Effects of Nutrition Interventions on Athletic Performance in Soccer Players: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Outcome
2.2. Design
2.3. Search Strategy
2.4. Inclusion and Exclusion Criteria
2.5. Data Extraction
2.6. Quality Assessment
3. Results
3.1. Study Selection
3.2. General Characteristics of Included Studies
3.3. Risk of Bias in the Studies
3.3.1. Parallel Clinical Trials
3.3.2. Cross Over
3.4. Intervention Strategies
3.5. Outcome Measurements
3.6. Studies with Professional Soccer Players
3.6.1. Recovery Studies
3.6.2. Performance-Based Nutritional Interventions
Creatine
Other Interventions
3.7. Studies with Semiprofessionals Soccer Players
4. Limitations
5. Discussion
Creatine
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FIFA. Big Count 2006; Fédération Internationale de Football Association: Zurich, Switzerland, 2007. [Google Scholar]
- Dvorak, J.; Junge, A.; Graf-Baumann, T.; Peterson, L. Editorial. Am. J. Sports Med. 2004, 32 (Suppl. S1), 3–4. [Google Scholar] [CrossRef] [PubMed]
- FIFA. Professional Football Report 2019; Fédération Internationale de Football Association: Zurich, Switzerland, 2019. [Google Scholar]
- Hulton, A.T.; Malone, J.J.; Clarke, N.D.; MacLaren, D.P.M. Energy Requirements and Nutritional Strategies for Male Soccer Players: A Review and Suggestions for Practice. Nutrients 2022, 14, 657. [Google Scholar] [CrossRef] [PubMed]
- Drust, B.; Cable, N.T.; Reilly, T. Investigation of the Effects of the Pre-Cooling on the Physiological Responses to Soccer-Specific Intermittent Exercise. Eur. J. Appl. Physiol. Occup. Physiol. 2000, 81, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Bloomfield, J.; Polman, R.; O’Donoghue, P. Physical Demands of Different Positions in FA Premier League Soccer. J. Sports Sci. Med. 2007, 6, 63–70. [Google Scholar]
- Dellal, A.; Lago-Peñas, C.; Rey, E.; Chamari, K.; Orhant, E. The Effects of a Congested Fixture Period on Physical Performance, Technical Activity and Injury Rate during Matches in a Professional Soccer Team. Br. J. Sports Med. 2015, 49, 390–394. [Google Scholar] [CrossRef]
- Bangsbo, J.; Mohr, M.; Krustrup, P. Physical and Metabolic Demands of Training and Match-Play in the Elite Football Player. J. Sports Sci. 2006, 24, 665–674. [Google Scholar] [CrossRef]
- Di Salvo, V.; Gregson, W.; Atkinson, G.; Tordoff, P.; Drust, B. Analysis of High Intensity Activity in Premier League Soccer. Int. J. Sports Med. 2009, 30, 205–212. [Google Scholar] [CrossRef]
- Fallah, E.; Hooshangi, P.; Jahangiri, M. The Effect of Tapering Period with and without Creatine Supplementation on Hormonal Responses of Male Football Players. J. Sport. Physiol. Athl. Cond. 2023, 3, 23–35. [Google Scholar] [CrossRef]
- Owen, A.L.; Wong, D.P.; Dunlop, G.; Groussard, C.; Kebsi, W.; Dellal, A.; Morgans, R.; Zouhal, H. High-Intensity Training and Salivary Immunoglobulin A Responses in Professional Top-Level Soccer Players: Effect of Training Intensity. J. Strength Cond. Res. 2016, 30, 2460–2469. [Google Scholar] [CrossRef]
- Silva, J.R.; Nassis, G.P.; Rebelo, A. Strength Training in Soccer with a Specific Focus on Highly Trained Players. Sports Med. Open 2015, 1, 17. [Google Scholar] [CrossRef]
- Luo, S.; Soh, K.G.; Zhang, L.; Zhai, X.; Sunardi, J.; Gao, Y.; Sun, H. Effect of Core Training on Skill-Related Physical Fitness Performance among Soccer Players: A Systematic Review. Front. Public Health 2023, 10, 1046456. [Google Scholar] [CrossRef] [PubMed]
- Bujnovsky, D.; Maly, T.; Ford, K.; Sugimoto, D.; Kunzmann, E.; Hank, M.; Zahalka, F. Physical Fitness Characteristics of High-Level Youth Football Players: Influence of Playing Position. Sports 2019, 7, 46. [Google Scholar] [CrossRef] [PubMed]
- Kim, J. Effects of Combined Creatine and Sodium Bicarbonate Supplementation on Soccer-Specific Performance in Elite Soccer Players: A Randomized Controlled Trial. Int. J. Environ. Res. Public Health 2021, 18, 6919. [Google Scholar] [CrossRef]
