insulin treatment for the prevention of post-transplantation diabetes mellitus. Nephrol. Dial. Transplant. 2020, 35, 544–546. [Google Scholar] [CrossRef] [Green Version]
- Vallon, V.; Thomson, S.C. The tubular hypothesis of nephron filtration and diabetic kidney disease. Nat. Rev. Nephrol. 2020, 16, 317–336. [Google Scholar] [CrossRef]
- Thomson, S.C.; Vallon, V. Renal Effects of Sodium-Glucose Co-Transporter Inhibitors. Am. J. Cardiol. 2019, 124 (Suppl. S1), S28–S35. [Google Scholar] [CrossRef] [Green Version]
- Mimura, I.; Nangaku, M. The suffocating kidney: Tubulointerstitial hypoxia in end-stage renal disease. Nat. Rev. Nephrol. 2010, 6, 667–678. [Google Scholar] [CrossRef]
- Inoue, T.; Kozawa, E.; Okada, H.; Inukai, K.; Watanabe, S.; Kikuta, T.; Watanabe, Y.; Takenaka, T.; Katayama, S.; Tanaka, J.; et al. Noninvasive evaluation of kidney hypoxia and fibrosis using magnetic resonance imaging. J. Am. Soc. Nephrol. 2011, 22, 1429–1434. [Google Scholar] [CrossRef] [Green Version]
- Llorens-Cebrià, C.; Molina-Van den Bosch, M.; Vergara, A.; Jacobs-Cachá, C.; Soler, M.J. Antioxidant Roles of SGLT2 Inhibitors in the Kidney. Biomolecules 2022, 12, 143. [Google Scholar] [CrossRef]
- Zhan, M.; Brooks, C.; Liu, F.; Sun, L.; Dong, Z. Mitochondrial dynamics: Regulatory mechanisms and emerging role in renal pathophysiology. Kidney Int. 2013, 83, 568–581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vallon, V. The proximal tubule in the pathophysiology of the diabetic kidney. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2011, 300, R1009–R1022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mulder, S.; Hammarstedt, A.; Nagaraj, S.B.; Nair, V.; Ju, W.; Hedberg, J.; Greasley, P.J.; Eriksson, J.W.; Oscarsson, J.; Heerspink, H.J.L. A metabolomics-based molecular pathway analysis of how the sodium-glucose co-transporter-2 inhibitor dapagliflozin may slow kidney function decline in patients with diabetes. Diabetes Obes. Metab. 2020, 22, 1157–1166. [Google Scholar] [CrossRef] [PubMed]
- Mudaliar, S.; Alloju, S.; Henry, R.R. Can a Shift in Fuel Energetics Explain the Beneficial Cardiorenal Outcomes in the EMPA-REG OUTCOME Study? A Unifying Hypothesis. Diabetes Care 2016, 39, 1115–1122. [Google Scholar] [CrossRef] [Green Version]
- Takagi, S.; Li, J.; Takagaki, Y.; Kitada, M.; Nitta, K.; Takasu, T.; Kanasaki, K.; Koya, D. Ipragliflozin improves mitochondrial abnormalities in renal tubules induced by a high-fat diet. J. Diabetes Investig. 