- Nicholas, C.W.; Nuttall, F.E.; Williams, C. The Loughborough Intermittent Shuttle Test: A Field Test That Simulates the Activity Pattern of Soccer. J. Sports Sci. 2000, 18, 97–104. [Google Scholar] [CrossRef]
- Ali, A.; Williams, C.; Hulse, M.; Strudwick, A.; Reddin, J.; Howarth, L.; Eldred, J.; Hirst, M.; McGregor, S. Reliability and Validity of Two Tests of Soccer Skill. J. Sports Sci. 2007, 25, 1461–1470. [Google Scholar] [CrossRef]
- Ali, A.; Williams, C.; Nicholas, C.W.; Foskett, A. The Influence of Carbohydrate-Electrolyte Ingestion on Soccer Skill Performance. Med. Sci. Sports Exerc. 2007, 39, 1969–1976. [Google Scholar] [CrossRef] [PubMed]
- Ragone, L.; Guilherme Vieira, J.; Camaroti Laterza, M.; Leitão, L.; da Silva Novaes, J.; Macedo Vianna, J.; Ricardo Dias, M. Acute Effect of Sodium Bicarbonate Supplementation on Symptoms of Gastrointestinal Discomfort, Acid-Base Balance, and Performance of Jiu-Jitsu Athletes. J. Hum. Kinet. 2020, 75, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Ispirlidis, I.; Fatouros, I.G.; Jamurtas, A.Z.; Nikolaidis, M.G.; Michailidis, I.; Douroudos, I.; Margonis, K.; Chatzinikolaou, A.; Kalistratos, E.; Katrabasas, I.; et al. Time-Course of Changes in Inflammatory and Performance Responses Following a Soccer Game. Clin. J. Sport Med. 2008, 18, 423–431. [Google Scholar] [CrossRef]
- Nobari, H.; Eken, Ö.; Kamiş, O.; Oliveira, R.; González, P.P.; Aquino, R. Relationships between Training Load, Peak Height Velocity, Muscle Soreness and Fatigue Status in Elite-Level Young Soccer Players: A Competition Season Study. BMC Pediatr. 2023, 23, 55. [Google Scholar] [CrossRef]
- Thorpe, R.T.; Strudwick, A.J.; Buchheit, M.; Atkinson, G.; Drust, B.; Gregson, W. Tracking Morning Fatigue Status Across In-Season Training Weeks in Elite Soccer Players. Int. J. Sports Physiol. Perform. 2016, 11, 947–952. [Google Scholar] [CrossRef]
- Anderson, L.; Orme, P.; Di Michele, R.; Close, G.L.; Morgans, R.; Drust, B.; Morton, J.P. Quantification of Training Load during One-, Two- and Three-Game Week Schedules in Professional Soccer Players from the English Premier League: Implications for Carbohydrate Periodisation. J. Sports Sci. 2016, 34, 1250–1259. [Google Scholar] [CrossRef]
- Maughan, R.J.; Burke, L.M.; Dvorak, J.; Larson-Meyer, D.E.; Peeling, P.; Phillips, S.M.; Rawson, E.S.; Walsh, N.P.; Garthe, I.; Geyer, H.; et al. IOC Consensus Statement: Dietary Supplements and the High-Performance Athlete. Br. J. Sports Med. 2018, 52, 439–455. [Google Scholar] [CrossRef] [PubMed]
- Kerksick, C.M.; Arent, S.; Schoenfeld, B.J.; Stout, J.R.; Campbell, B.; Wilborn, C.D.; Taylor, L.; Kalman, D.; Smith-Ryan, A.E.; Kreider, R.B.; et al. International Society of Sports Nutrition Position Stand: Nutrient Timing. J. Int. Soc. Sports Nutr. 2017, 14, 33. [Google Scholar] [CrossRef] [PubMed]
- Position of the American Dietetic Association, Dietitians of Canada, and the American College of Sports Medicine: Nutrition and Athletic Performance. J. Am. Diet. Assoc. 2009, 109, 509–527. [CrossRef]
- Dietary Supplements for Exercise and Athletic Performance-Health Professional Fact Sheet. Available online: https://ods.od.nih.gov/factsheets/ExerciseAndAthleticPerformance-HealthProfessional/ (accessed on 3 April 2023).
- Collins, J.; Maughan, R.J.; Gleeson, M.; Bilsborough, J.; Jeukendrup, A.; Morton, J.P.; Phillips, S.M.; Armstrong, L.; Burke, L.M.; Close, G.L.; et al. UEFA Expert Group Statement on Nutrition in Elite Football. Current Evidence to Inform Practical Recommendations and Guide Future Research. Br. J. Sports Med. 2021, 55, 416. [Google Scholar] [CrossRef]
- Danielik, K.; Książek, A.; Zagrodna, A.; Słowińska-Lisowska, M. How Do Male Football Players Meet Dietary Recommendations? A Systematic Literature Review. Int. J. Environ. Res. Public Health 2022, 19, 9561. [Google Scholar] [CrossRef] [PubMed]
- Steffl, M.; Kinkorova, I.; Kokstejn, J.; Petr, M. Macronutrient Intake in Soccer Players—A Meta-Analysis. Nutrients 2019, 11, 1305. [Google Scholar] [CrossRef]
- Brinkmans, N.Y.J.; Iedema, N.; Plasqui, G.; Wouters, L.; Saris, W.H.M.; van Loon, L.J.C.; van Dijk, J.-W. Energy Expenditure and Dietary Intake in Professional Football Players in the Dutch Premier League: Implications for Nutritional Counselling. J. Sports Sci. 2019, 37, 2759–2767. [Google Scholar] [CrossRef] [PubMed]
- Sarshin, A.; Fallahi, V.; Forbes, S.C.; Rahimi, A.; Koozehchian, M.S.; Candow, D.G.; Kaviani, M.; Khalifeh, S.N.; Abdollahi, V.; Naderi, A. Short-Term Co-Ingestion of Creatine and Sodium Bicarbonate Improves Anaerobic Performance in Trained Taekwondo Athletes. J. Int. Soc. Sports Nutr. 2021, 18, 1–9. [Google Scholar] [CrossRef]
- Chycki, J.; Zając, A.; Toborek, M. Bicarbonate Supplementation via Lactate Efflux Improves Anaerobic and Cognitive Performance in Elite Combat Sport Athletes. Biol. Sport 2021, 38, 545–553. [Google Scholar] [CrossRef]
- Tornero-Aguilera, J.F.; Jimenez-Morcillo, J.; Rubio-Zarapuz, A.; Clemente-Suárez, V.J. Central and Peripheral Fatigue in Physical Exercise Explained: A Narrative Review. Int. J. Environ. Res. Public Health 2022, 19, 3909. [Google Scholar] [CrossRef] [PubMed]
- Rydzik, Ł.; Mardyła, M.; Obmiński, Z.; Więcek, M.; Maciejczyk, M.; Czarny, W.; Jaszczur-Nowicki, J.; Ambroży, T. Acid–Base Balance, Blood Gases Saturation, and Technical Tactical Skills in Kickboxing Bouts According to K1 Rules. Biology 2022, 11, 65. [Google Scholar] [CrossRef] [PubMed]
- Cerullo, G.; Parimbelli, M.; Perna, S.; Pecoraro, M.; Liguori, G.; Negro, M.; D’Antona, G. Sodium Citrate Supplementation: An Updated Revision and Practical Recommendations on Exercise Performance, Hydration Status, and Potential Risks. Transl. Sports Med. 2020, 3, 518–525. [Google Scholar] [CrossRef]
- Lancha Junior, A.H.; de Salles Painelli, V.; Saunders, B.; Artioli, G.G. Nutritional Strategies to Modulate Intracellular and Extracellular Buffering Capacity During High-Intensity Exercise. Sport. Med. 2015, 45, 71–81. [Google Scholar] [CrossRef] [PubMed]
- Grgic, J.; Pedisic, Z.; Saunders, B.; Artioli, G.G.; Schoenfeld, B.J.; McKenna, M.J.; Bishop, D.J.; Kreider, R.B.; Stout, J.R.; Kalman, D.S.; et al. International Society of Sports Nutrition Position Stand: Sodium Bicarbonate and Exercise Performance. J. Int. Soc. Sports Nutr. 2021, 18, 1–37. [Google Scholar] [CrossRef]
- Halvorsen, B.L.; Carlsen, M.H.; Phillips, K.M.; Bøhn, S.K.; Holte, K.; Jacobs, D.R.; Blomhoff, R. Content of Redox-Active Compounds (Ie, Antioxidants) in Foods Consumed in the United States. Am. J. Clin. Nutr. 2006, 84, 95–135. [Google Scholar] [CrossRef]
- Martorana, M.; Arcoraci, T.; Rizza, L.; Cristani, M.; Bonina, F.P.; Saija, A.; Trombetta, D.; Tomaino, A. In Vitro Antioxidant and in Vivo Photoprotective Effect of Pistachio (Pistacia Vera L., Variety Bronte) Seed and Skin Extracts. Fitoterapia 2013, 85, 41–48. [Google Scholar] [CrossRef]
- Abdi Gorabi, S.; Mohammadzadeh, H.; Rostampour, M. The Effects of Ripe Pistachio Hulls Hydro-Alcoholic Extract and Aerobic Training on Learning and Memory in Streptozotocin-Induced Diabetic Male Rats. Basic Clin. Neurosci. J. 2020, 11, 525–534. [Google Scholar] [CrossRef]
- North, E.; Thayer, I.; Galloway, S.; Young Hong, M.; Hooshmand, S.; Liu, C.; Okamoto, L.; O’Neal, T.; Philpott, J.; Rayo, V.U.; et al. Effects of Short-Term Pistachio Consumption before and throughout Recovery from an Intense Exercise Bout on Cardiometabolic Markers. Metabol. Open 2022, 16, 100216. [Google Scholar] [CrossRef]
- Nieman, D.C.; Scherr, J.; Luo, B.; Meaney, M.P.; Dréau, D.; Sha, W.; Dew, D.A.; Henson, D.A.; Pappan, K.L. Influence of Pistachios on Performance and Exercise-Induced Inflammation, Oxidative Stress, Immune Dysfunction, and Metabolite Shifts in Cyclists: A Randomized, Crossover Trial. PLoS ONE 2014, 9, e113725. [Google Scholar] [CrossRef]
- Machek, S.B.; Zawieja, E.E.; Heileson, J.L.; Harris, D.R.; Wilburn, D.T.; Fletcher, E.A.; Cholewa, J.M.; Szwengiel, A.; Chmurzynska, A.; Willoughby, D.S. Human Serum Betaine and Associated Biomarker Concentrations Following a 14 Day Supplemental Betaine Loading Protocol and during a 28 Day Washout Period: A Pilot Investigation. Nutrients 2022, 14, 498. [Google Scholar] [CrossRef] [PubMed]