2018, 9, 1025–1032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Korbut, A.I.; Taskaeva, I.S.; Bgatova, N.P.; Muraleva, N.A.; Orlov, N.B.; Dashkin, M.V.; Khotskina, A.S.; Zavyalov, E.L.; Konenkov, V.I.; Klein, T.; et al. SGLT2 Inhibitor Empagliflozin and DPP4 Inhibitor Linagliptin Reactivate Glomerular Autophagy in db/db Mice, a Model of Type 2 Diabetes. Int. J. Mol. Sci. 2020, 21, 2987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cassis, P.; Locatelli, M.; Cerullo, D.; Corna, D.; Buelli, S.; Zanchi, C.; Villa, S.; Morigi, M.; Remuzzi, G.; Benigni, A.; et al. SGLT2 inhibitor dapagliflozin limits podocyte damage in proteinuric nondiabetic nephropathy. JCI Insight. 2018, 3, 98720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yaribeygi, H.; Butler, A.E.; Atkin, S.L.; Katsiki, N.; Sahebkar, A. Sodium-glucose cotransporter 2 inhibitors and inflammation in chronic kidney disease: Possible molecular pathways. J. Cell. Physiol. 2018, 234, 223–230. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Zhang, J.; Xue, M.; Li, X.; Han, F.; Liu, X.; Xu, L.; Lu, Y.; Cheng, Y.; Li, T.; et al. SGLT2 inhibition with empagliflozin attenuates myocardial oxidative stress and fibrosis in diabetic mice heart. Cardiovasc. Diabetol. 2019, 18, 15. [Google Scholar] [CrossRef]
- Beilhack, G.; Lindner, G.; Funk, G.-C.; Monteforte, R.; Schwarz, C. Electrolyte disorders in stable renal allograft recipients. Swiss Med. Wkly 2020, 150, w20366. [Google Scholar] [CrossRef]
- Wright, A.K.; Carr, M.J.; Kontopantelis, E.; Leelarathna, L.; Thabit, H.; Emsley, R.; Buchan, I.; Mamas, M.A.; van Staa, T.P.; Sattar, N.; et al. Primary Prevention of Cardiovascular and Heart Failure Events with SGLT2 Inhibitors, GLP-1 Receptor Agonists, and Their Combination in Type 2 Diabetes. Diabetes Care 2022, 45, 909–918. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Mok, M.; Harrison, J.; Battistella, M.; Farrell, A.; Leung, M.; Cheung, C. Use of sodium-glucose co-transporter 2 inhibitors in solid organ transplant recipients with pre-existing type 2 or post-transplantation diabetes mellitus: A systematic review. Transplant. Rev. 2023, 37, 100729. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, S.E.; Chandran, M.M.; Park, J.M.; Sweiss, H.; Jensen, T.; Choksi, P.; Crowther, B. Sweet and simple as syrup: A review and guidance for use of novel antihyperglycemic agents for post-transplant diabetes mellitus and type 2 diabetes mellitus after kidney transplantation. Clin. Transplant. 2023, 37, e14922. [Google Scholar] [CrossRef] [PubMed]
Non-Related to Renal Transplant | |
---|---|
Older age | Obesity |
African American ethnicity | Hispanic ethnicity |
Insulin resistance | Prediabetes |
Sedentary lifestyle | Family history of T2DM |
Male | |
Related to Renal Transplant | |
CIN | Corticosteroids |
mTOR inhibitors | HLA mismatch |
HCV | CMV |
HCV risk (D+/R−) | CMV risk (D+/R−) |
Acute rejection | Deceased-donor Kidney |
Author, Year, Study Type | AIM | n/Follow-up | Glycemic Control ΔHbA1c (g/dL) Mean (±SD)/Median (IQR) ΔGlycemia (mg/dL) Mean (±SD)/Median (IQR) | Body Weight Weight (KG) Mean (±SD)/Median (IQR) | Effect on Renal Function ΔeGFR (mL/min/1.73 m) Mean (±SD)/Median (IQR) | Seric Levels of Tacrolimus | Side Effects |