- Cholewa, J.M.; Newmire, D.E.; Rossi, F.E.; Guimarães-Ferreira, L.; Zanchi, N.E. An Overview of Betaine Supplementation, Sports Performance, and Body Composition. In Nutrition and Enhanced Sports Performance; Elsevier: Amsterdam, The Netherlands, 2019; pp. 691–706. [Google Scholar] [CrossRef]
- Cholewa, J.M.; Guimarães-Ferreira, L.; Zanchi, N.E. Effects of Betaine on Performance and Body Composition: A Review of Recent Findings and Potential Mechanisms. Amino Acids 2014, 46, 1785–1793. [Google Scholar] [CrossRef] [PubMed]
- Pryor, J.L.; Wolf, S.T.; Sforzo, G.; Swensen, T. The Effect of Betaine on Nitrate and Cardiovascular Response to Exercise. Int. J. Exerc. Sci. 2017, 10, 550–559. [Google Scholar] [PubMed]
- Lee, E.C.; Maresh, C.M.; Kraemer, W.J.; Yamamoto, L.M.; Hatfield, D.L.; Bailey, B.L.; Armstrong, L.E.; Volek, J.S.; McDermott, B.P.; Craig, S.A. Ergogenic Effects of Betaine Supplementation on Strength and Power Performance. J. Int. Soc. Sports Nutr. 2010, 7, 27. [Google Scholar] [CrossRef]
- Pryor, J.L.; Craig, S.A.; Swensen, T. Effect of Betaine Supplementation on Cycling Sprint Performance. J. Int. Soc. Sports Nutr. 2012, 9, 12. [Google Scholar] [CrossRef]
- García-Lafuente, A.; Guillamón, E.; Villares, A.; Rostagno, M.A.; Martínez, J.A. Flavonoids as Anti-Inflammatory Agents: Implications in Cancer and Cardiovascular Disease. Inflamm. Res. 2009, 58, 537–552. [Google Scholar] [CrossRef]
- Howatson, G.; McHugh, M.P.; Hill, J.A.; Brouner, J.; Jewell, A.P.; Van Someren, K.A.; Shave, R.E.; Howatson, S.A. Influence of Tart Cherry Juice on Indices of Recovery Following Marathon Running. Scand. J. Med. Sci. Sports 2010, 20, 843–852. [Google Scholar] [CrossRef]
- Kelley, D.; Adkins, Y.; Laugero, K. A Review of the Health Benefits of Cherries. Nutrients 2018, 10, 368. [Google Scholar] [CrossRef]
- Levers, K.; Dalton, R.; Galvan, E.; O’Connor, A.; Goodenough, C.; Simbo, S.; Mertens-Talcott, S.U.; Rasmussen, C.; Greenwood, M.; Riechman, S.; et al. Effects of Powdered Montmorency Tart Cherry Supplementation on Acute Endurance Exercise Performance in Aerobically Trained Individuals. J. Int. Soc. Sports Nutr. 2016, 13, 22. [Google Scholar] [CrossRef]
- Seeram, N.P.; Bourquin, L.D.; Nair, M.G. Degradation Products of Cyanidin Glycosides from Tart Cherries and Their Bioactivities. J. Agric. Food Chem. 2001, 49, 4924–4929. [Google Scholar] [CrossRef]
- Bell, P.G.; McHugh, M.P.; Stevenson, E.; Howatson, G. The Role of Cherries in Exercise and Health. Scand. J. Med. Sci. Sports 2014, 24, 477–490. [Google Scholar] [CrossRef] [PubMed]
- Bowtell, J.; Kelly, V. Fruit-Derived Polyphenol Supplementation for Athlete Recovery and Performance. Sport. Med. 2019, 49, 3–23. [Google Scholar] [CrossRef] [PubMed]
- Tanabe, Y.; Fujii, N.; Suzuki, K. Dietary Supplementation for Attenuating Exercise-Induced Muscle Damage and Delayed-Onset Muscle Soreness in Humans. Nutrients 2021, 14, 70. [Google Scholar] [CrossRef] [PubMed]
- Jabir, N.R.; Firoz, C.K.; Zughaibi, T.A.; Alsaadi, M.A.; Abuzenadah, A.M.; Al-Asmari, A.I.; Alsaieedi, A.; Ahmed, B.A.; Ramu, A.K.; Tabrez, S. A Literature Perspective on the Pharmacological Applications of Yohimbine. Ann. Med. 2022, 54, 2849–2863. [Google Scholar] [CrossRef]
- Barnes, M.E.; Cowan, C.R.; Boag, L.E.; Hill, J.G.; Jones, M.L.; Nixon, K.M.; Parker, M.G.; Parker, S.K.; Raymond, M.V.; Sternenberg, L.H.; et al. Effects of Acute Yohimbine Hydrochloride Supplementation on Repeated Supramaximal Sprint Performance. Int. J. Environ. Res. Public Health 2022, 19, 1316. [Google Scholar] [CrossRef]
- Williams, T.D.; Boag, L.E.; Helton, C.L.; Middleton, M.L.; Rogers, R.R.; Sternenberg, L.H.; Ballmann, C.G. Effects of Acute Yohimbine Hydrochloride Ingestion on Bench Press Performance in Resistance-Trained Males. Muscles 2022, 1, 82–91. [Google Scholar] [CrossRef]
- Court of Arbitration for Sport/Tribunal Arbitral du Sport (Lausane). In CAS 2007/A/1445 WADA v QFA & Mohadanni; Court of Arbitration for Sport/Tribunal Arbitral du Sport: Lausane, Switzerland, 2008.
- Cohen, P.A.; Wang, Y.; Maller, G.; DeSouza, R.; Khan, I.A. Pharmaceutical Quantities of Yohimbine Found in Dietary Supplements in the USA. Drug Test. Anal 2016, 8, 357–369. [Google Scholar] [CrossRef]
- Ramoni, C. Doping: Applicable Regulations; T.M.C. Asser Press: The Hague, The Netherlands, 2011; pp. 143–154. [Google Scholar] [CrossRef]
- Vitti, S.; Miele, E.; Bruneau Jr., M.L.; Christoph, L. The Effects of a Six-Week Ketogenic Diet on CrossFit Performance Parameters: A Pilot Study. Int. J. Kinesiol. Sport. Sci. 2022, 10, 25–33. [Google Scholar] [CrossRef]
- Wroble, K.A.; Trott, M.N.; Schweitzer, G.G.; Rahman, R.S.; Kelly, P.V.; Weiss, E.P. Low-Carbohydrate, Ketogenic Diet Impairs Anaerobic Exercise Performance in Exercise-Trained Women and Men: A Randomized-Sequence Crossover Trial. J. Sport. Med. Phys. Fit. 2019, 59, 600–607. [Google Scholar] [CrossRef]
- Wax, B.; Kerksick, C.M.; Jagim, A.R.; Mayo, J.J.; Lyons, B.C.; Kreider, R.B. Creatine for Exercise and Sports Performance, with Recovery Considerations for Healthy Populations. Nutrients 2021, 13, 1915. [Google Scholar] [CrossRef]
- Rawson, E.S.; Volek, J.S. Effects of Creatine Supplementation and Resistance Training on Muscle Strength and Weightlifting Performance. J. Strength Cond. Res. 2003, 17, 822–831. [Google Scholar] [PubMed]
- Branch, J.D. Effect of Creatine Supplementation on Body Composition and Performance: A Meta-Analysis. Int. J. Sport Nutr. Exerc. Metab. 2003, 13, 198–226. [Google Scholar] [CrossRef] [PubMed]
- Kreider, R.B. Effects of Creatine Supplementation on Performance and Training Adaptations. Mol. Cell Biochem. 2003, 244, 89–94. [Google Scholar] [CrossRef]
- Mattos, D.; Santos, C.G.M.; Forbes, S.C.; Candow, D.G.; Rosa, D.; Busnardo, R.G.; Ribeiro, M.D.; Paulucio, D.; Chester, C.; Machado, M. Individual Responses to Creatine Supplementation on Muscular Power Is Modulated by Gene Polymorphisms in Military Recruits. J. Sci. Sport Exerc. 2023, 5, 70–76. [Google Scholar] [CrossRef]
- Kreider, R.B.; Kalman, D.S.; Antonio, J.; Ziegenfuss, T.N.; Wildman, R.; Collins, R.; Candow, D.G.; Kleiner, S.M.; Almada, A.L.; Lopez, H.L. International Society of Sports Nutrition Position Stand: Safety and Efficacy of Creatine Supplementation in Exercise, Sport, and Medicine. J. Int. Soc. Sports Nutr. 2017, 14, 18. [Google Scholar] [CrossRef]
- Antonio, J.; Candow, D.G.; Forbes, S.C.; Gualano, B.; Jagim, A.R.; Kreider, R.B.; Rawson, E.S.; Smith-Ryan, A.E.; VanDusseldorp, T.A.; Willoughby, D.S.; et al. Common Questions and Misconceptions about Creatine Supplementation: What Does the Scientific Evidence Really Show? J. Int. Soc. Sports Nutr. 2021, 18, 1–17. [Google Scholar] [CrossRef]
- Dobgenski, V.; Santos, M.G.; Campbell, B.; Kreider, R.B. The Effect of Short-Term Creatine Supplementation Suppresses the Cortisol Response to a High-Intensity Swim-Sprint Workout. In Highlights on Medicine and Medical Research Vol. 14; Book Publisher International: London, UK, 2021; pp. 129–136. [Google Scholar] [CrossRef]
- Fernández-Landa, J.; Santibañez-Gutierrez, A.; Todorovic, N.; Stajer, V.; Ostojic, S.M. Effects of Creatine Monohydrate on Endurance Performance in a Trained Population: A Systematic Review and Meta-Analysis. Sport. Med. 2023, 53, 1017–1027. [Google Scholar] [CrossRef] [PubMed]
- Negro, M.; Cerullo, G.; Perna, S.; Beretta-Piccoli, M.; Rondanelli, M.; Liguori, G.; Cena, H.; Phillips, S.M.; Cescon, C.; D’Antona, G. Effects of a Single Dose of a Creatine-Based Multi-Ingredient Pre-Workout Supplement Compared to Creatine Alone on Performance Fatigability After Resistance Exercise: A Double-Blind Crossover Design Study. Front. Nutr. 2022, 9, 887523. [Google Scholar] [CrossRef]
- Jäger, R.; Mohr, A.E.; Carpenter, K.C.; Kerksick, C.M.; Purpura, M.; Moussa, A.; Townsend, J.R.; Lamprecht, M.; West, N.P.; Black, K.; et al. International Society of Sports Nutrition Position Stand: Probiotics. J. Int. Soc. Sports Nutr. 2019, 16, 1–44. [Google Scholar] [CrossRef]
- Marttinen, M.; Ala-Jaakkola, R.; Laitila, A.; Lehtinen, M.J. Gut Microbiota, Probiotics and Physical Performance in Athletes and Physically Active Individuals. Nutrients 2020, 12, 2936. [Google Scholar] [CrossRef]
- Wilson, P. Sport Supplements and the Athlete’s Gut: A Review. Int. J. Sports Med. 2022, 43, 840–849. [Google Scholar] [CrossRef] [PubMed]
- Di Dio, M.; Calella, P.; Cerullo, G.; Pelullo, C.P.; Di Onofrio, V.; Gallè, F.; Liguori, G. Effects of Probiotics Supplementation on Risk and Severity of Infections in Athletes: A Systematic Review. Int. J. Environ. Res. Public Health 2022, 19, 11534. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Xiao, H.; Zhao, L.; Liu, Z.; Chen, L.; Liu, C. Comparison of the Effects of Prebiotics and Synbiotics Supplementation on the Immune Function of Male University Football Players. Nutrients 2023, 15, 1158. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.-T.; Peng, Y.-C.; Yen, H.-Y.; Wu, J.-C.; Hou, W.-H. Effects of Probiotic Supplementation on Immune and Inflammatory Markers in Athletes: A Meta-Analysis of Randomized Clinical Trials. Medicina 2022, 58, 1188. [Google Scholar] [CrossRef]
- Fernandes, H. Dietary and Ergogenic Supplementation to Improve Elite Soccer Players’ Performance. Ann. Nutr. Metab. 2021, 77, 197–203. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. Syst. Rev. 2021, 10, 89. [Google Scholar] [CrossRef]
- Cumpston, M.; Li, T.; Page, M.J.; Chandler, J.; Welch, V.A.; Higgins, J.P.; Thomas, J. Updated Guidance for Trusted Systematic Reviews: A New Edition of the Cochrane Handbook for Systematic Reviews of Interventions. Cochrane Database Syst. Rev. 2019, 10, ED000142. [Google Scholar] [CrossRef]
- Aguinaga-Ontoso, I.; Guillen-Aguinaga, S.; Guillen-Aguinaga, L.; Alas-Brun, R.; Guillen-Grima, F. The Effectiveness of Nutrition Interventions for Improvement of Professional and Semiprofessional Soccer Players: A Systematic Review Protocol; MDPI: Basel, Switzerland, 2023. [Google Scholar] [CrossRef]
- Campa, F.; Matias, C.N.; Moro, T.; Cerullo, G.; Casolo, A.; Teixeira, F.J.; Paoli, A. Methods over Materials: The Need for Sport-Specific Equations to Accurately Predict Fat Mass Using Bioimpedance Analysis or Anthropometry. Nutrients 2023, 15, 278. [Google Scholar] [CrossRef]
- Santos, D.A.; Dawson, J.A.; Matias, C.N.; Rocha, P.M.; Minderico, C.S.; Allison, D.B.; Sardinha, L.B.; Silva, A.M. Reference Values for Body Composition and Anthropometric Measurements in Athletes. PLoS ONE 2014, 9, e97846. [Google Scholar] [CrossRef]
- FIFA. Regulations on the Status and Transfer of Players; FIFA: Zurich, Switzerland, 2020. [Google Scholar]
- EndNote; Clarivate Analytics: Philadelphia, PA, USA, 2022.
- Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan-a Web and Mobile App for Systematic Reviews. Syst. Rev. 2016, 5, 210. [Google Scholar] [CrossRef]
- Risk of Bias Tools-Current Version of RoB 2. Available online: https://www.riskofbias.info/welcome/rob-2-0-tool/current-version-of-rob-2 (accessed on 5 March 2023).
- Risk of Bias Tools-RoB 2 for Crossover Trials. Available online: https://www.riskofbias.info/welcome/rob-2-0-tool/rob-2-for-crossover-trials (accessed on 5 March 2023).
- Ali, A.; Williams, C. Carbohydrate Ingestion and Soccer Skill Performance during Prolonged Intermittent Exercise. J. Sports Sci. 2009, 27, 1499–1508. [Google Scholar] [CrossRef]
- Bangsbo, J.; Nørregaard, L.; Thorsøe, F. The Effect of Carbohydrate Diet on Intermittent Exercise Performance. Int. J. Sports Med. 1992, 13, 152–157. [Google Scholar] [CrossRef] [PubMed]
- Bell, P.G.; Stevenson, E.; Davison, G.W.; Howatson, G. The Effects of Montmorency Tart Cherry Concentrate Supplementation on Recovery Following Prolonged, Intermittent Exercise. Nutrients 2016, 8, 441. [Google Scholar] [CrossRef] [PubMed]
- Chycki, J.; Golas, A.; Halz, M.; Maszczyk, A.; Toborek, M.; Zajac, A. Chronic Ingestion of Sodium and Potassium Bicarbonate, with Potassium, Magnesium and Calcium Citrate Improves Anaerobic Performance in Elite Soccer Players. Nutrients 2018, 10, 1610. [Google Scholar] [CrossRef]
- Cox, G.; Mujika, I.; Tumilty, D.; Burke, L. Acute Creatine Supplementation and Performance during a Field Test Simulating Match Play in Elite Female Soccer Players. Int. J. Sport Nutr. Exerc. Metab. 2002, 12, 33–46. [Google Scholar] [CrossRef] [PubMed]
- da Silva Azevedo, A.P.; Michelone Acquesta, F.; Lancha, A.H.; Bertuzzi, R.; Poortmans, J.R.; Amadio, A.C.; Cerca Serrão, J. Creatine Supplementation Can Improve Impact Control in High-Intensity Interval Training. Nutrition 2019, 61, 99–104. [Google Scholar] [CrossRef]
- Erith, S.; Williams, C.; Stevenson, E.; Chamberlain, S.; Crews, P.; Rushbury, I. The Effect of High Carbohydrate Meals with Different Glycemic Indices on Recovery of Performance during Prolonged Intermittent High-Intensity Shuttle Running. Int. J. Sport Nutr. Exerc. Metab. 2006, 16, 393–404. [Google Scholar] [CrossRef]
- Nobari, H.; Cholewa, J.M.; Castillo-Rodríguez, A.; Kargarfard, M.; Pérez-Gómez, J. Effects of Chronic Betaine Supplementation on Performance in Professional Young Soccer Players during a Competitive Season: A Double Blind, Randomized, Placebo-Controlled Trial. J. Int. Soc. Sports Nutr. 2021, 18, 1–12. [Google Scholar] [CrossRef]
- Ostojic, S.M. Yohimbine: The Effects on Body Composition and Exercise Performance in Soccer Players. Res. Sport. Med. 2006, 14, 289–299. [Google Scholar] [CrossRef]
- Paoli, A.; Mancin, L.; Caprio, M.; Monti, E.; Narici, M.V.; Cenci, L.; Piccini, F.; Pincella, M.; Grigoletto, D.; Marcolin, G. Effects of 30 Days of Ketogenic Diet on Body Composition, Muscle Strength, Muscle Area, Metabolism, and Performance in Semi-Professional Soccer Players. J. Int. Soc. Sports Nutr. 2021, 18, 62. [Google Scholar] [CrossRef]
- Quero, C.D.; Manonelles, P.; Fernández, M.; Abellán-Aynés, O.; López-Plaza, D.; Andreu-Caravaca, L.; Hinchado, M.D.; Gálvez, I.; Ortega, E. Differential Health Effects on Inflammatory, Immunological and Stress Parameters in Professional Soccer Players and Sedentary Individuals after Consuming a Synbiotic. A Triple-Blinded, Randomized, Placebo-Controlled Pilot Study. Nutrients 2021, 13, 1321. [Google Scholar] [CrossRef] [PubMed]
- Souglis, A.G.; Chryssanthopoulos, C.I.; Travlos, A.K.; Zorzou, A.E.; Gissis, I.T.; Papadopoulos, C.N.; Sotiropoulos, A.A. The Effect of High vs. Low Carbohydrate Diets on Distances Covered in Soccer. J. Strength Cond. Res. 2013, 27, 2235–2247. [Google Scholar] [CrossRef]
- Yáñez-Silva, A.; Buzzachera, C.F.; Piçarro, I.D.C.; Januario, R.S.B.; Ferreira, L.H.B.; McAnulty, S.R.; Utter, A.C.; Souza-Junior, T.P. Effect of Low Dose, Short-Term Creatine Supplementation on Muscle Power Output in Elite Youth Soccer Players. J. Int. Soc. Sports Nutr. 2017, 14, 5. [Google Scholar] [CrossRef] [PubMed]