---|---|---|---|---|---|---|---|
Pinelli et al., 2013 [40] CS | Evaluate short-term effects of liraglutide in KTR with PTDM | 5 21 days | ΔHbA1c: NA ΔGlycemia: no changes | ΔKG: −2.1 kg (±1.3) | NA | No changes | Nausea, headache, pain in the puncture site, weakness |
Krist et al., 2014 [39] RS | GLP-1 RA in SOT recipients with DM | 20 (7KTR) 12 months | ΔHbA1c: −0.02% (±2.0) ΔGlycemia: NA | ΔKG: −7.25kg (±3.4) | No change | No changes | NA |
Cariou et al., 2015 [41] RS | Liraglutide, pancreas or pancreas–kidney transplant recipients | 6 (0KTR) 6 months | ΔHbA1c: −0.8%/6.9% (6.6–8.4%) ΔGlycemia: NA | ΔKG: −2 kg | No change | No change in doses | Nausea, diarrhea, vomiting |
Halden et al., 2016 [42] SCT | Insulinotropic and glucagostatic effects of GLP-1 on KTR with or without DM | 24 NA | ΔHbA1c: NA ΔGlycemia: No changes | NA | NA | NA | NA |
Liou et al., 2018 [43] RS | Liraglutide in KTR with DM | 7 19.4 ± 7.6 months | ΔHbA1c: −1.9%/(10.04 ± 1.61 to 8.14 ± 0.8) p < 0.031 ΔGlycemia: −62 mg/dL/(228.6 ± 39.1 to 166 ± 26.6) p < 0.103 | ΔKG: −2.1 to −3 kg (78.0 ± 7.8 to 75.1 ± 9.1) p < 0.032 | ΔeGFR: +8.8 mL/min/(67.66 18.69 ± to 76.53 ± 18.6) p < 0.024 | No changes | Vomiting, nausea, headache, dizziness, pain in the puncture site |
Singh et al., 2019 [44] RS | Liraglutide and dulaglutide in SOT recipients with DM | 81 (63 dula, 25 lira) 6–24 months | ΔHbA1c: −8.4% dulaglutide (p = 0.49) ΔHbA1c: +2% liraglutide (p = 0.49) ΔGlycemia: NA | ΔKG: −5.2% dulaglutide (p < 0.03) ΔKG: −0.89% liraglutide (p < 0.03) | ΔeGFR: +15% dulaglutide, −ΔeGFR:8% liraglutide | No change in doses | Nausea, vomiting diarrhea, abdominal pain, hypoglycemia, cholelithiasis |
Thangavelu et al., 2020 [45] RS | GLP-1RA in SOT recipients with DM | 19 (7KTR) 12 months | ΔHbA1c: −0.75% (−1.55 to 0.5) ΔGlycemia: NA | ΔKG: −4.86 Kg (−7.79 to −1.93) p < 0.05 | No changes | No changes | Gastrointestinal effects |
Kukla et al., 2020 [46] RS | GLP-1RA in KTR with hyperglycemia | 17 (14KTR) 12 months | ΔHbA1c: −0.4%/(−1.05 to 0.55) p < 0.07 ΔGlycemia: −8.5 mg/dL/(−33 to 28) p < 0.7 | ΔKG: −0.95 kg/(−7.2 to 1.0) p < 0.2 | No changes | No changes | Gastrointestinal, pancreatitis (n = 1) |
Yugueros et al., 2021 [47] RS | Effects of new antidiabetic drugs in KT | 15 28 months | ΔHbA1c: −0.7%/(5.8–8.2% to 5.3–8.1%) IQR at 12 months p < 0.96 ΔGlycemia: NA | ΔKG: −1.7 kg/m2/(29.7–35.5 to 27.6–31.6) IQR at 12 months p < 0.1 | No changes | No changes | Weakness |
Kim et al., 2021 [48] RS | Effects of dulaglutide specially in HbA1C | 37 6 months | ΔHbA1c: No difference ΔGlycemia: NA | ΔKG: −4.92 kg (p < 0.001) | No data | No change in doses | Gastrointestinal, hypoglycemia in three patients (still use insulin) |
Vigara et al., 2022 [49] RS | Effectiveness and safety of GLP1-RA in a cohort of KTR | 40 6–12 months | ΔHbA1c: −5% (6–7.4%) IQR p < 0.18 ΔGlycemia: NA | ΔKG: −3 kg (±15.7) p < 0.41 | ΔeGFR: +3.5 mL/min (±15.7) p < 0.3 | No changes | Gastrointestinal effects |
Sweiss et al., 2022 [50] RS | Single-center evaluation of safety/efficacy of GLP1-RA in SOT | 118 (83 KTR) 3–12 months | ΔHbA1c: −0.8%/(−0.2–−1.7) IQR p < 0.0001 ΔGlycemia: NA | ΔKG: −0.2 kg (±16) p < 0.0001 | ΔeGFR: +5 mL/min (0–13) IQR p < 0.0001 | No data | Nausea, vomiting, diarrhea, and pancreatitis |
Author, Year, Study Type | n/Drug/Follow-up | Glycemic Control ΔHbA1c % (g/dL) Mean (±SD)/Median (IQR) | Body Weight (KG)/(BMI) Mean (±SD)/Median (IQR) | Blood Pressure (SBP or DBP, mmHg) Mean (±SD)/Median (IQR) | Uric Acid (mg/dL) Mean (±SD)/ Median (IQR) | Anemia Hemoglobin (mg/dL), Mean (±SD)/Median (IQR). Hto (%) | Magnesemia (mmol or mEq) Mean (±SD)/Median (IQR) |
---|---|---|---|---|---|---|---|
Rajasekeran et al., 2017 [83] CS | (KT 6) Cana 8 months | ΔHbA1c: –0.84 ± 1.2 p = 0.07 | ΔKG: –2.14 ± 2.8 p = 0.07 | ΔSBP: −6.5 ± 10.8 p = 0.13) ΔDBP: −4.8 ± 12 p = 0.30 | NA | ΔHto: +1.6 p = 0.08 | NA |
Shah et al., 2019 [84] PS | 25 Cana 8 months | ΔHbA1c: −1.1 (from 8.5 ± 1.5% to 7.6 ± 1%) p < 0.05 | ΔKG: −2.5 (from 78.6 ± 12.1 to 76.1 ± 11.2) | ΔSBP: −8 (from 142 ± 21 to 134 ± 17) | NA | NA | NA |
Schwaiger et al., 2019 [85] P I | 14 Empa 10 12 months | ΔHbA1c: +0.4 (from 6.7 ± 0.7 to 7.1 ± 0.8%) p = 0.03 | ΔKG: −1.6 (from 83.7 ± 7.6 to 78.7 ±7.7) at 4 weeks p = 0.06 | ΔDBP: −10 (from 86 ± 14 to 76 ± 11) at 12 months p = 0.02 | ΔUA: −1.8 From 7.7 (6.7–9.4) to 6.9 (5.5–7.3) at 12 m p < 0.005 | ΔHto: +1.1% (from 38.8 ± 5.6 to 39.9 ± 5.4) at 4 weeks p = 0.06 | ΔsMg: +0.07 (from 0.70 ± 0.09 to 0.77 ± 0.11) at 12 months p = 003 |
Halden et al., 2019 [86] RCT | 22/22 Empa 10 6 months | ΔHbA1c: −0.2 (from −0.6 to −0.1) vs. 0.1 (from −0.1 to 0.4) p = 0.025 | ΔKG: −2.5 (from −4 to −0.05) vs. +1.0 (from 0.0 to 2.0) at 12 months p = 0.014 | ΔSBP –5 (from −12 to 1) vs. 2 (from −6 to 8) p = 0.06 | NA | NA | NA |
Mahling et al., 2019 [87] PS | 10 Empa 12 months | ΔHbA1c: −0.2 From 7.3 (6.4–7.8) to 7.1 (6.6–7.5) p > 0.05 | ΔKG: −1 (from −1.9 to −0.2) p > 0.05 | ΔSBP: −3 (36.3–0.8) p > 0.05 | NA | ΔHto: +2.5% (0.8–4.1) p > 0.05 | NA |
Attallah and Yassine, 2019 [88] CS | 8 Empa 25 12 months | ΔHbA1c: –0.85 At 3 m (then sustained) p > 0.05 | ΔKG: –2.4 kg (from 76.8 ± 7.4 to 74.94 ± 7.4) at 12 months p > 0.05 | ΔSBP −4.2. at 3 m p > 0.05 | NA | NA | NA |
Kong et al., 2019 [89] PS | 42 Dapa 15 12 months | ΔHbA1c: −0.6 (from 7.5 ± 1.1% to 6.9 ± 0.8%) p < 0.01 | ΔKG: −1.6 (from 69.6 ± 12.5 to 68.0 ±14.0) p < 0.01 | No significant ΔHTD: −35.89% (Kong) | NA | NA | NA |