- Altarriba-Bartes, A.; Vicens-Bordas, J.; Peña, J.; Alarcón-Palacios, F.; Sixtos-Meliton, L.A.; Matabosch-Pijuan, M.; Giménez-Martínez, E.; Beato, M.; Calleja-González, J. The Effectiveness of Two Comprehensive Recovery Protocols on Performance and Physiological Measures in Elite Soccer Players: A Parallel Group-Randomized Trial. Int. J. Sports Sci. Coach. 2023; ahead of print. [Google Scholar] [CrossRef]
- Celik, H.; Kucuk, M.; Aktas, Y.; Zerin, M.; Erel, O.; Neselioglu, S.; Kaplan, D.S. The Protective Effects of Pistachio Nut (Pistacia vera L.) on Thiol/Disulfide Homeostasis in Young Soccer Players Undergoing a Strenuous Exercise Training Program. Acta Med. Mediterr. 2019, 35, 893–898. [Google Scholar] [CrossRef]
- Enoka, R.; Duchateau, J. Translating Fatigue to Human Performance. Med. Sci. Sports Exerc. 2016, 48, 2228–2238. [Google Scholar] [CrossRef]
- Project-REGman. Available online: https://regman.org/projektbeschreibung-und-struktur/ (accessed on 20 May 2023).
- Greenwood, M.; Kreider, R.B.; Melton, C.; Rasmussen, C.; Lancaster, S.; Cantler, E.; Milnor, P.; Almada, A. Creatine Supplementation during College Football Training Does Not Increase the Incidence of Cramping or Injury. Mol. Cell Biochem. 2003, 244, 83–88. [Google Scholar] [CrossRef]
Author (Year of Publication) | Country | Design | n | Player Category | Sex | Intervention | Control | Timing | Duration |
---|---|---|---|---|---|---|---|---|---|
Ali, A. (2009) [93] | UK | crossover | 17 | Semiprofessional | Male | 6.4% carbohydrate drink to 8 mL/kg | Placebo | Post | after every 15 min of exercise |
Altarriba-Bartes, A. (2023) [106] | Mexico | clinical trial | 18 | Professional | Male | foam roller CWI tart cherry juice 30 mL | stretching, intermittent CWI | Post | within 30 min after the end of the game and the day after |
Bangsbo, J. (1992) [94] | Denmark | crossover | 7 | Professional | Male | 65 % carbohydrate diet | 39% carbohydrate diet | Pre | 2 days |
Bell, P.G. (2016) [95] | UK | clinical trial | 16 | Semiprofessional | Male | tart cherry juice (30 mL twice per day, | Placebo | Pre | 7 consecutive days (4 days pre- and on each trial day |
Celik, H. (2019) [107] | Turkey | clinical trial | 40 | Professional | Male | pistachio (25 g/day) | No pistachio control | Pre | 25 days |
Chycki, J. (2018) [96] | Poland | clinical trial | 26 | Professional | Male | Na bicarbonate, 3000 mg K dicarbonate 3000 mg Ca phosphate, 600 mg K citrate, 1000 mg Mg citrate 1000 mg, Ca citrate 400 mg | Placebo | Pre | 9 days Additional doses 90 min before the exercise test protocol and the day before the test |
Cox, G. (2002) [97] | Australia | clinical trial | 12 | Professional | Female | Creatine (5 g QID) | Placebo | Pre | 6 days |
da Silva Azevedo, A.P. (2019) [98] | Brazil | crossover | 8 | Professional | Male | Creatine monohydrate (0.3 g/kg/day) | Placebo | Pre | 7 days r |
Erith, S. (2006) [99] | UK | crossover | 27 | Semiprofessional | Male | High Glycemic Diet (GI: 70) | Low Glycemic Diet (GI: 30) | Post | 22 h |
Nobari, H. (2021) [100] | Iran | clinical trial | 29 | Professional | Male | betaine (2 g/day) | Placebo | Pre | 4 weeks |
Ostojic, S.M. (2006) [101] | Serbia | clinical trial | 20 | Professional | Male | Yohimbine (20 mg/day) | Placebo | Pre | 21 days |
Paoli, A.A. (2021) [102] | Italy | clinical trial | 16 | Semiprofessional | Male | isoprotein ketogenic diet (1.8 g/kg/day | Western diet | Pre | 30 days |
Quero, C.D. (2021) [103] | Spain | clinical trial | 14 | Professional | Male | Symbiotic Gasteel Plus® (300 mg) | Placebo | Pre | 1 Month |
Souglis, A.G. (2013) [104] | Greece | crossover | 21 | Professional | Male | high carbohydrate diet 8 g CHO/kg/day | Low carbohydrate diet 3 g CHO/kg/d | Pre | 3, 5 days |
Yáñez-Silva, A. (2017) [105] | Brazil | clinical trial | 19 | Professional | Male | Creatine Monohydrate 0.03 g/kg/day | Placebo | Pre | 14 days |
Kim, J. (2021) [15] | Korea | clinical trial | 20 | Professional | Male | creatine (20 g/day) sodium bicarbonate (0.3 g/kg/day) | Placebo | Pre | 7 days |
Author (Year of Publication) | Main Outcome | Outcome Measurements | Effect Size Intervention vs. Control | p |
---|---|---|---|---|
Ali, A. (2009) [93] | soccer skill performance | LIST [16], LSPT [17] | 11% Performance | p < 0.07 |
Altarriba-Bartes, A (2023) [106] | physical performance | countermovement jump, hamstring maximal voluntary contraction, perceived recovery, muscle soreness | No differences | NS |
Bangsbo, J. (1992) [94] | long-term, intermittent exercise performance. | total mean running distance (km) | 0.9 | p < 0.05 |
Bell, P.G. (2016) [95] | recovery following prolonged repeat sprint activity | LIST MVIC, 20 m Sprint * (s) CMJ 5-0-5 Agility * (s) DOMS * (mm) | No differences 19% 0.1/0.9/0.5 6% −0.1/0.5/0.2 33/46/23 | NS p < 0.05 NS p = 0.017 p = 0.043 p = 0.013 |
Celik, H. (2019) [107] | oxidative stress caused by a strenuous soccer training program | Total thiol (μmol/L) Disulfide (μmol/L) %Disulfide/native thiol % Disulfide/total thiol % Native thiol/total thiol | 4.86 9.49 1.78 1.51 −3.01 | p = 0.015 p < 0.001 p < 0.001 p < 0.001 p < 0.001 |
Chycki, J. (2018) [96] | anaerobic performance | RAST | 1.06 | p < 0.001 |
Cox, G. (2002) [97] | performance simulating match play. | Repeated Sprints (s) Agility Runs (s) Precision Ball-Kicking | 0.05 0.2 −0.3 | p <0.05 p <0.05 NS |
da Silva Azevedo, A.P. (2019) [98] | biomechanical parameters of running | VGRF, EMG activation intensity during the stance phase GL (au) VM (au) | 1.05 1.00 | p < 0.05 p < 0.05 |
Erith, S. (2006) [99] | performance during prolonged high-intensity intermittent shuttle running. | LIST Number attempted Sprinting Distance sprint (m) jogging to fatigue (minutes) | 4 377 2.4 | NS NS NS |
Nobari, H. (2021) [100] | physical performance | Leg press (kg) Bench press(kg) | 2.8 4.3 | p < 0.05 p < 0.05 |
Ostojic, S.M. (2006) [101] | physical performance | Bench and leg press, vertical jump, dribble, power test, shuttle run | No differences | NS |
Paoli, A.A. (2021) [102] | muscle strength, jump performance, endurance | CMJ yo-yo intermittent recovery | No differences | NS |
Quero, C.D. (2021) [103] | anxiety, stress, and sleep quality | Accelerometry Kcal/week METS MVPA (min) Steps (Total/week) Sedentary bouts (>1 min) | 281.8 0.06 −34.93 8309.34 −108.33 | p < 0.05 p < 0.05 NS NS NS |
Souglis, A.G. (2013) [104] | distances covered during soccer match | Distance covered (m) Game result (won) | 1303 2 of 2 | p < 0.01 NS |
Yáñez-Silva, A. (2017) [105] | muscle power output | Wingate Anaerobic Test PPO MPO FI Total Work | 5% 4% No differences 1% | p < 0.05 p < 0.05 NS p < 0.05 |
Kim, J. (2021) [15] | soccer-specific performance | 10 m sprint 30-m sprint, coordination, right/left arrowhead agility, Yo-Yo intermittent recovery. | No differences −3% No differences −6.6%; −4.3% No differences | NS p = 0.007 NS p < 0.001 NS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aguinaga-Ontoso, I.; Guillen-Aguinaga, S.; Guillen-Aguinaga, L.; Alas-Brun, R.; Guillen-Grima, F. Effects of Nutrition Interventions on Athletic Performance in Soccer Players: A Systematic Review. Life 2023, 13, 1271. https://doi.org/10.3390/life13061271
Aguinaga-Ontoso I, Guillen-Aguinaga S, Guillen-Aguinaga L, Alas-Brun R, Guillen-Grima F. Effects of Nutrition Interventions on Athletic Performance in Soccer Players: A Systematic Review. Life. 2023; 13(6):1271. https://doi.org/10.3390/life13061271
Chicago/Turabian StyleAguinaga-Ontoso, Ines, Sara Guillen-Aguinaga, Laura Guillen-Aguinaga, Rosa Alas-Brun, and Francisco Guillen-Grima. 2023. "Effects of Nutrition Interventions on Athletic Performance in Soccer Players: A Systematic Review" Life 13, no. 6: 1271. https://doi.org/10.3390/life13061271
APA StyleAguinaga-Ontoso, I., Guillen-Aguinaga, S., Guillen-Aguinaga, L., Alas-Brun, R., & Guillen-Grima, F. (2023). Effects of Nutrition Interventions on Athletic Performance in Soccer Players: A Systematic Review. Life, 13(6), 1271. https://doi.org/10.3390/life13061271