AlKindi et al., 2020 [90] CS | 8 Empa/Dapa 12 months | ΔHbA1c: −1.93 (from 9.34 ± 1.36 to 7.41 ± 1.44) p < 0.05 | ΔBMI: −5.3 (from 32.74 ± 7.2 to 27.4 ± 4.2) at 6 months p < 0.05 | ΔSBP: −11 (from 135 ± 9.59 to 126.43 ± 11.46) p < 0.05 | NA | NA | NA |
Song et al., 2021 [91] RS | 50 Empa/Cana/Dapa 6 months | ΔHbA1c −0.53 (±1.79) p = 0.118) | ΔKG: −2.95 kg (±3.54) p < 0.001 | NA | NA | NA | ΔsMg: +0.13 ± 1.73 at 3 months p = 0.004 |
Lemke [92] RS | 39 Empa/Dapa/Cana 12 months | ΔHbA1c: −0.6% (−1.2–0) at 3 m p 0.013 ΔHbA1c: −0.4% (−1.4–0.1), p p = 0.016 at 12 months | ΔKG: −1.6 kg (0–2.7) p = 0.11 | NA | NA | No differences | NA |
Sanchez-Fructuoso et al., 2022 [93] MC | 339 Empa/Dapa/Cana 12 months | ΔHbA1c: −0.36. From 7.56 (7.41–7.71) to 7.20 (7.05–7.35) at 6 m. p < 0.05 | ΔKG: ─2.22. From 81.5 (79.4–83.6) to 79.3 (77.2–81.4) p < 0.005 at 6 months | ΔSBP: −4.63. From 137 (135–139) to 132 (130–134) p < 0.005 at 6 months | ΔUA: −0.44 From 6.18 (5.98–6.38) to 5.74 (5.55–5.93) p < 0.005 at 6 m | Δhemoglobin: +0.15 (0.18–0.11) p < 0.001 at 6 m | ΔsMg: +0.15. From 1.61 (1.57–1.66) to 1.76 (1.72–1.80) p = 0.001 at 6 m |
Author, Year, Study Type, Follow-up Time | Basal eGFR Median (mL/min) | Effect in Renal Function (eGFR mL/min/1.73 m) Mean (±SD)/Median (IQR) | Proteinuria (uPCR) (g/d)/(uACR) (mg/g) Mean (±SD)/Median (IQR) | Adverse Events |
---|---|---|---|---|
Rajasekeran et al., 2017 [83] CS n 6. 8 mo | 78.6 ± 18.2 | No differences (p 0.30) −4.3 ± 12.2 | NA | Cellulitis (n = 1) Hypoglycemia (n = 1) |
Shah et al., 2019 [84] PS n 25. 8 mo | 86 ± 20 | No differences (p > 0.05) ΔeGFR: −3 (from 86 ± 20 to 83 ± 18). At 6 m AKI in 1 patient | NA | None reported |
Schwaiger et al., 2019. [85] p I n 14. 12 mo | 55.6 ± 20.3 | Decrease and then stabilize ΔeGF: −8.1 (from 55.6 ± 20.3 to 47.5 ±15.1) at 4 w (p 0.008) ΔeGF: −2.1 (from 54.0 ±23.8 to 53.5 ±13.3) at 12 m (p 0.093) | ΔuACR: −25 (from 87 (41–552) to 62 (28–348) At 4 w, p 0.43 (sch) ΔuACR: −73 (from 289 (190–808) to 216 (137–585). At 2 w (p 0.43) | UTI (n = 5) Balanitis (n = 1) pneumonia (n = 1) |
Halden et al., 2019 [86] RCT n 44. 6 mo | E: 66 ± 10.5 p: 59 ± 9.5 | No differences ΔeGFR: –3 (from −7 to 0) versus −1.0 (from −2.8 to 0.75) p 1.000 | NA | UTI (n = 3) genital yeast infection (n = 1) urosepsis (n = 1) |
Mahling et al., 2019 [87] PS n 10. 12 mo | 57 ± 19.3 | No differences ΔeGFR: stable. 57 (47–73) mL/min AKI in 1 patient | NA | UTI (n = 2) AKI (n = 1) Diabetic ulcer (n = 1) Tiredness (n = 1) AKI(n = 1) |
Attallah and Yassine, 2019 [88] CS n 25. 12 mo | NA | Decrease and then stabilization ΔsCr: +11 (from 88.5 mmol/L to 99.5 at 1 m (p > 0.05) ΔsCr: +1.5 (from 99.5 to 96.5) at 12 m (p > 0.05) | Δ uPCR: −0.6 g/d. At 12 m. | UTI (n = 2) Nausea (n = 2) |
Kong et al., 2019 [89] PS n 42. 12 mo | 60.36 ± 17.0 | No differences ΔeGFR: −1 (from 60.3 ± 17.0 to 59.3 ± 14.5). At 12 m | ΔuACR: No significant change was observed at 12 m | Acute cystitis (n = 3) Weight loss (n = 2) |
AlKindi et al., 2020 [90] CS n 8. 12 mo | 75.8 ± 13.4 | No differences (p < 0.05) ΔeGFR: −6.07 (from 75.75 ± 13.38 to 69.88 ± 14.70) | NA | UTI (n = 1) |
Song et al., 2021 [91] RS n 50. 6 mo | 66.7 | No differences −1 mL/min (−7.5–7) at 3 months p 0.8831 1 mL/min (−8–16) at 6 months p 0.1478 | NA | UTI (n = 7) Genital mycosis (n = 1) |
Lemke et al., 2021 [92] RS n 39. 12 mo | NA | Dippers: 23% at 12 m ΔeGF: −1.5 (−8.5–5) p 0.47 at 3 months. ΔeGF: −2 (−9.5–0.5) p 0.11 at 12 months | NA | UTI (n = 6) AKI (n = 1) Diabetic ulcer (n = 2) Ketoacidosis (n = 1) AKI (n = 2) Hypoglycemia (n = 2) |
S-Fructuoso et al., 2022 [93] MCO n 339. 12 mo | 58.4 (56.2–60.6) | No differences Dippers: 1.8% at 12 m ΔeGF: −2.13 (−3.26, −1.0) at 6 months. p < 0.005 ΔeGF: −1.87 mL/min (−1.25, +5.02). p = 0.122 | Δ uPCR: −230 at 6 mo. and −310 at 12 mo. (from 750 (390–1410) to 520 (270–950) at 6 mo and 440 (230–700) at 12 mo. In patients with basal uPRC > 300 g/g. (p < 0.001) | UTI (14%) AKI (1.8%) Genital yeast infection (0.9%) Diarrhea (0.6%) Hypoglycemia (1.2%) |
Lim et al., 2022 [94] OR, PSM, n 2083 63 mo | S: 66.9 ± 17.7 C: 68.4 ± 20.1 | Decrease, stabilization, and amelioration Dippers: 15.6%. ΔeGF: −10% at 1 m. ΔeGF:recovered at 5 m (70 mL/min) No dippers: ΔeGF: stable for the first 5 mo and better after 6 m. p 0.005 Graft survival HR, 0.34; 95% CI, 0.12–0.95; p 0.040 Serum creatinine doubling HR, 0.41; 95% CI, 0.22–0.77; p 0.005 | Δ uPCR: The urine PCR decreased significantly in the dipper and nondipper groups after SGLT2i usage p < 0.005 | NA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valencia-Morales, N.D.; Rodríguez-Cubillo, B.; Loayza-López, R.K.; Moreno de la Higuera, M.Á.; Sánchez-Fructuoso, A.I. Novel Drugs for the Management of Diabetes Kidney Transplant Patients: A Literature Review. Life 2023, 13, 1265. https://doi.org/10.3390/life13061265
Valencia-Morales ND, Rodríguez-Cubillo B, Loayza-López RK, Moreno de la Higuera MÁ, Sánchez-Fructuoso AI. Novel Drugs for the Management of Diabetes Kidney Transplant Patients: A Literature Review. Life. 2023; 13(6):1265. https://doi.org/10.3390/life13061265
Chicago/Turabian StyleValencia-Morales, Nancy Daniela, Beatriz Rodríguez-Cubillo, Rómulo Katsu Loayza-López, Maria Ángeles Moreno de la Higuera, and Ana Isabel Sánchez-Fructuoso. 2023. "Novel Drugs for the Management of Diabetes Kidney Transplant Patients: A Literature Review" Life 13, no. 6: 1265. https://doi.org/10.3390/life13061265
APA StyleValencia-Morales, N. D., Rodríguez-Cubillo, B., Loayza-López, R. K., Moreno de la Higuera, M. Á., & Sánchez-Fructuoso, A. I. (2023). Novel Drugs for the Management of Diabetes Kidney Transplant Patients: A Literature Review. Life, 13(6), 1265. https://doi.org/10.3390/life13061265